

Michael Schuld

4/11/2007

GPU TERRAIN RENDERING
A Paper by Harald Vistnes (herald@vistnes.org)

Presented for CS525, April 11, 2007

 4/11/2007

 1

GPU TERRAIN RENDERING
A Paper by Harald Vistnes (herald@vistnes.org)

OVERVIEW
In general terms and in most algorithms of the past, rendering of terrain with levels of detail
is done with a single update to all of the vertices in the terrain’s buffer every frame or every
time the camera moves. To accomplish this sort of updating in real time requires a lot of
processing by the CPU and uses up much of the needed frame time that could be better
allocated elsewhere in a game or simulation. To solve this problem, the author of this paper
has moved all height field calculations of terrain vertices to a vertex shader running on the
GPU at render time, which allows for a much smaller amount of data to be stored in the
terrain system, and for much quicker calculation of the height values overall while leaving
the CPU free to work on other important tasks.

ALGORITHM EXPLAINED
The basic idea of the algorithm uses the same general methods of breaking up terrain that is
seen elsewhere in other terrain rendering algorithms. The terrain is broken up into blocks
of (2k+1) by (2k+1) which easily maps each vertex in the sub blocks to one of (2n+1) by
(2n+1) vertices in the overall terrain. Because of this method of breaking up the blocks, a
single vertex buffer can be used to represent the whole set of blocks along with a much
optimized index buffer that lists the triangles in a strip (the fastest method of rendering a
group of triangles.)

Two factors in the actual shader are needed as well to make the algorithm work. One of the
two factors is the scale of the current terrain block. Using this scale value, any size block can
always be sent to the shader, and the correct vertex positions based on that scale can be
used in selecting the vertex heights within the shader. This allows for a great number of
possible level of detail algorithms to be implemented using different sized blocks based on
any number of parameters. The second factor is a simple offset value for the top left corner
of each sub block of terrain. Here is a simple vertex shader for the offset and scale
transformation:

float4 VS(float3 pos : POSITION) : POSITION {

 float s = pos.x;

 float t = pos.y;

 float u = s * uScale + uBias;

 float v = t * vScale + vBias;

 float4 tex = float4(u, v, 0.0f, 0.0f);

 float h = tex2Dlod(heightfield, tex).x;

 pos = float(u, h, v);

 float4 pos0 = mul(float4(pos, 1.0f), matWorldViewProj);

 return pos0;

}

 4/11/2007

 2

LEVEL OF DETAIL
As a result of the method of block dividing the terrain, and because of the size constraint on
the blocks, the terrain can actually be divided up using a quadtree type of approach, which
maps very well to different level of detail algorithms. Little detail control in this algorithm
is done by recursively evaluating each block and deciding whether to render or divide it
into four smaller blocks. A simple distance based method is used by the author of this paper
to allow for faster development, however many other methods could be used to decide the
level of detail of each block. The equation used for distance evaluation in this example is:

l/d < C

where l is the distance from the center of the block to the camera and d is the world-space
extent of a single triangle. C is a constant the controls the quality of the terrain. Here is
some sample code using DirectX the shows how you can render the terrain with level of
detail control.

void Render(float fminU, float fMinV,

 float fMaxU, float fMaxV,

 int iLevel, float fScale)

{

 float fHalfU = (fMinU + fMaxU) * 0.5f;

 float fHalfV = (fMinV + fMaxV) * 0.5f;

 float d = (fMaxU-fMinU)*m_matWorld._11/(m_iBlockSize-1.0f);

 D3DXVECTOR3 c(fHalfU*m_matWorld._11,0,fHalfV*m_matWorld._33);

 D3DXVECTOR3 v = c – g_Camera.GetPos();

 float l = D3DXVec3Length(&v);

 float f = l / d;

 if(f > m_fLOD || iLevel < 1){

 Draw(fMinU, fMinV, fMaxU, fMaxV, iLevel);

 } else {

 Render(fMinU, fMinV, fHalfU, fHalfV, iLevel-1, fScale/2);

 Render(fHalfU, fMinV, fMaxU, fHalfV, iLevel-1, fScale/2);

 Render(fMinU, fHalfV, fHalfU, fMaxV, iLevel-1, fScale/2);

 Render(fHalfU, fHalfV, fMaxU, fMaxV, iLevel-1, fScale/2);

 }

}

Because of the method of determining the level of each block, some popping will occur as
blocks move from one terrain level to another. A way that is discussed to solve this problem
is to use multiple texture lookups and a linear interpolation of the values in the shader to
make a smooth transition between detail levels. Another problem with the current method
is that levels next to each other that are different will show cracks. A simple, and what the
author calls ‘elegant’ solution is used with skirts to fill in the holes.

 4/11/2007

 3

CULLING
Frustum culling is built in to the system fairly simply by adding a call to a camera or scene
manager with the coordinates of the current block and its size. A very simple test can be
used to tell if the block’s rendering or recursion should be called.

NORMAL CALCULATION
One of the major issues with level of detail terrain algorithms is that the normals on the
terrain change every time the location of a vertex changes hen a level is incremented or
decremented. To help with this calculation, the GPU is once again relied on and implements
a previously known equation that uses neighboring height values to get a vertex’s normal.
The equation used is as follows:

N = {(w-e), 2d, (s-n)}

In this equation, d is the distance between the vertices, and the directions: n, s, e, w are their
obvious counterparts. This method of calculating the normals works very well. It correctly
allows for dynamic lighting algorithms to show the whole terrain. One problem however, is
that the terrain actually changes its lighting with the levels of detail, which may be drastic
and noticeable even with the interpolated changes discussed above.

The suggested method of solving this problem is to fall back on a more common method of
getting normals for a terrain map and calculating them before hand into a normal map
(another texture) and simply looking up the value there. Using a normal map there is one
(or two with interpolation) texture lookup per vertex, where the calculated version used
four making the normal map method much preferred over the former. The only downside of
the normal map is that it requires more texture memory.

COLLISION DETECTION
As the height map’s data and the final outcome of its use are now being fully separated into
different systems, some of the problems that need to have both available to it arise. The
major problem that needs both the data behind the height and the final outcome is collision
detection. Since the actual heights of the terrain are not being stored in any format directly
accessible by the CPU, an alternative method of passing this information has to be
developed. In this paper, the author has chosen to use a simplified version of collision
processing at a specific single point. This point’s coordinates are sent into the shader like
every other parameter, and the height at that point is written out to a separate one
dimensional texture that can be checked against by the CPU separate from the main
rendering system. Other similar methods with larger point grids can be used as well, but
only a single point was necessary to satisfy the needs of the author’s collision problem.

DIFFICULTIES IN IMPLEMENTATION
 Texture size vs. Memory Size
 Height accuracy vs. Data Types
 Texture filtering and Smoothing

 4/11/2007

 4

SUMMARY AND RESULTS
Using the method presented in this paper, the author was able to successfully demonstrate
height map based terrain rendering of images up to 2049x2049 resolution with multiple
different block sizes at speeds comparably equivalent or better than those of other
algorithms and methods in use today, while leaving the CPU essentially free to work on
other tasks.

BIBLIOGRAPHY
Vistnes, Harald, “GPU Terrain Rendering.” Game Programming Gems 6, Charles River Media:
pp.461-471, Color Plate 8, 2006.

