
Dec. 2. 2005 CS 440 Lecture Notes 1

Remote Procedure Calls
(RPC)

• Technique allowing an application to
invoke a procedure whose code actually
executes on another host

• Takes the form of a request / reply
message exchange

Client Server
Request

Reply

ComputingBlocked

Dec. 2. 2005 CS 440 Lecture Notes 2

RPC (cont.)

• Goal is to make process of calling a
remote procedure indistinguishable from
calling a local procedure to the client app

• Difficulties
– Network interaction introduces plenty of new

complications that local call doesn’t have
– Client and server hosts might have different

architectures and different representations of
data (i.e. big vs. little endian, 32-bit vs. 64-bit)

Dec. 2. 2005 CS 440 Lecture Notes 3

RPC (cont.)

• First problem solved by creating messaging
protocol to mask network issues

• Second problem solved by creating support to
package arguments into requests and
unpackage return values from responses
– Machine specific
– Maybe language specific
– Called marshalling / demarshalling
– Done by stub compiler

Dec. 2. 2005 CS 440 Lecture Notes 4

RPC Network Protocol

• Could run on top of TCP or UDP
– TCP connection setup/teardown fairly

wasteful to exchange a request and reply
– UDP leaves several problems that protocol

must address – mostly reliability
• Might consider this as an alternative

transport protocol, since it is working at the
app-to-app level

Dec. 2. 2005 CS 440 Lecture Notes 5

RPC Network Protocol
(cont.)

• Book introduces three-level microprotocol
stack to accomplish different tasks
– BLAST – handle message fragmentation

• More efficient that IP
– CHAN – synchronize messages
– SELECT – dispatch requests to processes

• Not standard protocols

Dec. 2. 2005 CS 440 Lecture Notes 6

BLAST

• Function similarly to IP fragmentation
• Allows sender to acknowledge multiple

fragments
– Everything after a hole doesn’t need to be

retransmitted
• More aggressive in guaranteeing that all

fragments are delivered
• Not completely reliable

Dec. 2. 2005 CS 440 Lecture Notes 7

CHAN

• Adds reliability
– Guarantees message delivery
– Ensures only one copy of message delivered
– Allows synchronization of client and server

• Implements at-most-once semantics
– Message might not get through at all
– If it does, it won’t be delivered more than once
– Essential for many remote procedures

Dec. 2. 2005 CS 440 Lecture Notes 8

CHAN (cont.)

• Synchronous protocol – client blocks while
server is working, so only one call
outstanding

• Provides multiple channels
– Possible to work around previous restriction

by using parallel channels from one client to
one server

Dec. 2. 2005 CS 440 Lecture Notes 9

SELECT

• Dispatcher that directs data from a
message to correct procedure

• Provides mechanism to identify application
and procedure to call in that application

• Manages multiple channels as necessary
for parallel calls to server

Dec. 2. 2005 CS 440 Lecture Notes 10

Real Implementation -
SunRPC

• Now called Open Network Computing
RPC (ONC RPC)

• Draft IETF standard
• Standard on many Unix systems

– May be most widely used RPC mechanism
– Used by NFS

Dec. 2. 2005 CS 440 Lecture Notes 11

SunRPC (cont.)

• Implemented on top of UDP
– Implements CHAN
– IP used for BLAST (not as aggressive or

efficient)
– UDP provides dispatch to correct program,

SunRPC selects correct procedure

Dec. 2. 2005 CS 440 Lecture Notes 12

SunRPC (cont.)

• Identifies program and procedure using
two 32-bit numbers (program & procedure)

• Uses PortMapper to map 32-bit program
number to UDP port
– Runs on well known UDP port (111)

• Client caches port number
– Avoids calling PortMapper for every

procedure invocation

Dec. 2. 2005 CS 440 Lecture Notes 13

SunRPC (cont.)

• Does not guarantee at-most-once
semantics
– Possible for request to be delivered to server

twice for some rare network conditions
– Not addressed because protocol originally

designed for use on a LAN, not an internet

Dec. 2. 2005 CS 440 Lecture Notes 14

eXternal Data
Representation (XDR)

• Accompanying specification for mapping
host data to message
– Host architecture independent
– Network independent

• Described in RFC 1014
• Presentation layer protocol

– Can be used independently of SunRPC

Dec. 2. 2005 CS 440 Lecture Notes 15

OSF Distributed Computing
Environment (DCE)

• Can be used for stand-alone RPC
– Use NDR stub compiler to generate language

interface
• Also used as foundation for Common

Object Request Broker Architecture
(CORBA)

Dec. 2. 2005 CS 440 Lecture Notes 16

DCE (cont.)

• Also implemented on UDP
• Also uses “endpoint mapping service” to

select correct UDP port
• Implements fragmentation (like BLAST)
• Implements at-most-once semantics

– Can also support zero-or-more semantics

	Remote Procedure Calls (RPC)
	RPC (cont.)
	RPC (cont.)
	RPC Network Protocol
	RPC Network Protocol (cont.)
	BLAST
	CHAN
	CHAN (cont.)
	SELECT
	Real Implementation - SunRPC
	SunRPC (cont.)
	SunRPC (cont.)
	SunRPC (cont.)
	eXternal Data Representation (XDR)
	OSF Distributed Computing Environment (DCE)
	DCE (cont.)

