
Vectors and Computer Graphics
CS 425

© Denbigh Starkey

1. Introduction 2
2. Definitions 3
3. Vector dot product 5
4. Vector cross product 6
5. Planar normal vector and its planar equation 8
6. Example 1: Computing a cosine 9
7. Example 2: Planar equation from three points 10
8. Example 3: Trying to define a plane with collinear points 12

 2

1. Introduction

There are many uses for vectors in computer graphics, so it is very important
that you have an understanding of what they do for us, as compared to just
knowing the definitions. For example, two very common applications are:

• Given two vectors use dot product (which will be in the graphics
processor) to find the cosine of the angle between them. Cosine is
used extensively in computer graphics, for example in lighting
calculations and in back face culling, which we’ll see as the semester
progresses.

• Given three points in a plane, where it is known whether they were

entered clockwise or counterclockwise, compute the unit surface
normal in the correct orientation and from this compute the planar
equation.

Throughout these notes I’ll assume that we are using a right handed system
(RHS). For a long time some graphics systems used left handed systems and
others used right handed, but now the right handed vector system is used in
nearly all graphics software and literature, so it is the obvious assumption to
make. To understand the RHS hold up your right hand with thumb and the
first two fingers at right angles to each other, then with thumb as X and
forefinger as Y, the Z direction is given by the middle finger. A left handed
system would have Z in the other direction – try both without breaking any
fingers.

Using the older (but equivalent) definition, align your thumb along the X
axis, as before, and curl your four fingers together. They will curl in the Z
direction under either RHS or LHS.

 3

2. Definitions

I’ll give the basic terminology definitions in this section and will leave the
definitions of dot product and cross product to the next two sections.

A vector is the difference between two points in space. This can be in 2D or
3D (or higher dimensions), but obviously in graphics we are mainly
interested in 3D, so I’ll usually assume 3D.

E.g., P1 = (3, 5, -2), P2 = (-1, 0, 4). The vector v with head at P1 and tail at
P2 is defined by

v = P1 – P2 = (4, 5, -6)

The elements v1, v2, and v3 which make up the vector v = (v1, v2, v3) are
called its scalar components.

It is important to recognize that the definition gives a vector a size and a
direction, but that it doesn’t give it a location, and it is critical that you
understand this concept. So, for example, decide how many 2D vectors I’ve
shown as bold arrows in the figure below.

The temptation is to say that there are five, but actually there are only two.
The three on the left from (1, 3) to (3, 7), from (2, 1) to (4, 5), and from (4,
3) to (6, 7) are all the same vector, (2, 4). Similarly the other two vectors are
both the same vector, (2, -2). I.e., it isn’t that the three arrows on the left
represent equal vectors, but they represent the same vector. So, to
emphasize this again, a vector has size and direction, but not location.1

1 As we’ll see, there is a special vector, the zero vector or just 0, which has a size but no well defined
direction, but we make every effort to avoid it in our graphics computations.

 4

There are a number of ways to distinguish a vector from a scalar (a number
or variable). In print a vector is usually bold (e.g. v) and when handwritten
it is either underlined (e.g. v) or with some kind of arrow or half arrow
above it. I’ll use bold for vectors in these notes and underline when I’m
writing in class. Graphically a vector will be shown as an arrow in some
coordinate system.

v = (v1, v2, v3) is a 3D vector with three scalar components.

The direction of a vector can be found by placing the tail on the origin, and
so the head will then be at the Cartesian point (v1, v2, v3). (I.e., P1 – P2
where P2 is (0, 0, 0).)

The length/size/magnitude of a vector, ||v||, is 2

3
2
2

2
1 vvv ++ .

If ||v|| = 1, then v is a unit vector.

The zero vector, 0 = (0, 0, 0), must be avoided at all costs. Note that it has a
magnitude (zero), but no well defined direction. If it gets created and you
don’t detect it then horrible problems can occur. E.g., if you try to find the
normal vector to a plane defined by three points, and they happen to be
collinear, then the zero vector will be returned since the plane isn’t well
defined.

Vector addition: u + v = (u1 + v1, u2 + v2, u3 + v3)

Scalar multiplication: If a is a scalar and v is a vector, then the scalar
multiplication of v by a is computed as av = (av1, av2, av3). If a > 0 then
you get a vector in the same direction but a times as large, if a < 0 then you
get a vector that is in the opposite direction and is |a| (i.e. -a) times as large.
If a = 0 you’ve just created 0 and you are likely to have problems.

Normalizing a vector: If we want a unit vector in the same direction as v
(which we often do) then we just need to divide the vector by its length (i.e.,
scalar multiplication by the inverse of the length). So to normalize v just
compute v / ||v||. (Note that unpleasant things will happen if v is 0.)

 5

3. Vector dot product

The dot product is also called vector scalar product, but that tends to get
confused with scalar multiplication, so I’ll use dot product as the name.

u .v = ||u|| ||v|| cos(θ), where θ is the angle between the two vectors (stick
their tails together).

Computationally, u . v = u1v1 + u2v2 + u3v3

E.g., the dot product of the vectors (3, -1, 2) and (1, 2, -1) is -1 because
3 * 1 + (-1) * 2 + 2 * (-1) = 3 – 2 – 2 = -1.

As a special case, if u and v are unit vectors then the angle between them is
given by cos-1(u .v).

Usually vectors are normalized in graphics, so the dot product lets us
compute the cosine of the angle between two vectors very quickly.

 6

4. Vector cross product (right handed)

The cross product is also just called the vector product, but I’ll call it the
cross product.

u x v = ||u|| ||v|| sin(θ) n, where n is a unit vector that is normal to the plane
that contains the vectors u and v, and θ is the angle between u and v.

Computationally u × v = (u2v3 – u3v2, u3v1 – u1v3, u1v2 – u2v1). As I
mentioned, above, I’ll always use the right handed cross product, but if you
want the left handed cross product just change the sign of this expression.

E.g., the cross product of (3, -1, 2) and (1, 2, -1) is (-3, 5, 7) because the
formula gives ((-1) * (-1) – 2 * 2, 2 * 1 – 3 * (-1), 3 * 2 – (-1) * 1) which is
(1 – 4, 2 + 3, 6 + 1). Practice some cross products because you’ll be doing
them in homeworks and tests.

I don’t bother to remember the formula but remember the crosses that give
the operation its name. I’ll show what I mean below using the example
above:

Start in the middle at the top and do the X shown missing the first term, then
start at the top right and do an X missing the second term, and finally start at
the top left and do an X missing the last term. Compare this against the
computation ((-1) * (-1) – 2 * 2, 2 * 1 – 3 * (-1), 3 * 2 – (-1) * 1) which I
had above.

So the result of a cross product between two vectors is another vector (with
magnitude ||u|| ||v|| sin(θ)) that is normal (perpendicular) to the plane that
contains the two vectors.

The most common use of cross product in graphics is to find the unit normal
vector to a plane defined by three points, P1, P2, and P3. Say you know that
these three points were entered in that order clockwise in the plane. Define

3 -1 2

1 2 -1

3 -1 2

1 2 -1

3 -1 2

1 2 -1

 7

u = P1 – P2 and v = P3 – P2. Then (see the picture below) take the cross
product w = u × v, and w will be a normal vector to the plane in the correct
direction. Now normalize w (i.e., assign w = w / ||w||) and you’ve got a unit
normal vector to the plane in the correct direction.

To check the direction, lay your thumb (right hand) along u and your
forefinger along v, and then your middle finger should point out of the page,
which is what we want.

I’ll do an example of this later in these notes.

Note that if u = kv for some k, then u × v = (0, 0, 0) = 0, the zero vector.
This can be seen either from the computational form of the definition or
from noting that u and v are parallel, that the angle between parallel lines is
0°, and that sin(0°) = 0.

P3
P1

P2

v
u

 8

5. Planar equations and normal vectors.

If we know the planar equation is, say, Ax + By + Cz + D = 0, then an
incredibly useful property is that a normal vector to the plane is (A, B, C).
E.g. the plane 3x – y + z + 2 = 0 has a normal vector (3, -1, 1). (All that the
D value is doing is moving the plane up and down perpendicular to this
vector.) If we want the two unit normal vectors to the plane, in opposite
directions, they are

€

(3
11
, −1
11
, 1
11
) and

€

(−3
11
, 1
11
, −1
11
) .

In the other direction, if we’ve computed the normal vector as discussed
earlier, and also know a point in the plane, we can use this property to
compute the planar equation. E.g., a plane contains the point (1, -1, 2) and
has a normal vector (2, 1, -3). Then the planar equation must be

2x + y – 3z + D = 0

for some D. Using the known value on the plane (1, -1, 2) for (x, y, z) gives
2 – 1 – 6 + D = 0, and so D = 5 and the equation of the plane is

2x + y – 3z + 5 = 0.

 9

6. Example 1: Computing a cosine

Say that we want the cosine of the angle between the two vectors (3, -1, 2)
and (1, 2, -1), when we put their tails together. Call the angle θ, the first
vector u and the second vector v. Then we have:

 u . v = 3 – 2 – 2 = -1 = ||u|| ||v|| cos(θ) = 14 * 6 * cos(θ).

So θ = cos-1(

€

−1
84

) = 96.3°.

 10

7. Example 2: Planar Equation from Three Points

A common situation is that a user will enter a number of points, usually
counter clockwise (ccw), which define a polygon. The graphics package
will computer the planar equation from the first three points that are not
collinear, and will check that subsequent points lie on this plane. The
package will also usually compute and retain the up vector for the plane and
will use this later for lighting calculations and for backface culling.

Earlier I gave a brief example where three points were entered clockwise. In
this example I’ll assume that they are entered counterclockwise (ccw), which
will give a picture like:

where, as before, u = P1 – P2 and v = P3 – P2. Now to get the up vector
coming out of the page we’ll need v × u (use your right hand to confirm
this).

Say that the three points entered are, in ccw order, (2, 2, -2), (1, 2, -1), and
(1, 3, 0), and that we want the planar equation of the plane that contains
these three points and a unit up vector to the plane. First I’ll compute the up
vector, then use it to get the planar equation, and finally normalize it to get
the unit up vector.

 u = P1 – P2 = (2, 2, -2) – (1, 2, -1) = (1, 0, -1)
 v = P3 – P2 = (1, 3, 0) – (1, 2, -1) = (0, 1, 1)
 v × u = (0, 1, 1) × (1, 0, -1) = (-1, 1, -1).

So (-1, 1, -1) is a (not unit) up vector to this plane.

As I discussed earlier we can use this to say that the planar equation must be
-x + y – z + D = 0, for some D. To find D substitute in any of the three

P1
P3

P2

u
v

 11

points, say (1, 3, 0), for (x, y, z). This gives -1 + 3 – 0 + D = 0, so D = -2,
which gives the planar equation:

 -x + y – z – 2 = 0.

To confirm that I haven’t made an error along the way, substitute the other
two points, (2, 2, -2) and (1, 2, -1), into this equation, and you’ll find that it
is satisfied for them.

My final task is to find the unit up vector, which we get by normalizing the
up vector (-1, 1, -1). The length of this vector is 222)1(1)1(−++− = 3 , so

the unit up vector is

€

(−1
3
, 1
3
, −1
3
). If we want the unit vector in the down

direction we just have to change the signs, giving

€

(1
3
, −1
3
, 1
3
).

 12

8. Example 3: Trying to Define a Plane with Collinear Points

Say that the three points entered by the user in ccw order are (2, 3, 1),
(1, 2, -1), and (-1, 0, -5). Defining u and v as before we get:

 u = (2, 3, 1) – (1, 2, -1) = (1, 1, 2)
 v = (-1, 0, -5) – (1, 2, -1) = (-2, -2, -4)
 v × u = (-2, -2, -4) × (1, 1, 2) = (0, 0, 0) = 0.

So the up vector to the plane is the zero vector, which has no well defined
direction, and which will cause chaos with later display calculations. So
what has gone wrong? If we look more carefully at u and v we can see that
v = -2u, and so they are parallel (in opposite directions). This means that
our three points are collinear2, and obviously a line cannot define a unique
plane.

This is very useful as long as the graphics package detects the problem. The
procedure should be that the user puts in three or more points that they claim
define a polygon. The graphics package uses the first three points to get the
normal vector, and if it isn’t the zero vector it can then get the planar
equation and check to ensure that any other points lie in the plane. If,
however, it gets the zero vector then it tries using points two through four to
repeat the process. It keeps going until finally it gets three non-collinear
points or it runs out of points and so determines that all of the entered points
were collinear (in which case it can output an error message and exit).

2lie in a straight line

