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1.  Introduction 
 
There are many uses for vectors in computer graphics, so it is very important 
that you have an understanding of what they do for us, as compared to just 
knowing the definitions.  For example, two very common applications are: 
 

• Given two vectors use dot product (which will be in the graphics 
processor) to find the cosine of the angle between them.  Cosine is 
used extensively in computer graphics, for example in lighting 
calculations and in back face culling, which we’ll see as the semester 
progresses. 

 
• Given three points in a plane, where it is known whether they were 

entered clockwise or counterclockwise, compute the unit surface 
normal in the correct orientation and from this compute the planar 
equation. 

 
Throughout these notes I’ll assume that we are using a right handed system 
(RHS).  For a long time some graphics systems used left handed systems and 
others used right handed, but now the right handed vector system is used in 
nearly all graphics software and literature, so it is the obvious assumption to 
make.  To understand the RHS hold up your right hand with thumb and the 
first two fingers at right angles to each other, then with thumb as X and 
forefinger as Y, the Z direction is given by the middle finger.  A left handed 
system would have Z in the other direction – try both without breaking any 
fingers.   
 
Using the older (but equivalent) definition, align your thumb along the X 
axis, as before, and curl your four fingers together.  They will curl in the Z 
direction under either RHS or LHS. 
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2.  Definitions 
 
I’ll give the basic terminology definitions in this section and will leave the 
definitions of dot product and cross product to the next two sections. 
 
A vector is the difference between two points in space.  This can be in 2D or 
3D (or higher dimensions), but obviously in graphics we are mainly 
interested in 3D, so I’ll usually assume 3D. 
 
E.g., P1 = (3, 5, -2), P2 = (-1, 0, 4).  The vector v with head at P1 and tail at 
P2 is defined by 
 

v = P1 – P2 = (4, 5, -6) 
 
The elements v1, v2, and v3 which make up the vector v = (v1, v2, v3) are 
called its scalar components. 
 
It is important to recognize that the definition gives a vector a size and a 
direction, but that it doesn’t give it a location, and it is critical that you 
understand this concept.  So, for example, decide how many 2D vectors I’ve 
shown as bold arrows in the figure below. 

 
The temptation is to say that there are five, but actually there are only two.  
The three on the left from (1, 3) to (3, 7), from (2, 1) to (4, 5), and from (4, 
3) to (6, 7) are all the same vector, (2, 4).  Similarly the other two vectors are 
both the same vector, (2, -2).  I.e., it isn’t that the three arrows on the left 
represent equal vectors, but they represent the same vector.  So, to 
emphasize this again, a vector has size and direction, but not location.1 
                                                
1 As we’ll see, there is a special vector, the zero vector or just 0, which has a size but no well defined 
direction, but we make every effort to avoid it in our graphics computations. 
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There are a number of ways to distinguish a vector from a scalar (a number 
or variable).  In print a vector is usually bold (e.g. v) and when handwritten 
it is either underlined (e.g. v) or with some kind of arrow or half arrow 
above it.  I’ll use bold for vectors in these notes and underline when I’m 
writing in class.  Graphically a vector will be shown as an arrow in some 
coordinate system. 
 
v = (v1, v2, v3) is a 3D vector with three scalar components. 
 
The direction of a vector can be found by placing the tail on the origin, and 
so the head will then be at the Cartesian point (v1, v2, v3).  (I.e., P1 – P2 
where P2 is (0, 0, 0).) 
 
The length/size/magnitude of a vector, ||v||, is 2

3
2
2

2
1 vvv ++ . 

 
If ||v|| = 1, then v is a unit vector. 
 
The zero vector, 0 = (0, 0, 0), must be avoided at all costs.  Note that it has a 
magnitude (zero), but no well defined direction.  If it gets created and you 
don’t detect it then horrible problems can occur.  E.g., if you try to find the 
normal vector to a plane defined by three points, and they happen to be 
collinear, then the zero vector will be returned since the plane isn’t well 
defined. 
 
Vector addition:  u + v = (u1 + v1, u2 + v2, u3 + v3) 
 
Scalar multiplication:  If a is a scalar and v is a vector, then the scalar 
multiplication of v by a is computed as av = (av1, av2, av3).  If a > 0 then 
you get a vector in the same direction but a times as large, if a < 0 then you 
get a vector that is in the opposite direction and is |a| (i.e. -a) times as large.  
If a = 0 you’ve just created 0 and you are likely to have problems. 
 
Normalizing a vector:  If we want a unit vector in the same direction as v 
(which we often do) then we just need to divide the vector by its length (i.e., 
scalar multiplication by the inverse of the length).  So to normalize v just 
compute v / ||v||.  (Note that unpleasant things will happen if  v is 0.) 
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3.  Vector dot product 
 
The dot product is also called vector scalar product, but that tends to get 
confused with scalar multiplication, so I’ll use dot product as the name. 

 
u .v = ||u|| ||v|| cos(θ), where θ is the angle between the two vectors (stick 
their tails together). 
 
Computationally, u . v = u1v1 + u2v2 + u3v3 
 
E.g., the dot product of the vectors (3, -1, 2) and (1, 2, -1) is -1 because  
3 * 1 + (-1) * 2 + 2 * (-1) = 3 – 2 – 2 = -1. 
 
As a special case, if u and v are unit vectors then the angle between them is 
given by cos-1(u .v). 
 
Usually vectors are normalized in graphics, so the dot product lets us 
compute the cosine of the angle between two vectors very quickly. 
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4.  Vector cross product (right handed) 
 
The cross product is also just called the vector product, but I’ll call it the 
cross product. 

 
u x v = ||u|| ||v|| sin(θ) n, where n is a unit vector that is normal to the plane 
that contains the vectors u and v, and θ is the angle between u and v. 
 
Computationally u ×  v = (u2v3 – u3v2, u3v1 – u1v3, u1v2 – u2v1).  As I 
mentioned, above, I’ll always use the right handed cross product, but if you 
want the left handed cross product just change the sign of this expression. 
 
E.g., the cross product of (3, -1, 2) and (1, 2, -1) is (-3, 5, 7) because the 
formula gives ((-1) * (-1) – 2 * 2, 2 * 1 – 3 * (-1), 3 * 2 – (-1) * 1) which is 
(1 – 4, 2 + 3, 6 + 1).  Practice some cross products because you’ll be doing 
them in homeworks and tests. 
 
I don’t bother to remember the formula but remember the crosses that give 
the operation its name.  I’ll show what I mean below using the example 
above: 
 

 
Start in the middle at the top and do the X shown missing the first term, then 
start at the top right and do an X missing the second term, and finally start at 
the top left and do an X missing the last term.  Compare this against the 
computation ((-1) * (-1) – 2 * 2, 2 * 1 – 3 * (-1), 3 * 2 – (-1) * 1) which I 
had above. 
 
So the result of a cross product between two vectors is another vector (with 
magnitude ||u|| ||v|| sin(θ)) that is normal (perpendicular) to the plane that 
contains the two vectors. 
 
The most common use of cross product in graphics is to find the unit normal 
vector to a plane defined by three points, P1, P2, and P3.  Say you know that 
these three points were entered in that order clockwise in the plane.  Define 

3 -1 2 

1 2 -1 

3 -1 2 

1 2 -1 

3 -1 2 

1 2 -1 
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u = P1 – P2 and v = P3 – P2.  Then (see the picture below) take the cross 
product w = u ×  v, and w will be a normal vector to the plane in the correct 
direction.  Now normalize w (i.e., assign w = w / ||w||) and you’ve got a unit 
normal vector to the plane in the correct direction. 
 

 
To check the direction, lay your thumb (right hand) along u and your 
forefinger along v, and then your middle finger should point out of the page, 
which is what we want. 
 
I’ll do an example of this later in these notes. 
 
Note that if u = kv for some k, then u ×  v = (0, 0, 0) = 0, the zero vector.  
This can be seen either from the computational form of the definition or 
from noting that u and v are parallel, that the angle between parallel lines is 
0°, and that sin(0°) = 0. 
 

P3 
P1 

P2 

v 
u 
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5.  Planar equations and normal vectors. 
 
If we know the planar equation is, say, Ax + By + Cz + D = 0, then an 
incredibly useful property is that a normal vector to the plane is (A, B, C).  
E.g. the plane 3x – y + z + 2 = 0 has a normal vector (3, -1, 1).  (All that the 
D value is doing is moving the plane up and down perpendicular to this 
vector.)  If we want the two unit normal vectors to the plane, in opposite 
directions, they are 

€ 

( 3
11
, −1
11
, 1
11
)  and 

€ 

( −3
11
, 1
11
, −1
11
) . 

 
In the other direction, if we’ve computed the normal vector as discussed 
earlier, and also know a point in the plane, we can use this property to 
compute the planar equation.  E.g., a plane contains the point (1, -1, 2) and 
has a normal vector (2, 1, -3).  Then the planar equation must be  
 

2x + y – 3z + D = 0  
 
for some D.  Using the known value on the plane (1, -1, 2) for (x, y, z) gives 
2 – 1 – 6 + D = 0, and so D = 5 and the equation of the plane is  
 

2x + y – 3z + 5 = 0. 
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6.  Example 1:  Computing a cosine 
 
Say that we want the cosine of the angle between the two vectors (3, -1, 2) 
and (1, 2, -1), when we put their tails together.  Call the angle θ, the first 
vector u and the second vector v.  Then we have: 
 
 u . v = 3 – 2 – 2 = -1 = ||u|| ||v|| cos(θ) = 14  * 6  * cos(θ). 
 
So θ = cos-1(

€ 

−1
84

) = 96.3°. 
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7.  Example 2:  Planar Equation from Three Points 
 
A common situation is that a user will enter a number of points, usually 
counter clockwise (ccw), which define a polygon.  The graphics package 
will computer the planar equation from the first three points that are not 
collinear, and will check that subsequent points lie on this plane.  The 
package will also usually compute and retain the up vector for the plane and 
will use this later for lighting calculations and for backface culling. 
 
Earlier I gave a brief example where three points were entered clockwise.  In 
this example I’ll assume that they are entered counterclockwise (ccw), which 
will give a picture like: 
 

 
where, as before, u = P1 – P2 and v = P3 – P2.  Now to get the up vector 
coming out of the page we’ll need v ×  u (use your right hand to confirm 
this). 
 
Say that the three points entered are, in ccw order, (2, 2, -2), (1, 2, -1), and 
(1, 3, 0), and that we want the planar equation of the plane that contains 
these three points and a unit up vector to the plane.  First I’ll compute the up 
vector, then use it to get the planar equation, and finally normalize it to get 
the unit up vector. 
 
 u = P1 – P2 = (2, 2, -2) – (1, 2, -1) = (1, 0, -1) 
 v = P3 – P2 = (1, 3, 0) – (1, 2, -1) = (0, 1, 1) 
 v ×  u = (0, 1, 1) ×  (1, 0, -1) = (-1, 1, -1). 
 
So (-1, 1, -1) is a (not unit) up vector to this plane. 
 
As I discussed earlier we can use this to say that the planar equation must be 
-x + y – z + D = 0, for some D.  To find D substitute in any of the three 

P1 
P3 

P2 

u 
v 
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points, say (1, 3, 0), for (x, y, z).  This gives -1 + 3 – 0 + D = 0, so D = -2, 
which gives the planar equation: 
 
 -x + y – z – 2 = 0. 
 
To confirm that I haven’t made an error along the way, substitute the other 
two points, (2, 2, -2) and (1, 2, -1), into this equation, and you’ll find that it 
is satisfied for them. 
 
My final task is to find the unit up vector, which we get by normalizing the 
up vector (-1, 1, -1).  The length of this vector is 222 )1(1)1( −++−  = 3 , so 

the unit up vector is 

€ 

( −1
3
, 1
3
, −1
3
).   If we want the unit vector in the down 

direction we just have to change the signs, giving 

€ 

( 1
3
, −1
3
, 1
3
). 
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8.  Example 3:  Trying to Define a Plane with Collinear Points 
 
Say that the three points entered by the user in ccw order are (2, 3, 1),  
(1, 2, -1), and (-1, 0, -5).  Defining u and v as before we get: 
 
 u = (2, 3, 1) – (1, 2, -1) = (1, 1, 2) 
 v = (-1, 0, -5) – (1, 2, -1) = (-2, -2, -4) 
 v ×  u = (-2, -2, -4) ×  (1, 1, 2) = (0, 0, 0) = 0. 
 
So the up vector to the plane is the zero vector, which has no well defined 
direction, and which will cause chaos with later display calculations.  So 
what has gone wrong?  If we look more carefully at u and v we can see that 
v = -2u, and so they are parallel (in opposite directions).  This means that 
our three points are collinear2, and obviously a line cannot define a unique 
plane. 
 
This is very useful as long as the graphics package detects the problem.  The 
procedure should be that the user puts in three or more points that they claim 
define a polygon.  The graphics package uses the first three points to get the 
normal vector, and if it isn’t the zero vector it can then get the planar 
equation and check to ensure that any other points lie in the plane.  If, 
however, it gets the zero vector then it tries using points two through four to 
repeat the process.  It keeps going until finally it gets three non-collinear 
points or it runs out of points and so determines that all of the entered points 
were collinear (in which case it can output an error message and exit). 

                                                
2lie in a straight line 


