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1.  Background 
 
This is a continuation of my previous set of notes, where I described three basic cubic 
spline systems, Hermite, Bezier, and B-Splines.  I’ll assume here that you understand 
these concepts and that I don’t need to reintroduce the notation. 
 
In these notes I’ll be concentrating on B-Splines, with an emphasis on the Cox-deBoor 
equations that define them. 
 
Cox and deBoor independently came up with the recursive definition of B-Spline curves 
in terms of a monotonically increasing knot vector, a sequence of control points, and the 
order of the curve.  In my previous notes I briefly described knot vectors, but didn’t show 
how they worked in general. 
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2.  Definitions 
 
The order (or, confusingly, the degree) of a spline curve, d, is one greater than the degree 
of the polynomials that define the curve segments.  So, for example, if we want a spline 
based on cubic parametric polynomials then the order will be 4.  The order is defined 
more intuitively as the number of control points affecting any point on the curve. 
 
There will be n + 1 control points, p0, …  pn.  In graphics we are mainly concerned with 
points and splines in 2D and 3D, but the principles also apply to points in 1D or in higher 
dimensions than 3D.  For example, when we use NURBS we’ll actually be using 4D 
spline curves which will be projected into 3D for the final result. 
 
A knot vector (often shortened to k.v. or just kv) is a monotonically increasing list of 
floats called knots.  So if the knot vector is (u0, u1, …, um) then ui ≤ ui+1, 0 ≤ i < m.  This 
isn’t strictly monotonic, and so consecutive knot values can be equal.  As I’ll show when 
I get to the Cox-deBoor equations, the number of knots is d + n + 1 (i.e., the order plus 
the number of control points).  Most graphics systems will allow bigger knot vectors than 
this, but only this many will be used in the computations, so I’ll always assume that the 
knot vector has this size. 
 
A uniform knot vector has equal separation between the knots.  The most common form 
begins at 0 and increases by 1 and so (0, 1, 2, 3, 4, 5) is the standard uniform knot vector 
of length 6.  A normalized uniform knot vector begins at 0 and ends at 1 and so 
normalizing the previous knot vector gives the knot vector (0, 0.2, 0.4, 0.6, 0.8, 1.0). 
 
An open uniform knot vector isn’t uniform, since in standard form it begins with d zeros 
(where d is the order) then increases uniformly, usually with a separation of 1, until 
ending with d copies of the last value.  The knot vector is said to have a multiplicity of d 
at each end.  E.g., for a quadratic (order 3) B-spline with six control points the standard 
open uniform knot vector will be (0, 0, 0, 1, 2, 3, 4, 4, 4) since it must have length 3 + 6.  
Normalized it will be (0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1). 
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3.  Cox-deBoor Equations 
 
The definition of a spline curve is given by: 
 

 P(u) =  

 
where d is the order of the curve and the blending functions Bk,d (u) are defined by the 
recursive Cox-deBoor equations: 
 

 Bk,1(u) =  

  

 Bk,d(u) = Bk,d-1(u) + Bk+1,d-1(u),  d > 1 

 
The generated curve is defined as being the part that is in the range of d blending 
functions of the form Bk,1(u) and u values outside this range are not used.  This means 
that all points in the curve are controlled by d (the order) control points. 
 
I find it useful to look at these equations as a tree of Bk,d’s.   
 
As an example, in the tree on the next page I’ve shown a four control point cubic system 
(so its order is 4).  It shows the four control points, with their associated summation B 
values at the top.  At the bottom it shows the knot ranges where each Bk,1 is defined.  
Each Bk,d value higher in the tree is linked to the Bk,d-1 values that are used in its 
definition. 
 
I’ll have additional uses for the tree later, but now it can be used to confirm some 
properties of B-splines.  One is the number of knot values needed; here we have d = 4 
and four control points, and looking at the knots that are used in the definition they range 
from u0 to u7, and so there are 8 knots.  Since  
4 + 4 = 8 this satisfies our length rule.  Obviously as additional control points are added 
to the system we will need an equal number of additional knots at the bottom.  Another 
property can be seen by selecting a control point and looking at the knot ranges that it 
affects.  E.g., tracking down through the tree shows that p1 affects the four ranges from u1 
to u5.   
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For this tree the generated curve will be in the parameter range u3 ≤ u ≤ u4, since this is 
the only parameter range where all four (d = 4) of the control points have influence. 
 

B0,3 

p0 p1 p2 p3 

B0,4 B1,4 B2,4 B3,4 

B0,3 B1,3 B2,3 B3,3 B4,3 

B0,2 

B0,1 

B1,2 B2,2 B3,2 B4,2 B5,2 

B1,1 B2,1 B3,1 B4,1 B5,1 B6,1 

u6≤u≤u7 u5≤u≤u6 u4≤u≤u5 u3≤u≤u4 u2≤u≤u3 u1≤u≤u2 u0≤u≤u1 
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4.  Using uk ≤ u ≤ uk+1 or uk ≤ u < uk+1 
 
The basis of the recursive definition of the blending functions given above was: 
 

 Bk,1(u) =  

 
You’ll also see this with a < for the last comparison as in: 
 

 Bk,1(u) =  

 
There are advantages and disadvantages to both approaches.  E.g., later in these notes I’ll 
have a case where, using the ≤ form I have: 
 

 B1,2(u) =  

 
which is a bit offensive with the double specification on what to do when  
u = 2, but gets away with it because both specifications are equal at that point.  If I’d been 
using the < form, I’d have had a different problem because it would have led to: 
 

 B1,2(u) =  

 
Which although it works out well here, I really want the 3 – u piece to be true for 2 ≤ u ≤ 
3.  So both versions have problems here that need to be patched, which in the ≤ case 
involve the limit as u→ud+n types of fixups. 
 
The major advantage of the < form comes when we have a knot vector that includes two 
or more equal knots.  With the ≤ form this leads to divide by zero situations like: 
 

 B1,2(u) =  

 
which is obviously very ugly, and is avoided in the < form, where it will become: 
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 B1,2(u) =  

 
which is weird, but avoids the problem.  To fix this up in the ≤ form we need to define 
that , which solves the problem but is obviously a kludge.  To get you comfortable 
with both versions I’ll use the ≤ form in these notes, where I’ll assume that the  
equality is true, and will use the < form in my NURBS notes. 
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5.  Example 1:  Linear Spline, Four Control Points, Uniform K.V. 
 
I’ll start with a relatively simple example where d = 2, we have four control points, (1, 1), 
(2, 2), (3, 0), and (0, 0), and we use the standard uniform knot vector (0, 1, 2, 3, 4, 5).  
This should give a linear spline, and each point on the spline will depend on d = 2 control 
points.  The tree is shown below: 

 
I’ve now put the point values at the top of the tree, and the actual knot values at the 
bottom of the tree.  However the biggest difference here is that I have labeled the edges 
with their multipliers.  I’ll use one pair of these edges as an example, and let you confirm 
the others. 
 
Consider B1,2(u).  The Cox-deBoor equations say that this is defined by: 
 

 B1,2(u) = B1,1(u) + B2,1(u). 

 
For the standard knot vector that we are using, u1 = 1, u2 = 2, and u3 = 3, and so this 
becomes: 
 
 B1,2(u) = (u – 1)B1,1 + (3 – u)B2,1, 
 
and so in the tree the edges from B1,2 to B1,1 and B2,1 are labeled u – 1 and  
3 – u, respectively. 
 
In more traditional notation, 
 

 B1,2(u) =  

 

B0,3 

(1,1) (2,2) (3,0) (0,0) 

B0,2 B1,2 B2,2 B32 

B0,1 B11 B2,1 B3,1 B4,1 

1≤u≤2 0≤u≤1 2≤u≤3 3≤u≤4 4≤u≤5 

u 2-u u-1 3-u 4-u 5-u u-2 u-3 
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Using the tree, we see that the range of u values which are under the influence of two 
(because d = 2) control points is 1 ≤ u ≤ 4 and within this range the curve is defined by: 
 

 P(u) =  

 
which connects the four points with straight lines, as we’d expect for a linear spline. 

 
 
One more point to note before moving on to the next example.  If you look at the 
blending functions in the definition of P(u) you will see that the sum of them, for any u, is 
1, and each blending function is ≥ 0.  E.g., for the range 3 ≤ u ≤ 4, (4 – u) + (u – 3) = 1 
and both (4 – u) and (u – 3) are ≥ 0.  This will always be true and gives the convex hull 
property for B-splines.  Check it in my following four examples. 
 

(1,1) 

(0,0) 

(2,2) 

(3,0) 
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6.  Blending Functions for Example 1 
 
It can sometimes make it easier to get a handle on B-splines if we look at a graphical 
representation of the blending functions.  I’ve shown this below for the previous 
example: 
 

 
The red shape is a plot of the non-zero part of B0,2, the blue of B1,2 (which I computed 
earlier), the green of B2,2, and the plum of B3,2.  The black double arrow shows the 
range of u values used in the spline. 
 
At any u value in the relevant range, 1 ≤ u ≤ 4, this shows that it is based on two of the 
control points which are associated with each Bi,2 function.  It also shows that at, say, u 
= 1.5, the curve will have a value of .5p0 + .5p1. 
 
One property that can be seen here, which will apply to any uniform spline, is that each 
blending function is identical to the previous function, but shifted one to the right.  So 
once one has computed B0,d(u) then the remaining functions Bi,d(u) can be computed 
very efficiently by substituting (u – i) for u.  Here B0,2 can be computed as: 
 

 B0,2(u) =  

 
which, with the substitution (u – 1) for u, gives the value that I had earlier: 
 

 B1,2(u) = . 

 

u 
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7.  Example 2:  Linear Spline, Four Control Points, Open Uniform K.V. 
 
Now take the same four control points and order, but use the standard open uniform knot 
vector instead.  In this case the vector will be (0, 0, 1, 2, 3, 3).  The tree becomes: 

 
The first thing to notice is that two of the multipliers include a divide of zero by zero.  
Fortunately they lead to the two B values that are not included in the curve definition, and 

so I don’t really need the  assumption, but I’d have used it if necessary.  This will 
always occur with open uniform knot vectors or anywhere else where there are repeated 
knots.  From now on when labeling edges I will omit those that lead to the (d – 1) B 
values on each end, where d, as usual, is the order. 
 
From the tree we get the following definition for P(u): 
 

 P(u) =  

 
which gives the same three lines connecting the points that we had before.  As we’ll see 
below, for d > 2 the open uniform and uniform knot vectors will usually produce very 
different results. 
 

B0,3 

(1,1) (2,2) (3,0) (0,0) 

B0,2 B1,2 B2,2 B32 

B0,1 B11 B2,1 B3,1 B4,1 

0≤u≤1 0≤u≤0 1≤u≤2 2≤u≤3 3≤u≤3 

 1-u u 2-u 3-u  u-1 u-2 



 12 

8.  Blending Functions for Example 2 
 
Graphically the blending functions for Example 2 (using the definition that ) are 
shown below: 
 

 
with the same color and arrow coding that I used earlier. 
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9.  Example 3:  Cubic Spline, Four Control Points, Uniform K.V. 
 
My third example will have four control points and order 4, so will be a cubic B-spline.  
The tree will be the one shown in the section on the Cox-deBoor equations. 
 
First I’ll use the standard uniform knot vector, which will have length 8 because 4 + 4 = 
8, and so will be (0, 1, 2, 3, 4, 5, 6, 7).  Looking at the tree note that only B3,1 uses four 
control points, and so the only parameter range that is relevant is 3 ≤ u ≤ 4. 
 

 
This gives the following blending functions when 3 ≤ u ≤ 4: 
 
 B0,4 = (4 – u)3 

 B1,4 = ((u – 1)(4 – u)2 + (u – 2)(4 – u)(5 – u) + (u – 3)(5 – u)2) 
 B2,4 = ((u – 2)2(4 – u) + (u – 2)(u – 3)(5 – u) + (u – 3)2(6 – u)) 
 B3,4 = (u – 3)3 
 
There are a couple of important things hidden in these equations. 
 
The first is when we look at the beginning and ending points of this segment.  Setting u = 
3 and 4 gives: 
 

B0,3 

p0 p1 p2 p3 

B0,4 B1,4 B2,4 B3,4 

B0,3 B1,3 B2,3 B3,3 B4,3 

B0,2 

B0,1 

B1,2 B2,2 B3,2 B4,2 B5,2 

B1,1 B2,1 B3,1 B4,1 B5,1 B6,1 

3≤u≤4 

   
 

  

    

4-u u-3 
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 P(3) = (p0 + 4p1 + p2) 
 P(4) = (p1 + 4p2 + p3) 
 
which should be very familiar after my first set of notes on splines. 
 
Another appears if we change the parametric range from [3, 4] to [0, 1], which we can do 
by setting a new parameter v = u – 3 and so 0 ≤ v ≤ 1.  The equations will now become: 
 
 B0,4 = (1 – v)3 

 B1,4 = ((v + 2)(1 – v)2 + (v + 1)(1 – v)(2 – v) + v(2 – v)2) 
 B2,4 = ((v + 1)2(1 – v) + v(v + 1)(2 – v) + v2(3 – v)) 
 B3,4 = v3 
 
Multiplying these out and changing v back to u for tradition sake, we get: 
 
 B0,4 = (-u3 + 3u2 – 3u + 1) 
 B1,4 = (3u3 – 6u2 + 4) 
 B2,4 = (-3u3 + 3u2 + 3u + 1) 
 B3,4 = (u3) 
 
and so: 
 

 P(u) = [u3 u2 u 1]      

 
which is the formula that I previously gave for cubic B-spline segments, and have now 
finally justified. 
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10.  Blending Functions for Example 3 
 
Since this example used a uniform knot vector, we just need to compute B0,4 and then 
use shifts to get the other three top level blending functions.  Looking at the subtree for 
B0,4 we get: 

 

 
 
which gives: 
 

 B0,4 =  

 
Now, for example, we can compute B1,4 by substituting (u – 1) for u giving: 
 

 B1,4 = . 

Graphically the four blending functions look like the following rough sketch: 

B0,4 

B0,3 B1,3 

B0,2 B1,2 B2,2 

B1,1 
B2,1 B3,1 

3≤u≤4 

  

 

4-u 

0≤u≤1 1≤u≤2 2≤u≤3 

B0,1 

 

 

u 2-u u-1 3-u u-2 
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For curves with a reasonably large number of knots (which is the usual situation) doing 
the computations this way can significantly improve computation times.  While I have 
only discussed this for uniform knot vectors, it works equally well for the uniform part of 
splines defined using open uniform knot vectors, which means that it will work 
effectively at all places except for the ends.  If you look back at the graphical 
representation of the blending functions from Example 2 you will see that the green 
blending function is one to the right of the blue one, and so satisfies the rule.  If instead of 
four control points there I’d used 50, then 48 of them would have been identical apart 
from the x shifts, since d = 2. 
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11.  Example 4:  Cubic Spline, Four Control Points, Open Uniform K.V. 
 
My fourth example will be the same as the one that I’ve just done except that I’ll use the 
standard open uniform knot vector instead of the standard uniform knot vector.  So we 
need eight elements in the vector, which will be (0, 0, 0, 0, 1, 1, 1, 1).  First, as usual, I’ll 
develop the blending function tree: 
 

 
This gives relatively simple blending functions in the range 0 ≤ u ≤ 1: 
 
 B0,4 = (1 – u)3 

 B1,4 = 3u(1 – u)2 
 B2,4 = 3u2(1 – u) 
 B3,4 = u3 
 
From this we get: 
 
 P(0) = p0 
 P(1) = p3 
 

B0,3 

p0 p1 p2 p3 

B0,4 B1,4 B2,4 B3,4 

B0,3 B1,3 B2,3 B3,3 B4,3 

B0,2 

B0,1 

B1,2 B2,2 B3,2 B4,2 B5,2 

B1,1 B2,1 B3,1 B4,1 B5,1 B6,1 

0≤u≤1 

1-u 

1-u 

1-u 1-u 

1-u 

1-u 

u 

u 

u 

u u u 
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and so with the open uniform knot vector the curve begins at the first control point and 
ends at the last control point, which will always be true, and is the main reason for using 
this knot vector. 
 
Differentiating gives: 
 

P’(u) = -3(1 – u)2p0 + (3(1 – u)2 – 6u(1 – u))p1 + (6u(1 – u)  
– 3u2)p2 + 3u2p3 

 
and so at the end points we get: 
 
 P’(0) = 3(p1 – p0) 
 P’(1) = 3(p3 – p2) 
 
which are the same properties that are satisfied by Bezier.  Putting our B-spline blending 
function values in matrix form we get: 
 

 M =        

 
which is the Bezier form.  So an open uniform cubic spline over four control points is just 
a cubic Bezier. 
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12.  Blending Functions for Example 4 
 
This is probably going to be a pretty poor diagram.  The blending functions all are 
defined between 0 and 1, and we get something like: 
 

 
where the short grid tics are at  intervals.  Note that here we don’t have intermediate 
knots and so the shift to the right rule doesn’t apply. 
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13.  Example 5:  Cubic Spline, Five Control Points, Non-Uniform K.V. 
 
I’ll do a final example just to show what happens when we have a non-uniform knot 
vector, and also to do a cubic with more than the minimum number of control points. 
 
In the tree below I have five control points and the order is 4 (cubic spline).  Assume that 
the knot vector is (0, 0, 0, 1, 1, 2, 2, 3, 3).  I’ve drawn only part of the tree, covering the 
areas that are influenced by four control points. 
 

 
Now, for the first time, I have a couple of  values in the relevant part of the tree, but I 
avoid the problem by just using the definition that this gives 0 as its result.  The generated 
curve then becomes, for 1 ≤ u ≤ 2, 
 

 P(u) = p1 + (  + (u – 1)(2 – u)2)p2 

   + (2(u – 1)2(2 – u) + )p3 + p4 

 
The main lesson to learn out of this is to be careful when using a non-standard knot 
vector.  Here p0 is being ignored, and at the extreme u values we get: 
 

B0,3 

p0 p1 p2 p3 

B0,4 B1,4 B2,4 B3,4 

B1,3 B2,3 B3,3 B4,3 

B2,2 B3,2 B4,2 

B3,1 B4,1 

1≤u≤2 1≤u≤1 

P4 

B4,4 

1-u u 

1-u u u-1 

u-1 

u-1 

u-1 

 

2-u 

2-u 

2-u 

2-u 
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 P(1) = (p1 + p2) 
 P(2) = (p3 + p4) 
 
which isn’t very intuitive. 
 
Usually non-standard knot vectors will be used to attract the curve closer to specific 
control points, but as this example shows it tends to be hard to control.  A better solution 
to this is to use a rational spline, which I’ll describe in my next set of notes, where each 
control point has a weight and increasing the weight associated with a control point pulls 
the curve closer to that point. 
 
The blending curves for this example are a bit of a mess, so I won’t show them 
graphically. 
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14.  Interpolating B-Splines 
 
There are obviously occasions when we want the generated spline to go through the 
control points, and there are ways to ensure that this happens.  As I have shown in two 
examples, the open uniform knot vector makes the curve accurately start at p0 and end at 
pn, which it accomplishes by having d (the order) copies of the first and last knot value, 
which is called a multiplicity of d.  Within the curve we can use multiple knots to get 
closer to control points, where a multiplicity of (d – 1) will interpolate a knot under the 
correct circumstances.  So it takes a multiplicity of d at the endpoints and (d – 1) in the 
interior, if the knots and control points can be aligned correctly. 
 
Say that one has control points p0 to pn, as usual, and one wants to create a quadratic 
curve that goes through all of them.  First add n more control points, q1 to qn, where each 
qi lies between pi-1 and pi.  Now the knot vector (0, 0, 0, 1, 1, 2, 2, …, n – 1, n – 1, n, n, 
n) will generate the curve through all of the pi’s. 
 
I’ll look at an example of this in my notes on NURBS, where I use the points (1, 0), (1, 
1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1), (1, 0) and the knot vector (0, 0, 0, 1, 1, 2, 
2, 3, 3, 4, 4, 4) to get a closed quadratic spline through the five points (1, 0), (0, 1), (-1, 
0), (0, -1), and (1, 0) but if you want to be convinced try working this out now. 
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15.  Facts About B-Splines 
 
Some of these I’ve shown, others I’m just claiming.  I’ll use d, as usual, for the order of 
the spline. 
 
The size of the knot vector is the sum of the order and the number of control points. 
The order cannot be greater than the number of control points. 
The most common knot vectors are the uniform and open uniform knot vectors. 
End point multiplicity of d at an end of a knot vector forces that end to go through the 
control point. 
Multiplicity within a knot vector pulls the curve closer to (or all the way to) one or more 
control points. 
When correctly matched, knot multiplicity of (d – 1) will force the curve through an 
internal control point. 
There is local control since changing a control point alters only d curve segments. 
The continuity of the curve is C(d-2).  So to get C(1) (smooth) continuity we need at least 
d = 3. 
Bezier can be implemented as a d = 3 open uniform B-spline without intermediate knots. 
The convex hull property holds over every consecutive d control points (this can be 
proved by induction from the Cox-deBoor equations).  This because blending functions 
are ≥ 0 at all u, and for any u the sum of the blending functions is 1. 
In uniform parts of a knot vector consecutive blending functions will have identical 
shape, with a shift of one knot increment. 
 
 
 
 
 


