
NURBS:  Non-Uniform Rational B-Splines 
CS 525 

©Denbigh Starkey 
 
 

1. Background           2 
2. Definitions           3 
3. Using NURBS to define a circle       4 
4. Homogeneous coordinates & control points at infinity    9 
5. Constructing other conics       12 
 

 



 2 

1.  Background 
 
The simplest B-splines have uniform knot vectors, and are not rational.  
NURBS (or sometimes NURBs)1 are non-uniform rational curves, which 
means that they have rational weights associated with each control point.  As 
we’ll see, when the weights are all 1.0 then NURBS become the same at the 
non-rational B-splines that we studied earlier. 
 
Rational polynomials were first described by Steven Coons in 1967, when 
he discussed how they could be used to represent conics, but most of the 
development of splines and NURBS wasn’t done until Reisenfeld’s PhD 
dissertation in 1973, based on the work of Cox, deBoor, and others. 
 
One advantage of NURBS over the previous splines that we have studied is 
that they can represent additional objects.  For example, without the weights 
it is impossible to accurately represent a circle, but with NURBS this can be 
done in a number of different ways.  As a result they can also represent 3D 
conics like spheres.  Another advantage is that they let the user locally 
reshape the generated curve without changing either the control points or the 
knot vector by changing point weights so that the curve moves towards (or 
away from) the affected points. 
 
Basically a NURBS curve in 2D is the projection of a 3D curve onto the 
plane.  Similarly, a NURBS curve in 3D is a projection of a curve from 4-
space. 
 
If you want to get more depth on NURBS (much more) than you’ll be 
getting here, the best source in my view is The NURBS Book, by Les Piegl 
and Wayne Tiller, Springer-Verlag, 1995, where you’ll get 646 pages on 
NURBS, including a lot of information on coding them efficiently.  It is a 
nicely written book, and I recommend it. 
 
In these notes I’ll be looking at the basic definitions, and will use generating 
a circle as an example of a NURBS curve. 
 

                                                
1 The more common use of NURBS leads to a question of whether this is single or plural.  I’ll use it as a 
singular word when I have one of them and also as a plural word when I have more than one. 
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2.  Definitions 
 
A NURBS curve is defined using the Cox-deBoor blending functions with: 
 

 P(u) =  

 
where the Bk,d are the usual blending functions based on a knot vector, the pk 
are the control points, and the wk are weights assigned to each control point. 
 
The blending functions for B-splines are non-negative for all u and sum to 1 
(which gives the convex hull property for B-splines) and so if all of the 
weights are equal to 1 then this just reduces to the equation for regular B-
splines.  I.e., B-splines are a special case of NURBS. 
 
It is also common to use rational basis functions, Rk,d(u), instead of the 
blending functions by defining: 
 

 Rk,d(u) =  

 P(u) = , 

 
which is clearly equivalent to the original definition.  I’ll mainly use the first 
definition.  One advantage of the use of the rational basis functions is that 
they make it clear that if wk ≥ 0, k, then the convex hull property still 
holds. 
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3.  Using NURBS to Define a Circle 
 
Before getting into the circle code I’ll look at a traditional B-spline, which 
I’ll then modify by making it a rational spline to get a circle. 
 
The curve has nine control points, p0 = p8 = (1, 0), p1 = (1, 1), p2 = (0, 1),  
p3 = (-1, 1), p4 = (-1, 0), p5 = (-1, -1), p6 = (0, -1), and p7 = (1, -1), has the 
knot vector (0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4), and is quadratic (d = 3).  This 
gives the blending function tree shown below: 
 

 
I’ve made some changes here.  To simplify things I’ve converted from the  
uk ≤ u ≤ uk+1 form that I used before to the uk ≤ u < uk+1 form which is more 
traditional.  This lets me ignore paths leading to the blending functions 
shown in red since they are now attached to empty ranges. 
 
The tree gives the curve definition below: 
 

 P(u) =  

 
The curve values at the five knot values are:  P(0) = p0, P(1) = p2, P(2) = p4, 
P(3) = p6,  and P(4) = p8 (assuming that we define P(4) based on the limit).  

(1,0) (1,1) (0,1) (-1,1) 

B0,3 B1,3 B2,3 

(1,-1) 

B1,2 B2,2 B3,2 B4,2 

(-1,0) (-1,-1) (0,-1) (0,0) 

B3,3 B4,3 B5,3 B6,3 B7,3 B8,3 

B5,2 B6,2 B7,2 B8,2 

B2,1 B3,1 B4,1 B5,1 B6,1 B7,1 B8,1 

0≤u<1 1≤u<2 2≤u<2 2≤u<3 3≤u<4 3≤u<3 1≤u<1 

2-u 2-u 

1-u 

1-u 1-u 3-u 3-u 

2-u 3-u 

4-u 4-u u 

4-u u-2 

u-2 u-3 u-2 u-3 

u-3 

u-1 u-1 

u-1 

u 

u 



 5 

I.e., when we set up the curve this way it interpolates through the five 
values.  The reason for showing this now is that I want to build a unit circle, 
which will need to pass through the five points (1, 0), (0, 1), (-1, 0), (0, -1), 
and (1, 0) to close, which are the five points p0, p2, p4, p6, and p8.  
Unfortunately, although our current curve passes through these points, it 
isn’t quite a circle, as the output below shows. 
 

 
 
Obviously it resembles a circle, but sticks out too much towards the extra 
control points on the diagonals.  We could get closer to the circle by adding 
more control points and forcing interpolation through them, but it would 
never be an accurate circle and as we add more points the computational 
costs increase. 
 
Using NURBS, where we can assign smaller weights to the diagonal points, 
we can reduce the effect of these intermediate control points and so reduce 
this to a mathematically accurate circle.  As I’ll prove below, if we set the 
weights for the diagonal points (with odd subscripts) to  and leave the 

weights on the even subscript points at 1, then we’ll get a circle. 
 
The blending function definitions aren’t affected by the weights, and so 
adding in the weights and using the NURBS formula changes the curve 
definition to: 
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P(u) =  

 
Consider the range 0 ≤ u < 1.  Since p0 = (1, 0), p1 = (1, 1), and p2 = (0, 1), 
then for this range: 
 

 x(u) =  

 y(u) =  

 
Now for this to be on a unit circle, we need x2(u) + y2(u) = 1, for all u in the 
range.  This gets messy with the formulae here, so I’ll use a = (1 – u)2, etc., 
to get  

x(u) =  and y(u) = .  

 

x2(u) + y2(u) =   

= 1 +  ,   

 
which defines a circle if and only if b2 = 2ac.  In this case b = u(1 – u),  
a = (1 – u)2, and c = u2, so the condition is satisfied and throughout the first 
u range the points lie on a circle. 
 
The other three cases work out similarly to this one.   
 
Since the four u ranges give quarter circles, which join at the p2i values, this 
defines a circle. 
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Although the approach above is, in my view, the most intuitive way to 
define a circle, it isn’t the simplest in terms of number of control points.  
Instead of nine control points, including the first repeated at the end, there 
are a number of ways to build a circle with seven control points, including 
the first repeated at the end.  E.g., both of the following seven point 
quadratic NURBS define a circle.   
 
 KV = (0, 0, 0, 1, 2, 2, 3, 4, 4, 4) 
 p = ((1, 0), (1, 1), (-1, 1), (-1, 0), (-1, -1), (1, -1), (1, 0)) 
 w = (1, 0.5, 0.5, 1, 0.5, 0.5, 1) 
 
 KV = (0, 0, 0, 1, 1, 2, 2, 3, 3, 3) 
 p = ((c, s), (0, 2), (-c, s), (-2c, -1), (0, -1), (2c, -1), (c, s)) 

  where c = cos(30°) = , and s = sin(30°) = . 

 w = (1, 0.5, 1, 0.5, 1, 0.5, 1) 
 
I’ll leave the first as an exercise and prove the second. 
 

 
which, before including weights, gives: 
 

  

(c,s) (0,2) (-c,s) (-2c,-1) 

B0,3 B1,3 B2,3 

B1,2 B2,2 B3,2 B4,2 

(0,-1) (2c,-1) (c,s) 

B3,3 B4,3 B5,3 B6,3 

B5,2 B6,2 

B2,1 B3,1 B4,1 B5,1 B6,1 

0≤u<1 1≤u<2 2≤u<2 2≤u<3 1≤u<1 

2-u 2-u 

1-u 

1-u 1-u 3-u 3-u 

2-u 3-u 

u 

u-2 

u-2 u-2 u-1 u-1 

u-1 

u 

u 
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Adding in the weights and substituting values for the control points gives, 
for the range 0 ≤ u ≤ 1, 
 

  

 . 

 
Replacing c and s and simplifying gives: 
 

  

 . 

 
Finally  

 

 
Since (x(0), y(0)) = ( ) and (x(1), y(1)) = ( ), this 120° arc lies on 
the unit circle.  The proof of the other two arcs is similar. 
 
Note that in the first example only two of the control points are interpolated, 
(1, 0) at the beginning and end, and (-1, 0) in the middle.  The second 
example uses a equilateral triangular control system, with three of the 
control points interpolated (including one twice).  As can be seen from the 
knot vectors, the first uses four 90° quarter-circle sweeps, and the second 
uses three 120° third-circle sweeps to define the circle. 
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4.  Homogeneous Coordinates & Control Points at Infinity 
 

A common approach to NURBS is to consider them as curves with an extra 
dimension, which are projected into the desired dimension.  A point in a 3D 
curve will be represented as a four-tuple (x, y, z, w) where w is the weight 
associated with the control point.  I.e., we are using a system which is very 
similar to homogeneous coordinates. 
 
One big difference as compared to homogeneous coordinates, and a place 
where the last coordinate isn’t really the weight, is that some NURBS 
systems will let the last coordinate be zero and treat it in a special way, by 
effectively saying that it gives us a control point at infinity, ( , , ), which 
lets us pull of some neat effects. 
 
The first thing to note is that if we go back to the original NURBS equations 
on page 3 of these notes, having a zero weight effectively means that the 
associated control point will be ignored since it is multiplied by zero.  So we 
need a new definition for P(u) if we are going to allow zero as a last 
coordinate, which is different from setting a weight to zero.  The usual 
distinction that is given is that a zero weight nullifies that control point while 
a zero last coordinate defines a direction vector (x, y, z) as a control vector as 
compared to a control point. 
 
Assuming that the pi now all have the form (xi, yi, zi, wi), and that we define 
qi = (xi, yi, zi) then the new curve definition is: 
 

 P(u) =  

 
If none of the wk are zero then this matches the original definition. 
 
The question, of course, is how this has helped us.  It turns out to be 
surprisingly powerful for defining some shapes, although there is an 
associated loss of intuition.  E.g., we can use this, as I’ll show below, to 
construct a circle using only four p values, where the first is repeated as a 
fifth point to close the circle.  Computationally this gives a significant 
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advantage over the six-point and eight-point solutions.  Consider the 
quadratic 2D curve defined by: 
 
 p = ((1, 0, 1), (0, 1, 0), (-1, 0, 1), (0, -1, 0), (1, 0, 1)) 
 kv = (0, 0, 0, 1, 1, 2, 2, 2) 
 
We need the blending functions, as usual, which are given by: 

 
and this gives: 
 

 P(u) =  

 
To prove that this is a unit circle, I need to show that (x(u))2 + (y(u))2 = 1 for 
all u.  Since the second range is (apart from a 180° rotation) just a parameter 
shift from the first, I only need to show this for the first range.  For 0 ≤ u ≤ 1 
we get: 
 

 x(u) =  =  

 y(u) =   

 
and simple algebra shows that (1 – 2u)2 + 4u2(1 – u)2 = (1 – 2u +2u2)2. 

B0,3 B1,3 B2,3 B3,3 B4,3 

B1,2 B2,2 B3,2 B4,2 

B2,1 B3,1 B4,1 

1≤u<2 1≤u<1 0≤u<1 

u 1-u 

1-u 

1-u 

2-u 

2-u 2-u 

u-1 

u-1 u-1 u 

u 

(1,0) (0,1) (-1,0) (1,0) (1,0) 
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An interesting feature of this approach is that the speed of the sweep is not 
uniform.  By this I mean that even though u =  will put us at the top of the 
circle at (0, 1), as expected, a value like  or  will give a point which is on 
the circle but is not on the diagonal.  E.g., for u =  substitution gives the 
point ( , ). 
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5.  Constructing Other Conics 
 
There are three types of conic arcs, parabolas, hyperbolas, and ellipses.  All 
can be constructed in similar ways using quadratic NURBS.  This is a 
relatively common need in CAD applications, but I won’t get deeper into 
this topic.  For details on how to generate any conic, including code, see the 
The NURBS Book by Piegl and Tiller that I referenced earlier. 
 
 


