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Introduction

Overview

We can assume that quantities of interest are governed by
probability distributions.
Quantitative approach.
Learning through direct manipulation of probabilities.
Framework for analysis of other algorithms.
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Introduction Background

What are Bayesian learning methods doing in this book?

1 Bayesian learning algorithms are among the most practical
approaches to certain types of learning problems.

2 Bayesian methods aid in understanding other learning algorithms.
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Introduction Background

Features of Bayesian Learning Methods

1 Training examples have an incremental effect on estimated
probabilities of hypothesis correctness.

2 Prior knowledge and observed data combined to determine
probabilities of hypotheses.

3 Hypotheses can make probabilistic predictions.
4 Combinations of multiple hypotheses can classify new instances.
5 Other methods can be measured vis a vis optimality against

Bayesian methods.
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Bayes Theorem

The heart of the matter:

What does it mean to have the "best" hypothesis?
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Bayes Theorem

An answer:

best hypothesis = most probable hypothesis
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Bayes Theorem

Some notation:

D: the training data
H: the set of all hypotheses
h: a hypothesis h ∈ H
P(h): the prior probability of h: the initial probability that
hypothesis h holds, before we have observed the training data
P(D): the prior probability that training data D will be observed
P(D | h): the probability of observing data D given some world in
which h holds
P(x | y): the probability of x occurring given that y has been
observed
P(h | D): the posterior probability of h given D: the probability that
h holds given the observed training data D
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Bayes Theorem

Bayes Theorem:

P(h | D) = P(D|h)P(h)
P(D)

This means: the posterior probability of D given h equals the
probability of observing data D given some world in which h holds
times the prior probability of h all over the prior probability of D.

9 / 47



Bayes Theorem

What we’re interested in:

maximum a posteriori (MAP) hypothesis: the most probable
hypothesis h ∈ H given the observed data D

hMAP ≡ argmax
h∈H

P(h | D)

= argmax
h∈H

P(D | h)P(h)

P(D)

= argmax
h∈H

P(D | h)P(h)

Assuming equal probabilities for all h ∈ H (maximum likelihood
hypothesis):

hML ≡ argmax
h∈H

P(D | h)
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Bayes Theorem

Where does Bayes theorem work?

Any set H of mutually exclusive propositions whose probabilities sum
to one.
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Bayes Theorem

An example:

A grim scenario at the doctor’s office:
1 a patient has cancer
2 the patient does not have cancer
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Bayes Theorem

An example (cont’d):

P(cancer) = .008 P(¬cancer) = .992
P(⊕ | cancer) = .98 P(	 | cancer) = .02

P(⊕ | ¬cancer) = .98 P(	 | ¬cancer) = .02

P(⊕ | cancer)P(cancer) = (.98).008 = .0078
P(⊕ | ¬cancer)P(¬cancer) = (.03).992 = .0298

∴ hMAP = ¬cancer
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Bayes Theorem

Basic Probability Formulas

Product Rule: P(A ∧ B) = P(A | B)P(B) = P(B | A)P(A)

Sum Rule: P(A ∨ B) = P(A) + P(B)− P(A ∧ B)

Bayes Theorem: P(h | D) = P(D|h)P(h)
P(D)

Theorem of Total Probability (if events A1, ...,An are mutually

exclusive with
∑n

i=1 P(Ai) = 1): P(B) =
n∑

i=1

P(B | Ai)P(Ai)
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Bayes Theorem and Concept Learning

The Big Idea

"Since Bayes theorem provides a principled way to calculate the
posterior probability of each hypothesis given the training data, we can
use it as the basis for a straightforward learning algorithm that
calculates the probability for each possible hypothesis, then outputs
the most probable."(ML pg 158)
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Bayes Theorem and Concept Learning Brute-Force Bayes Concept Learning

More Terminology (Ugh!)

X : the instance space
xi : some instance from X
D: the training data
di : the target value of xi

c: the target concept (c : X → {0,1} and di = c(xi))
〈x1 . . . xm〉: the sequence of instances
〈d1 . . . dm〉: the sequence of target values
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Bayes Theorem and Concept Learning Brute-Force Bayes Concept Learning

Brute-Force MAP Learning

Two steps:
1 For each h in H, calculate the posterior probability:

P(h | D) = P(D|h)P(h)
P(D)

2 Output hMAP

hMAP ≡ argmax
h∈H

P(h | D)

Note: Since each h ∈ H is calculated, it’s possible that a lot of
calculation must be done here.
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Bayes Theorem and Concept Learning Brute-Force Bayes Concept Learning

Constraining Our Example

We have some flexibility in how we may choose probability distributions
P(h) and P(D | h). The following assumptions have been made:

1 The training data D is noise free (i.e., di = c(xi))
2 The target concept c is contained in the hypothesis space H.
3 We have no a priori reason to believe that any hypothesis is more

probable than any other.
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Bayes Theorem and Concept Learning Brute-Force Bayes Concept Learning

These constraints imply...

P(h) = 1
|H|∀h ∈ H

P(D | h) =

{
1 if di = h(xi)∀di ∈ D

0 otherwise

}
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Bayes Theorem and Concept Learning Brute-Force Bayes Concept Learning

If h is consistent with D:

We have:

P(h | D) =
1· 1

|H|
P(D)

=
1· 1

|H|
|VSH,D |

|H|

= 1
|VSH,D | if h is consistent with D

| VSH,D |: the version space of H with respect to D (the subset of
hypotheses from H that are consistent with D)
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Bayes Theorem and Concept Learning Brute-Force Bayes Concept Learning

An unanswered question: the derivation of P(D):

Given: (∀i 6= j)(P(hi ∧ hj) = 0) (the hypotheses are mutually exclusive):

P(D) =
∑
hi∈H

P(D | hi)P(hi)

=
∑

hi∈VSH,D

1 · 1
| H |

+
∑

hi /∈VSH,D

0 · 1
| H |

=
∑

hi∈VSH,D

1 · 1
| H |

=
|VSH,D |
|H|
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Bayes Theorem and Concept Learning Brute-Force Bayes Concept Learning

Therefore...

P(h | D) =

{
1

|VSH,D | if h is consistent with D
0 otherwise

}
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Bayes Theorem and Concept Learning Brute-Force Bayes Concept Learning

Initially: all hypotheses have same probability:

hypothesis

P(h)
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Bayes Theorem and Concept Learning Brute-Force Bayes Concept Learning

Posterior probabilities become zero for inconsistent hypotheses:
Total probability summing to 1 is shared equally among remaining hypotheses:

hypothesis

P(h)
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Bayes Theorem and Concept Learning Brute-Force Bayes Concept Learning

Posterior probabilities become zero for inconsistent hypotheses:
Total probability summing to 1 is shared equally among remaining hypotheses:

hypothesis

P(h)
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Bayes Theorem and Concept Learning MAP Hypotheses and Consistent Learners

Consistent Learners

consistent learner: a learning algorithm that outputs a hypothesis
that commits zero errors over the training examples.

Every consistent learner outputs a MAP hypothesis if we assume:
uniform prior probability distribution over H
deterministic, noise-free training data

Example: Find-S outputs the maximally specific consistent hypothesis,
which is a MAP hypothesis.
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Bayes Theorem and Concept Learning MAP Hypotheses and Consistent Learners

Characterizing the Behavior of Learning Algorithms

Recall: the inductive bias of a learning algorithm is the set of
assumptions B sufficient to deductively justify the inductive inference
performed by the learner.

inductive inference can also be modeled using probabilistic
reasoning based on Bayes theorem.
assumptions are of the form: "the prior probabilities over H are
given by the distribution P(h), and the strength of data in rejecting
or accepting a hypothesis is given by P(D | h)."
P(h) and P(D | h) characterize the implicit assumptions of the
algorithms being studied:

Candidate-Elimination
Find-S

P(D | h) can also take on values other than 0 or 1.
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Maximum Likelihood and Least-Squared Error Hypotheses

Premise: "...under certain assumptions any learning algorithm that
minimizes the squared error between the output hypothesis predictions
and the training data will output a maximum likelihood hypothesis." (pg.
164)

neural networks do this
so do other curve fitting methods
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Maximum Likelihood and Least-Squared Error Hypotheses

More Terminology

probability density function: p(x0) ≡ lim
ε→0

1
ε

P(x0 ≤ x < x0 + ε)

e: a random noise variable generated by a Normal probability
distribution
〈x1 . . . xm〉: the sequence of instances (as before)
〈d1 . . . dm〉: the sequence of target values with di = f (xi) + ei
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Maximum Likelihood and Least-Squared Error Hypotheses

We wish to show that...

...the least-squared error hypothesis is, in fact, the maximum likelihood
hypothesis (within our problem setting).

Using the previous definition of hML we have: argmax
h∈H

p(D | h)

Assuming training examples are mutually independent given h:

hML = argmax
h∈H

m∏
i=1

p(di | h)

Since ei follows a Normal distribution, di must also follow the
same. Therefore:

p(di | h) = 1√
2πσ2 e−

1
2α2 (di−µ)2

with mean µ and variance σ2
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Maximum Likelihood and Least-Squared Error Hypotheses

hML = argmax
h∈H

m∏
i=1

1√
2πσ2

e−
1

2α2 (di−µ)2

= argmax
h∈H

m∏
i=1

1√
2πσ2

e−
1

2α2 (di−h(xi ))
2

= argmax
h∈H

m∑
i=1

ln
1√

2πσ2
− 1

2α2 (di − h(xi))2

= argmax
h∈H

m∑
i=1

− 1
2α2 (di − h(xi))2

= argmin
h∈H

m∑
i=1

1
2α2 (di − h(xi))2

= argmin
h∈H

m∑
i=1

(di − h(xi))2
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Maximum Likelihood and Least-Squared Error Hypotheses

Therefore...

The maximum likelihood hypothesis hML is the one that minimizes the
sum of the squared errors between the observed training values di and
the hypothesis predictions h(xi).
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Maximum Likelihood Hypotheses for Predicting Probabilities

Outputs and Inputs

We have a target function f (x) whose output is a probabilistic
function of the input.

f : X → {0,1}
We want a function approximator whose output is the probability
that f (x) = 1

f ′ : X → [0,1] such that f ′(x) = P(f (x) = 1)

33 / 47



Maximum Likelihood Hypotheses for Predicting Probabilities

P(D | h) =
m∏

i=1

P(xi ,di | h)

=
m∏

i=1

P(di | h, xi)P(xi) (applying the product rule)
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Maximum Likelihood Hypotheses for Predicting Probabilities

Therefore...

P(di | h, xi) =

{
h(xi) if di = 1

(1− h(xi)) if di = 0

}
= h(xi)

di (1− h(xi))1−di

35 / 47



Maximum Likelihood Hypotheses for Predicting Probabilities

Furthermore...

P(D | h) =
m∏

i=1

h(xi)
di (1− h(xi))1−di P(xi)

hML = argmax
h∈H

m∏
i=1

h(xi)
di (1− h(xi))1−di P(xi)

= argmax
h∈H

m∏
i=1

h(xi)
di (1− h(xi))1−di

The right side of the last expression can be seen as a generalization of
the Binomial distribution (table 5.3).
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Maximum Likelihood Hypotheses for Predicting Probabilities

Log likelihood is used by the book:

hML = argmax
h∈H

m∑
i=1

di lnh(xi) + (1− di)ln(1− h(xi))

Note: The above is sometimes called cross entropy due to it’s
similarity to the general form of the entropy function −

∑
i pi logpi
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Maximum Likelihood Hypotheses for Predicting Probabilities Gradient Search to Maximize Likelihood in a Neural Net

What we want:

We desire a weight-training rule for neural network learning that
seeks to maximize the maximum likelihood hypothesis (G(h,D))
using gradient ascent.
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Maximum Likelihood Hypotheses for Predicting Probabilities Gradient Search to Maximize Likelihood in a Neural Net

∂G(h,D)
∂wjk

=
m∑

i=1

∂G(h,D)

∂h(xi)

∂h(xi)

∂wjk

=
m∑

i=1

∂(di ln h(xi) + (1− di) ln(1− h(xi)))

∂h(xi)

∂h(xi)

∂wjk

=
m∑

i=1

di − h(xi)

h(xi)(1− h(xi))

∂h(xi)

∂wjk
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Maximum Likelihood Hypotheses for Predicting Probabilities Gradient Search to Maximize Likelihood in a Neural Net

Example:

Single layer of sigmoid units:
∂h(xi )
∂wjk

= σ′(xi)xijk = h(xi)(1− h(xi))hijk

where xijk is the k th input to unit j for the i th training
example, and σ′(x) is the derivative of the sigmoid
squashing function.

∂G(h,D)
∂wjk

=
m∑

i=1

(di − h(xi))xijk
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Maximum Likelihood Hypotheses for Predicting Probabilities Gradient Search to Maximize Likelihood in a Neural Net

Gradient ascent:

We want to maximize P(D | h):
On each iteration of search the weight vector is adjusted in the
direction of the gradient:

wjk ← wjk + ∆wjk

where:

∆wjk = η

m∑
i=1

(di − h(xi))xijk
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Maximum Likelihood Hypotheses for Predicting Probabilities Gradient Search to Maximize Likelihood in a Neural Net

Gradient ascent:

Contrast this with the weight-update rule used by the Backpropagation
algorithm:

wjk ← wjk + ∆wjk

where:

∆wjk = η

m∑
i=1

h(xi)(1− h(xi))(di − h(xi))xijk
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Minimum Description Length Principle

What the is the Minimum Description Length Principle?

A Bayesian perspective on Occam’s razor
Motivated by interpreting the definition of hMAP in the light of basic
concepts from information theory.
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Minimum Description Length Principle

Consider this:

hMAP = argmax
h∈H

P(D | h)P(h)

= argmax
h∈H

log2P(D | h) + log2P(h)

= argmin
h∈H

−log2P(D | h)− log2P(h)

short hypotheses are preferred.
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Minimum Description Length Principle

Terminology

C: the code used to encode a message
i : the message
LC(i): the description length of message i with respect to C...or
more simply, the number of bits used to encode the message
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Minimum Description Length Principle

Interpreting the equation hMAP = argmin
h∈H

−log2P(D | h)− log2P(h):

−log2P(h): the description length of h under the optimal encoding
for the hypothesis space
H: LCH (h) = −log2P(h)

−log2P(D | h): the description length of the training data D given
hypothesis h, under the optimal encoding fro the hypothesis space
H: LCH (D | h) = −log2P(D | h)

hMAP = argmin
h∈H

LCH (h) + LCH (D | h)
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Minimum Description Length Principle

Minimum Description Length Principle:

Choose hMDL where:
hMDL = argmin

h∈H
LC1(h) + LC1(D | h)

provides a way of trading off hypothesis complexity for the number
of errors committed by the hypothesis.
provides a way to deal with the issue of overfitting the data.
short imperfect hypothesis may be selected over a long perfect
hypothesis.
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Minimum Description Length Principle

Thank you!
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