Bayesian Learning (Part I) Machine Learning 6.1 - 6.6

Richard McAllister

March 31, 2008

Background

2 Bayes Theorem

- Bayes Theorem and Concept Learning
 - Brute-Force Bayes Concept Learning
 - MAP Hypotheses and Consistent Learners
- Maximum Likelihood and Least-Squared Error Hypotheses
 - Maximum Likelihood Hypotheses for Predicting Probabilities
 Gradient Search to Maximize Likelihood in a Neural Net
- 6 Minimum Description Length Principle

Overview

- We can assume that quantities of interest are governed by probability distributions.
- Quantitative approach.
- Learning through direct manipulation of probabilities.
- Framework for analysis of other algorithms.

What are Bayesian learning methods doing in this book?

- Bayesian learning algorithms are among the most practical approaches to certain types of learning problems.
- 2 Bayesian methods aid in understanding other learning algorithms.

Features of Bayesian Learning Methods

- Training examples have an incremental effect on estimated probabilities of hypothesis correctness.
- Prior knowledge and observed data combined to determine probabilities of hypotheses.
- O Hypotheses can make probabilistic predictions.
- Ombinations of multiple hypotheses can classify new instances.
- Other methods can be measured vis a vis optimality against Bayesian methods.

The heart of the matter:

What does it mean to have the "best" hypothesis?

best hypothesis = most probable hypothesis

Some notation:

- D: the training data
- H: the set of all hypotheses
- *h*: a hypothesis $h \in H$
- *P*(*h*): the *prior probability* of h: the initial probability that hypothesis *h* holds, before we have observed the training data
- P(D): the prior probability that training data D will be observed
- P(D | h): the probability of observing data D given some world in which h holds
- P(x | y): the probability of x occurring given that y has been observed
- *P*(*h* | *D*): the *posterior probability* of *h* given *D*: the probability that *h* holds given the observed training data *D*

- $P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)}$
- This means: the posterior probability of *D* given *h* equals the probability of observing data *D* given some world in which *h* holds times the prior probability of *h* all over the prior probability of *D*.

What we're interested in:

maximum a posteriori (MAP) hypothesis: the most probable hypothesis $h \in H$ given the observed data D

$$h_{MAP} \equiv \operatorname*{argmax}_{h \in H} P(h \mid D)$$

= $\operatorname*{argmax}_{h \in H} \frac{P(D \mid h)P(h)}{P(D)}$
= $\operatorname*{argmax}_{h \in H} P(D \mid h)P(h)$

Assuming equal probabilities for all $h \in H$ (maximum likelihood hypothesis):

$$h_{ML} \equiv \operatorname*{argmax}_{h \in H} P(D \mid h)$$

Where does Bayes theorem work?

Any set H of mutually exclusive propositions whose probabilities sum to one.

An example:

A grim scenario at the doctor's office:

- a patient has cancer
- 2 the patient does not have cancer

$$P(cancer) = .008$$
 $P(\neg cancer) = .992$ $P(\oplus \mid cancer) = .98$ $P(\ominus \mid cancer) = .02$ $P(\oplus \mid \neg cancer) = .98$ $P(\ominus \mid \neg cancer) = .02$

 $P(\oplus | cancer)P(cancer) = (.98).008 = .0078$ $P(\oplus | \neg cancer)P(\neg cancer) = (.03).992 = .0298$ $\therefore h_{MAP} = \neg cancer$

Basic Probability Formulas

- Product Rule: $P(A \land B) = P(A \mid B)P(B) = P(B \mid A)P(A)$
- Sum Rule: $P(A \lor B) = P(A) + P(B) P(A \land B)$
- Bayes Theorem: $P(h \mid D) = \frac{P(D|h)P(h)}{P(D)}$
- Theorem of Total Probability (if events $A_1, ..., A_n$ are mutually exclusive with $\sum_{i=1}^{n} P(A_i) = 1$): $P(B) = \sum_{i=1}^{n} P(B \mid A_i) P(A_i)$

The Big Idea

"Since Bayes theorem provides a principled way to calculate the posterior probability of each hypothesis given the training data, we can use it as the basis for a straightforward learning algorithm that calculates the probability for each possible hypothesis, then outputs the most probable."(ML pg 158)

More Terminology (Ugh!)

- X: the instance space
- x_i: some instance from X
- D: the training data
- *d_i*: the target value of *x_i*
- c: the target concept ($c : X \rightarrow \{0, 1\}$ and $d_i = c(x_i)$)
- $\langle x_1 \dots x_m \rangle$: the sequence of instances
- $\langle d_1 \dots d_m \rangle$: the sequence of target values

Brute-Force MAP Learning

Two steps:

• For each *h* in *H*, calculate the posterior probability:

$$P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)}$$

$$h_{MAP} \equiv \operatorname*{argmax}_{h \in H} P(h \mid D)$$

Note: Since each $h \in H$ is calculated, it's possible that a lot of calculation must be done here.

Constraining Our Example

We have some flexibility in how we may choose probability distributions P(h) and $P(D \mid h)$. The following assumptions have been made:

- The training data *D* is noise free (i.e., $d_i = c(x_i)$)
- Interaction of the second s
- We have no a priori reason to believe that any hypothesis is more probable than any other.

These constraints imply...

•
$$P(h) = \frac{1}{|H|} \forall h \in H$$

• $P(D \mid h) = \begin{cases} 1 \text{ if } d_i = h(x_i) \forall d_i \in D \\ 0 \text{ otherwise} \end{cases}$

If *h* is consistent with *D*:

We have:

$$P(h \mid D) = \frac{1 \cdot \frac{1}{|H|}}{P(D)}$$
$$= \frac{1 \cdot \frac{1}{|H|}}{\frac{|VS_{H,D}|}{|H|}}$$
$$= \frac{1}{|VS_{H,D}|} \text{ if } h \text{ is consistent with } D$$

• | *VS_{H,D}* |: the version space of *H* with respect to *D* (the subset of hypotheses from *H* that are consistent with *D*)

An unanswered question: the derivation of P(D):

Given: $(\forall i \neq j)(P(h_i \land h_i) = 0)$ (the hypotheses are mutually exclusive): $P(D) = \sum P(D \mid h_i)P(h_i)$ hi∈H $=\sum_{h_i\in VS_{H,D}}1\cdot\frac{1}{\mid H\mid}+\sum_{h_i\notin VS_{H,D}}0\cdot\frac{1}{\mid H\mid}$ $=\sum_{h_i\in VS_{H,D}}1\cdot\frac{1}{\mid H\mid}$ $= \frac{|VS_{H,D}|}{|H|}$

Therefore...

$$P(h \mid D) = egin{cases} rac{1}{\mid VS_{H,D} \mid} ext{ if } h ext{ is consistent with } D \ 0 ext{ otherwise} \end{cases}$$

Initially: all hypotheses have same probability:

Posterior probabilities become zero for inconsistent hypotheses: Total probability summing to 1 is shared equally among remaining hypotheses:

Posterior probabilities become zero for inconsistent hypotheses: Total probability summing to 1 is shared equally among remaining hypotheses:

consistent learner: a learning algorithm that outputs a hypothesis that commits zero errors over the training examples.

Every consistent learner outputs a MAP hypothesis if we assume:

- uniform prior probability distribution over *H*
- deterministic, noise-free training data

Example: Find-S outputs the maximally specific consistent hypothesis, which is a MAP hypothesis.

Characterizing the Behavior of Learning Algorithms

Recall: the *inductive bias* of a learning algorithm is the set of assumptions *B* sufficient to *deductively* justify the inductive inference performed by the learner.

- inductive inference can also be modeled using probabilistic reasoning based on Bayes theorem.
- assumptions are of the form: "the prior probabilities over *H* are given by the distribution P(h), and the strength of data in rejecting or accepting a hypothesis is given by $P(D \mid h)$."
- *P*(*h*) and *P*(*D* | *h*) characterize the implicit assumptions of the algorithms being studied:
 - Candidate-Elimination
 - Find-S
- $P(D \mid h)$ can also take on values other than 0 or 1.

Premise: "...under certain assumptions any learning algorithm that minimizes the squared error between the output hypothesis predictions and the training data will output a maximum likelihood hypothesis." (pg. 164)

- neural networks do this
- so do other curve fitting methods

More Terminology

- probability density function: $p(x_0) \equiv \lim_{\epsilon \to 0} \frac{1}{\epsilon} P(x_0 \le x < x_0 + \epsilon)$
- e: a random noise variable generated by a Normal probability distribution
- $\langle x_1 \dots x_m \rangle$: the sequence of instances (as before)
- $\langle d_1 \dots d_m \rangle$: the sequence of target values with $d_i = f(x_i) + e_i$

We wish to show that...

...the least-squared error hypothesis is, in fact, the maximum likelihood hypothesis (within our problem setting).

- Using the previous definition of h_{ML} we have: $\underset{h \in H}{\operatorname{argmax}} p(D \mid h)$
- Assuming training examples are mutually independent given *h*: $h_{ML} = \underset{h \in H}{\operatorname{argmax}} \prod_{i=1}^{m} p(d_i \mid h)$
- Since *e_i* follows a Normal distribution, *d_i* must also follow the same. Therefore:

$$p(d_i \mid h) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\alpha^2}(d_i - \mu)^2}$$

• with mean μ and variance $\sigma^{\rm 2}$

Maximum Likelihood and Least-Squared Error Hypotheses

$$h_{ML} = \underset{h \in H}{\operatorname{argmax}} \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{1}{2\alpha^{2}}(d_{i}-\mu)^{2}}$$

= $\underset{h \in H}{\operatorname{argmax}} \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{1}{2\alpha^{2}}(d_{i}-h(x_{i}))^{2}}$
= $\underset{h \in H}{\operatorname{argmax}} \sum_{i=1}^{m} ln \frac{1}{\sqrt{2\pi\sigma^{2}}} - \frac{1}{2\alpha^{2}}(d_{i}-h(x_{i}))^{2}$
= $\underset{h \in H}{\operatorname{argmax}} \sum_{i=1}^{m} -\frac{1}{2\alpha^{2}}(d_{i}-h(x_{i}))^{2}$
= $\underset{h \in H}{\operatorname{argmin}} \sum_{i=1}^{m} \frac{1}{2\alpha^{2}}(d_{i}-h(x_{i}))^{2}$
= $\underset{h \in H}{\operatorname{argmin}} \sum_{i=1}^{m} (d_{i}-h(x_{i}))^{2}$

Therefore...

The maximum likelihood hypothesis h_{ML} is the one that minimizes the sum of the squared errors between the observed training values d_i and the hypothesis predictions $h(x_i)$.

Outputs and Inputs

• We have a target function *f*(*x*) whose output is a probabilistic function of the input.

$$f: X \to \{0, 1\}$$

We want a function approximator whose output is the *probability* that f(x) = 1

 $f': X \to [0, 1]$ such that f'(x) = P(f(x) = 1)

$$P(D \mid h) = \prod_{i=1}^{m} P(x_i, d_i \mid h)$$
$$= \prod_{i=1}^{m} P(d_i \mid h, x_i) P(x_i) \text{ (applying the product rule)}$$

Therefore...

$$P(d_i \mid h, x_i) = \begin{cases} h(x_i) \text{ if } d_i = 1\\ (1 - h(x_i)) \text{ if } d_i = 0 \end{cases}$$
$$= h(x_i)^{d_i} (1 - h(x_i))^{1 - d_i}$$

Furthermore...

$$P(D \mid h) = \prod_{i=1}^{m} h(x_i)^{d_i} (1 - h(x_i))^{1 - d_i} P(x_i)$$
$$h_{ML} = \underset{h \in H}{\operatorname{argmax}} \prod_{i=1}^{m} h(x_i)^{d_i} (1 - h(x_i))^{1 - d_i} P(x_i)$$
$$= \underset{h \in H}{\operatorname{argmax}} \prod_{i=1}^{m} h(x_i)^{d_i} (1 - h(x_i))^{1 - d_i}$$

The right side of the last expression can be seen as a generalization of the Binomial distribution (table 5.3).

Log likelihood is used by the book:

$$h_{ML} = \underset{h \in H}{\operatorname{argmax}} \sum_{i=1}^{m} d_i lnh(x_i) + (1 - d_i) ln(1 - h(x_i))$$

Note: The above is sometimes called *cross entropy* due to it's similarity to the general form of the entropy function $-\sum_i p_i log p_i$

What we want:

• We desire a weight-training rule for neural network learning that seeks to maximize the maximum likelihood hypothesis (*G*(*h*, *D*)) using gradient ascent.

$$\begin{split} \frac{\partial G(h,D)}{\partial w_{jk}} &= \sum_{i=1}^{m} \frac{\partial G(h,D)}{\partial h(x_{i})} \frac{\partial h(x_{i})}{\partial w_{jk}} \\ &= \sum_{i=1}^{m} \frac{\partial (d_{i} \ln h(x_{i}) + (1-d_{i}) \ln(1-h(x_{i})))}{\partial h(x_{i})} \frac{\partial h(x_{i})}{\partial w_{jk}} \\ &= \sum_{i=1}^{m} \frac{d_{i} - h(x_{i})}{h(x_{i})(1-h(x_{i}))} \frac{\partial h(x_{i})}{\partial w_{jk}} \end{split}$$

Example:

Single layer of sigmoid units:

$$rac{\partial h(x_i)}{\partial w_{ik}} = \sigma'(x_i) x_{ijk} = h(x_i)(1 - h(x_i)) h_{ijk}$$

where x_{ijk} is the *k*th input to unit *j* for the *i*th training example, and $\sigma'(x)$ is the derivative of the sigmoid squashing function.

$$rac{\partial G(h,D)}{\partial w_{jk}} = \sum_{i=1}^{m} (d_i - h(x_i)) x_{ijk}$$

Gradient ascent:

We want to maximize $P(D \mid h)$:

On each iteration of search the weight vector is adjusted in the direction of the gradient:

$$w_{jk} \leftarrow w_{jk} + \Delta w_{jk}$$

where:

$$\Delta w_{jk} = \eta \sum_{i=1}^{m} (d_i - h(x_i)) x_{ijk}$$

Gradient ascent:

Contrast this with the weight-update rule used by the Backpropagation algorithm:

$$w_{jk} \leftarrow w_{jk} + \Delta w_{jk}$$

where:

$$\Delta w_{jk} = \eta \sum_{i=1}^{m} h(x_i)(1-h(x_i))(d_i-h(x_i))x_{ijk}$$

What the is the Minimum Description Length Principle?

- A Bayesian perspective on Occam's razor
- Motivated by interpreting the definition of *h_{MAP}* in the light of basic concepts from information theory.

Consider this:

$$h_{MAP} = \underset{h \in H}{\operatorname{argmax}} P(D \mid h) P(h)$$

= $\underset{h \in H}{\operatorname{argmax}} log_2 P(D \mid h) + log_2 P(h)$
= $\underset{h \in H}{\operatorname{argmin}} - log_2 P(D \mid h) - log_2 P(h)$

• short hypotheses are preferred.

Terminology

- C: the code used to encode a message
- *i*: the message
- *L_C(i)*: the description length of message *i* with respect to *C*...or more simply, the number of bits used to encode the message

Interpreting the equation $h_{MAP} = \underset{h \in H}{\operatorname{argmin}} - log_2 P(D \mid h) - log_2 P(h)$:

- -log₂P(h): the description length of h under the optimal encoding for the hypothesis space
 H: L_{C_H}(h) = -log₂P(h)
- -log₂P(D | h): the description length of the training data D given hypothesis h, under the optimal encoding fro the hypothesis space H: L_{C_H}(D | h) = -log₂P(D | h)

•
$$h_{MAP} = \underset{h \in H}{\operatorname{argmin}} L_{C_H}(h) + L_{C_H}(D \mid h)$$

Minimum Description Length Principle:

Choose *h_{MDL}* where:

$$h_{MDL} = \operatorname*{argmin}_{h \in H} L_{C_1}(h) + L_{C_1}(D \mid h)$$

- provides a way of trading off hypothesis complexity for the number of errors committed by the hypothesis.
- provides a way to deal with the issue of overfitting the data.
- short imperfect hypothesis may be selected over a long perfect hypothesis.

Thank you!