
Bresenham Lines and Circles 
© Denbigh Starkey 

 
 
Major points of these notes: 
 

1.  Goals for line drawing algorithms       2 
2.  Drawing lines with DDA algorithm       4 
3.  Bresenham algorithm for x0 < x1 and 0 < slope < 1     6 
4.  Bresenham algorithm for general lines      9 
5.  Efficiency considerations for circle generators   14 
6.  DDA algorithm for circles centered at the origin   15 
7.  Bresenham algorithm for circles centered at the origin  16 
8.  Bresenham algorithm for general circles    18 
9.  Other conics        20 
10.  Anti-aliasing lines        21 



 2 

1.  Goals for Line Drawing Algorithms 
 
We’re assuming that we want our line drawing algorithm to be able to draw 
a line between two user-specified pixels on the screen, (x0, y0) and (x1, y1).  
Note that we aren’t specifying the line as being between two 3D points in 
the image, but are assuming that any line has already been projected into 
screen coordinates and clipped to the screen, so that (x0, y0) and (x1, y1) are 
integer pairs that are pixel addresses that are presumably projections from 
3D floating point points. 
 
There are a number of goals that we would like to have for any line drawing 
algorithm, not all of which can be satisfied at the same time.  Some of these 
goals are: 
 

1. The line displayed should include the end pixels (x0, y0) and (x1, y1). 
2. The line intensity should be constant, and shouldn’t depend on the 

angle of the line. 
3. The algorithm should be very fast, and easy to implement in a 

hardware graphics accelerator. 
4. The line generated should look straight, without jaggies. 
5. The line shouldn’t have any gaps which would let color escape in a 

flood fill operation.  It should be 8-connected. 
 
Unfortunately these goals contradict each other.  The only way, for example, 
to fully satisfy 2 and 4 is to use anti-aliased lines, and that process is 
computationally very expensive.  E.g., consider goal 2, and look at the figure 
below, where I’ve drawn two lines, one from (1, 1) to (1, 9), and the other 
from (1, 1) to (9, 9), with both drawn in the obvious “best next pixel” way: 
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It should be obvious that the line at 45° is much less intense than the vertical 
line, because its length is  longer, but it contains the same number of 
pixels.  However any fast line drawing algorithm will have this problem, and 
graphics systems just have to hope that it won’t be noticed.  (And the 
chances are that you have never noticed, even though you have seen a very 
large number of graphics images that have this problem.) 
 
Getting back to our original goals, we can easily meet goals 1 and 3, and 
goal 2 we can approximate by saying that the intensity difference between 
lines will never exceed a factor of 1.414 ( ).  Jaggies will exist in most 
lines, but as screen resolutions have improved they have become much less 
obvious.  They were much more of a problem when the typical screen 
resolution was 640  512. 
 
Before getting into Bresenham’s algorithm we’ll first look at the more 
obvious algorithm called DDA, which adds in the slope and rounds to the 
nearest y for each new pixel displayed.  Bresenham will produce exactly the 
same output as DDA, but dramatically faster since it only uses integer 
addition without the float add and round that occurs in DDA. 
 
For both the DDA and Bresenham algorithms we will assume that the line is 
being drawn from left to right (i.e., x0 < x1), and that the line points increase 
gently, and so its slope satisfies 0 < slope < 1.  Then in a subsequent section 
we will show how to generalize the results to any line.  We ignore lines with 
slopes of 0 or ∞, since they can best be handled as special cases. 
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2.  DDA Line Drawing Algorithm 
 
The DDA (Digital Differential Analyzer) algorithm is, despite its long and 
impressive name, the obvious way to draw a line.  Since we are looking at 
lines whose increase in y is less than their increase in x, the simple solution 
is to start with a pixel at (x0, y0) and then loop increasing x by one each time 
and y by the slope, and then rounding the y to find the pixel to be displayed.  
E.g., say we want to draw the line from (1, 2) to (8, 5), then we want to draw 
the line as shown below: 

 
The actual line is shown for reference.  In the DDA line there is a pixel 
drawn for each x between the starting and ending values, and then the y 
value closest to the line is selected for the second coordinate. 
 
The calculations that will be performed are shown in the table below: 
 

x y round(y) 
1 2 2 
2 2  2 
3 2  3 
4 3  3 
5 3  4 
6 4  4 
7 4  5 
8 5 5 
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The algorithm which we are performing here can be written as: 
 
 procedure DDAline(in int x0, y0, x1, y1; in colorval color) { 
 assert:  (x0 < x1) and ((y1 – y0) < (x1 – x0)) 
  declare:  int x;  float y, slope;   
 
  slope = (y1 – y0) / (x1 – x0); 
  x ← x0;  y ← y0; 
  printpixel(x, y, color); 
  while (x < x1) { 
   x++; 
   y += slope; 
   printpixel(x, round(y), color); 
  } end while 
 } end procedure DDAline 
 
where printpixel will display the pixel in the desired color. 
 
The expensive parts of this algorithm are y += slope; which is a float add 
and round(y), which converts from float to integer.  Bresenham, which we’ll 
look at next, only uses integer additions and comparisons. 
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3.  Bresenham Line Algorithm for x0 < x1 and 0 < slope < 1 
 
Bresenham’s algorithm displays exactly the same pixels as the DDA 
algorithm, given the same end points.  The difference is that it does it much 
more efficiently.  The DDA algorithm has to maintain y as a float, and in 
each loop does a float add and a float to integer round.  We also have a 
single float divide to compute the slope.  By comparison, Bresenham’s 
algorithm only uses integer variables, and only uses integer compares and 
additions.  This not only makes it much faster, but also makes it much easier 
to put into hardware. 
 
In these notes I won’t prove why Bresenham’s algorithm works, but will just 
list the code and give an example.  In CS 525 I’ll prove why it works.  So 
first, here is the algorithm: 
 
 procedure BresenhamLine(in int x0, y0, x1, y1; colorval color) { 
 assert:  (x0 < x1) and ((y1 – y0) < (x1 – x0)) 
  declare:  int x, y, δy, δy, d, incrE, incrNE;  
 
  δx = x1 – x0;  δy = y1 – y0;  
  incrE = 2 * δy; 
  incrNE = 2 * (δy - δx); 
  d = 2 * δy – δx; 
  x ← x0;  y ← y0; 
  printpixel(x, y, color); 
 
  while (x < x1) { 
   x++; 
   if (d < 0) { 
    d += incrE;  /* go East */ 
   } else { 
    y++; 
    d += incrNE;  /* go NorthEast */ 
   } end if 
   printpixel(x, y, color); 
  } end while 
 } end procedure BresenhamLine 
 
The most important thing to note about this algorithm is that everything is 
integer.  So it avoids all floating point calculations.  Also the only operations 
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are integer additions and comparisons since multiplication by 2 will be 
implemented as a single addition.  This is why Bresenham is much faster 
than DDA, and also why it is easy to put into graphics hardware 
accelerators. 
 
Example:  The algorithm looks a bit of a mess, so we’ll use it to generate 
the line from (-5, 2) to (4, 6).  First we need the initial values of the variables 
δx, δy, d, incrE, and incrNE, which will be 9, 4, -1, 8, and -10, respectively.  
We then initialize x and y to the starting point, -5 and 2, display this pixel in 
the required color, and enter the while loop.  This increments x by 1 each 
time through the loop, and so it will execute nine times, with x starting at -4 
and ending at 4.  Inside the loop one of two things happens, based on the 
value of d.  If d is negative, it draws the pixel to the right (East) of the 
previous pixel, since it doesn’t change the value of y, and adds incrE (for 
increment East) to the current value of d.  If d isn’t negative it moves 
northeast, by also adding 1 to y, and adds incrNE to d.  In either case it prints 
out the new (x, y) pixel.  A table and graph of the values are shown below. 
 

x y d 
-5 2 -1 
-4 2 7 
-3 3 -3 
-2 3 5 
-1 4 -5 
0 4 3 
1 5 -7 
2 5 1 
3 6 -4 
4 6 4 
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If you compare this against the DDA algorithm you will see that both 
algorithms have generated exactly the same pixels.  The difference is that 
Bresenham has only used integer arithmetic because of its use of the 
decision variable, d, which is used to determine whether the next pixel 
should be east or northeast of the previous pixel.  Note that because of the 
constraints on the slope these are the only possible positions for the next 
pixel. 
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4.  Bresenham Algorithm for General Lines 
 
We have assumed that (x0 < x1) and ((y1 – y0) < (x1 – x0)).  I.e., that the line 
is going from left to right and that slope satisfies 0 < slope < 1.  Clearly it is 
trivial to draw vertical and horizontal lines without calling on Bresenham, 
which means that we can assume that x0 ≠ x1 and x0 ≠ x1. 
 
We need to be able to handle three other cases: 
 

1. x0 > x1 
2. slope > 1 
3. slope < 0 

 
We’ll discuss each of these cases independently. 
 

1. x0 > x1:  This is trivial to handle.  If the line should be drawn from 
right to left instead of left to right, we just draw it backwards and 
everything will be all right.  I.e., we just exchange (x0, y0) and (x1, 
y1).  E.g., if the algorithm is asked to draw a line from (3, 5) to (1, 4), 
we just draw the line from (1, 4) to (3, 5). 

2. slope > 1:  Say that we are drawing a line from (2, 3) to (5, 10) as 
shown in the figure below. 

 

 
We can exchange x and y values and use Bresenham to calculate the 
dashed line from (3, 2) to (10, 5), which will give the pixel locations 
shown below.  
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Now we can exchange their x and y values to get the pixels displayed 
on the line.
 

 
So to summarize, we wanted to draw a line from (2,3) to (5,10).  Since 
the slope was greater than 1 we exchanged the x and y values and 
calculate the pixels for the line from (3,2) to (10,5).  These are (3,2), 
(4,2), (5,3), (6,3), (7,4), (8,4), (9,5), and (10,5).  Then we exchanged 
their x and y values to get the pixels that we displayed, (2,3), (2,4), 
(3,5), (3,6), (4,7), (4,8), (5,9), and (5,10).  In effect we have reflected 
the line that we want around the diagonal line y = x, which turned a 
slope of greater than 1 into a slope of less than 1. 
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3. slope < 0:  If the slope is less than zero we can reflect the line around 
the x axis to get a line whose slope is greater than zero, generate the 
points there, and then reflect back around the x axis to get the 
displayed pixels.  What that means is that instead of using Bresenham 
from (x0, y0) to (x1, y1), we will use the algorithm on the line from 
(x0, -y0) to (x1, -y1).  Using the same notation that I used before, and 
wanting the line from (2,2) to (12,-2), we compute the pixels for (2,-2) 
to (12,2) using Bresenham, as shown below:  

 
giving the values (2,-2), (3,-2), (4,-1), (5,-1), (6,0), (7,0), (8,0), (9,1), 
(10,1), (11,2), and (12,2).  Changing the signs of the y values gives the 
displayed line with pixels (2,2), (3,2), (4,1), (5,1), (6,0), (7,0), (8,0), (9,-
1), (10,-1), (11,-2), and (12,-2).   
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Example:  Use Bresenham to generate the line from (6,-4) to (2,5).  

 
 

Everything is wrong here.  The line goes right to left, but we can fix that by 
using the line from (2,5) to (6,-4).  The slope is negative, and so we mirror 
around the x axis, and use the line from (2,-5) to (6,4).  The slope of this line 
is greater than 1, so we mirror around y = x, and use Bresenham for the line 
from (-5,2) to (4,6).  This satisfies everything, and so we can finally run the 
algorithm. 
 
The three lines are shown in the next figure.  First we will use Bresenham to 
give us the pixel addresses on the line labeled 1, then exchange x and y to get 
the pixel addresses on the line labeled 2, and then switch the signs of the y 
values to get the line labeled 3, which is the line that we wanted.  In effect 
the first operation is a mirror back around the line y = x, and the second is a 
mirror back around the x axis. 

(2, 5) 

(6, -4) 
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In our first Bresenham algorithm example we showed that for (-5, 2) to (4, 
6) Bresenham generates the ten pixels (-5, 2), (-4, 2), (-3, 3), (-2, 3), 
(-1, 4), (0, 4), (1, 5), (2, 5), (3, 6), and (4, 6).  Mirroring back around the line 
x = y, by exchanging x and y values, gives the pixels on the intermediate 
line as (2, -5), (2, -4), (3, -3), (3, -2), (4, -1), (4, 0), (5, 1), 
(5, 2), (6, 3), and (6, 4).  Switching the signs of the y values completes the 
whole process, and gives us the pixels (2, 5), (2, 4), (3, 3), (3, 2), 
(4, 1), (4, 0), (5, -1), (5, -2), (6, -3), and (6, -4).  These three lines are shown 
below. 

 

1 

2 

3 

1 

2 

3 
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5.  Efficiency considerations for Circle Generators 
 

In both the DDA section and the Bresenham section we will assume that the 
equation of the circle is x2 + y2 = R2.  I.e., we have a circle with its center at 
the origin and radius R.  In a later section we’ll generalize this to circles with 
equation (x – cx)2 + (y – cy)2 = R2, which is a circle with radius R and center 
at (cx, cy), by generating the circle centered at the origin and then translating 
it to the correct center. 
 
An important efficiency improvement for both DDA and Bresenham is to 
only calculate pixel addresses in the primary octant of the circle (shown 
below) and then use symmetry to calculate the points in the other seven 
octants.  Since the circle is centered at the origin, as we discussed above, if 
we generate a point, (x, y), then the other seven points which are 
combinations of positive and negative x and y values can be drawn without 
further computations. 

 

 
So it is sufficient to just generate about of the points on the circle, and then 
output seven additional points for each one. 

(x,y) 

(y,x) 

(y,-x) 

(x,-y) (-x,-y) 

(-y,-x) 

(-y,x) 

(-x,y) 
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 6.  DDA Algorithm for Circles Centered at the Origin 
 

The advantages of using Bresenham are even greater for drawing circles 
(and other conics) than they are for lines.  The DDA algorithm for circles, 
which we’ll describe below, has to use square roots to compute y values for 
different x’s, whereas Bresenham once again only uses integer addition.  
First, however, we’ll look at the DDA algorithm to ensure that it generates 
the same points as Bresenham does when we see that. 
 
The points in the primary octant, shown above, start at (0, R) above the 
origin, and then increase x by 1 as long as x ≤ y (the diagonal at the end of 
the primary octant.  The algorithm for this is: 

 
 procedure DDAcircle(in int R; in colorval color) { 
  declare:  int x;  float y;   

x ← 0;  y ← R; 
  print8pixels(x, y, color); 
  while (x < y) { 
   x++; 
   y = ; 
   print8pixels(x, round(y), color); 
  } end while 
 } end procedure DDAcircle 
 
I.e., each time we are solving the circle equation y2 = R2 – x2, taking the 
square root, and printing the x and the closest y, plus the seven symmetric 
points.  The table below gives the (x, y) values which match the diagram in 
the last section. 
 

x y =  round(y) 
0  = 10.00 10 
1  = 9.95 10 
2  = 9.80 10 
3  = 9.54 10 
4  = 9.17 9 
5  = 8.66 9 
6 = 8.00 8 
7  = 7.14 7 
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7.  Bresenham Algorithm for Circles Centered at the Origin 
 

While it is surprising that it is possible to draw lines with only integer 
additions using a decision variable, it is even more surprising that it is 
possible to do the same for circles.  However, Bresenham’s algorithm 
accomplishes this, through the use of another decision variable, d.  
Obviously if it is possible to draw a circle without the square root and round 
operators in the main loop then we can significantly improve the speed of 
the algorithm. 

 
 procedure BresenhamCircle(in int R; colorval color) { 
  declare:  int x, y, d;  
 
  d = 1 – R; 
  x ← 0;  y ← R; 
  print8pixels(x, y, color); 
 
  while (x < y) { 
   x++; 
   if (d < 0) { 
    d += 2 * x + 1;  /* go East */ 
   } else { 
    y--; 
    d += 2 * (x – y) + 1;  /* go SouthEast */ 
   } end if 
   Print8pixels(x, y, color) if x ≤ y; 
  } end while 
 } end procedure BresenhamCircle 
 
E.g., for R = 10 the table below shows that it generates the same points as 
DDA. 
 

x y d 
0 10 -9 
1 10 -6 
2 10 -1 
3 10 6 
4 9 -3 
5 9 8 
6 8 5 
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7 7 6 
 
 
Notice that, as promised, Bresenham’s circle algorithm uses no floats, and 
only integer addition and comparisons.  I won’t prove that it works in this 
class, but will leave that for CS 525.  
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8.  Bresenham Algorithm for General Circles 
 

 
For both DDA and Bresenham we assumed that the circle was centered at 
the origin.  In general a circle will have equation  
 
 (x – cx)2 + (y – cy)2 = R2 
 
Which is a circle with radius R centered at the point (cx, cy). 
 
To generate all of the pixels for this circle we first generate all of the points 
(including symmetries) for the circle, radius R, centered at the origin, and 
then add (cx, cy) to each point to get displayed pixels.  E.g., for the circle 
 
 (x – 3)2 + (y + 1)2 = 100 
 
We first generate the primary octant points that we generated in the last 
section, and their symmetries, to get the 64 points shown in the first table 
below, then add (3, -1) to each point to get the pixels shown in the second 
table. 
 
(x, y) (y, x) (y, -x) (x, -y) (-x, -y) (-y, -x) (-y, x) (-x, y) 

(0, 10) (10, 0) (10, 0) (0, -10) (0, -10) (-10, 0) (-10, 0) (0, 10) 
(1, 10) (10, 1) (10, -1) (1, -10) (-1, -10) (-10, -1) (-10, 1) (-1, 10) 
(2, 10) (10, 2) (10, -2) (2, -10) (-2, -10) (-10, -2) (-10, 2) (-2, 10) 
(3, 10) (10, 3) (10, -3) (3, -10) (-3, -10) (-10, -3) (-10, 3) (-3, 10) 
(4, 9) (9, 4) (9, -4) (4, -9) (-4, -9) (-9, -4) (-9, 4) (-4, 9) 
(5, 9) (9, 5) (9, -5) (5, -9) (-5, -9) (-9, -5) (-9, 5) (-5, 9) 
(6, 8) (8, 6), (8, -6), (6, -8) (-6, -8) (-8, -6), (-8, 6), (-6, 8) 
(7, 7) (7, 7) (7, -7) (7, -7) (-7, -7) (-7, -7) (-7, 7) (-7, 7) 

 
(3, 9) (13, -1) (13, -1) (3, -11) (3, -11) (-7, -1) (-7, -1) (3, 9) 
(4, 9) (13, 0) (13, -2) (4, -11) (2, -11) (-7, -2) (-7, 0) (2, 9) 
(5, 9) (13, 1) (13, -3) (5, -11) (1, -11) (-7, -3) (-7, 1) (1, 9) 
(6, 9) (13, 2) (13, -4) (6, -11) (0, -11) (-7, -4) (-7, 2) (0, 9) 
(7, 8) (12, 3) (12, -5) (7, -10) (-1, -10) (-6, -5) (-6, 3) (-1, 8) 
(8, 8) (12, 4) (12, -6) (8, -10) (-2, -10) (-6, -6) (-6, 4) (-2, 8) 
(9, 7) (11, 5) (11, -7) (9, -9) (-3, -9) (-5, -7) (-5, 5) (-3, 7) 
(10, 6) (10, 6) (10, -8) (10, -8) (-4, -8) (-4, -8) (-4, 6) (-4, 6) 
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Note that the order matters.  We must first generate all of the symmetries 
from the primary octant and then shift the points to the correct center.  If we 
first shift the primary octant points to the correct center and then generate 
symmetries we will not get the correct result.  
 
Also note that some points (on the axes and the diagonals) are generated 
twice.  It is easy to define the function print8pixels so that this is avoided 
(which would be important if we were in xor write mode, where the second 
pixel displayed would delete the first). 
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9.  Other Conics 
 
Bresenham can be modified to work for other conic curves, but this will also 
be left for CS 525.  E.g., we can easily modify it for ellipses.  One big 
difference, however, is that we can no longer use the eight-way symmetry of 
the circle, and so, for example, with ellipses we must generate a quadrant in 
two parts, working from the axes towards each other, and then use four-way 
symmetry to get the full ellipse. 
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10.  Anti-Aliasing Lines 
 
If it weren’t for its computational cost, which is prohibitive in most 
applications, anti-aliasing would solve all line drawing problems.  I’ll just 
discuss drawing lines here, but the techniques apply to circles and any other 
edge-based figures. 
 
There are a number of anti-aliasing techniques.  Conceptually the easiest is 
to consider the effect of a rectangle in the line color going from the first 
pixel to the last, as shown below.   

 
If a pixel is, say, 60% under this line and 40% not under the line, it will be 
assigned the color that is 60% line color and 40% the normal color for that 
pixel.  On the diagram I’ve given some sample pixel values, where cp is the 
normal color of that pixel, and cl is the color of the line at that position.  
E.g., say that the pixel shown as being given the color .85cp+.15cl would 
have, without the line being drawn, the normalized RGB color (.4, .2, .6), 
and that the line color is a somewhat dark gray, (.4, .4, .4), then the color 
selected for the pixel will be (.4, .23, .57) because 
 
 .4  .85 + .4  .15 = .4 
 .2  .85 + .4  .15 = .23 
 .6  .85 + .4  .15 = .57

cp 

.5cp+.5cl 

.1cp+.9cl 

.85cp+.15cl 

cp: color of pixel 
cl: color of line 
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