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Introduction

Overview

@ We can assume that quantities of interest are governed by
probability distributions.

@ Quantitative approach.
@ Learning through direct manipulation of probabilities.
@ Framework for analysis of other algorithms.
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Introduction Background

What are Bayesian learning methods doing in this book?

@ Bayesian learning algorithms are among the most practical
approaches to certain types of learning problems.

© Bayesian methods aid in understanding other learning algorithms.



Introduction Background

Features of Bayesian Learning Methods

@ Training examples have an incremental effect on estimated
probabilities of hypothesis correctness.

© Prior knowledge and observed data combined to determine
probabilities of hypotheses.

© Hypotheses can make probabilistic predictions.
© Combinations of multiple hypotheses can classify new instances.

© Other methods can be measured vis a vis optimality against
Bayesian methods.



Bayes Theorem

The heart of the matter:

What does it mean to have the "best" hypothesis?
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Bayes Theorem

An answer:

best hypothesis = most probable hypothesis



Bayes Theorem

Some notation:

D: the training data

H: the set of all hypotheses

h: a hypothesis he H

P(h): the prior probability of h: the initial probability that

hypothesis h holds, before we have observed the training data

P(D): the prior probability that training data D will be observed

@ P(D | h): the probability of observing data D given some world in
which h holds

@ P(x | y): the probability of x occurring given that y has been
observed

@ P(h| D): the posterior probability of h given D: the probability that

h holds given the observed training data D



Bayes Theorem

Bayes Theorem:

e P(h| D)= 7P(%€%’(h)

@ This means: the posterior probability of D given h equals the
probability of observing data D given some world in which h holds
times the prior probability of h all over the prior probability of D.



Bayes Theorem

What we’re interested in:

maximum a posteriori (MAP) hypothesis: the most probable
hypothesis h € H given the observed data D

hyap = argmax P(h | D)

heH
_ P(D | h)P(h)
CANN T PD)
= argmax P(D | h)P(h)
heH

Assuming equal probabilities for all h € H (maximum likelihood
hypothesis):

hye = argmax P(D | h)
heH
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Bayes Theorem

Where does Bayes theorem work?

Any set H of mutually exclusive propositions whose probabilities sum
to one.
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Bayes Theorem

An example:

A grim scenario at the doctor’s office:
@ a patient has cancer
© the patient does not have cancer
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Bayes Theorem

An example (cont’d):

P(cancer) = .008 P(—cancer) = .992
P(® | cancer) = .98  P(& | cancer) = .02
P(& | ~cancer) = .98 P(& | —~cancer) = .02

P(& | cancer)P(cancer) = (.98).008 = .0078
P(® | —cancer)P(—cancer) = (.03).992 = .0298
.. hmap = —cancer
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Bayes Theorem

Basic Probability Formulas

@ Product Rule: P(AAB) = P(A| B)P(B) = P(B| A)P(A)

@ Sum Rule: P(AV B) = P(A)+ P(B) — P(AA B)

@ Bayes Theorem: P(h| D) = %

@ Theorem of Total Probability (if events A 8 Ap are mutually

exclusive with -7, P(A;) = 1): P(B) = Z P(B | A)P(A)
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The Big Idea

"Since Bayes theorem provides a principled way to calculate the
posterior probability of each hypothesis given the training data, we can
use it as the basis for a straightforward learning algorithm that
calculates the probability for each possible hypothesis, then outputs
the most probable."(ML pg 158)
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More Terminology (Ugh!)

@ X: the instance space

@ x;: some instance from X

@ D: the training data

@ Jd;: the target value of x;

@ c: the target concept (c: X — {0,1} and d; = c¢(x;))
@ (x1...Xm): the sequence of instances

@ (dj...dm): the sequence of target values
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Bayes Theorem and Concept Learning Brute-Force Bayes Concept Learning

Brute-Force MAP Learning

Two steps:
@ For each hin H, calculate the posterior probability:
P(D|h)P(h
P(h| D) = ZEG5E
e Output hMAp

hyap = argmax P(h | D)
heH
Note: Since each h € H is calculated, it's possible that a lot of

calculation must be done here.
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Bayes Theorem and Concept Learning Brute-Force Bayes Concept Learning

Constraining Our Example

We have some flexibility in how we may choose probability distributions
P(h) and P(D | h). The following assumptions have been made:

@ The training data D is noise free (i.e., d; = c(x;))
© The target concept ¢ is contained in the hypothesis space H.

© We have no a priori reason to believe that any hypothesis is more
probable than any other.
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Bayes Theorem and Concept Learning Brute-Force Bayes Concept Learning

These constraints imply...

o P(h) = hivhe H

_ [1if dj = h(x;)Vd; € D
° P(DIh)= { 0 otherwise
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Bayes Theorem and Concept Learning Brute-Force Bayes Concept Learning
If his consistent with D:

We have:

A
-

P(h| D)=

|

(D
1.
N
|

= V3l if his consistent with D

~

‘ N

s

Dl

T

—‘E

@ | VSy p |: the version space of H with respect to D (the subset of
hypotheses from H that are consistent with D)
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An unanswered question: the derivation of P(D):

Given: (Vi # j)(P(hi A hj) = 0) (the hypotheses are mutually exclusive):

D:Z (D | h))P
hieH

I
M
Bl
+
g
o
Bl
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Bayes Theorem and Concept Learning Brute-Force Bayes Concept Learning

Therefore...

|VS17HD‘ if his consistent with D

P(h| D) =
(1o 0 otherwise
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Bayes Theorem and Concept Learning Brute-Force Bayes Concept Learning

Initially: all hypotheses have same probability:

\ hypothesis
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Bayes Theorem and Concept Learning Brute-Force Bayes Concept Learning

Posterior probabilities become zero for inconsistent hypotheses:
Total probability summing to 1 is shared equally among remaining hypotheses:

P(h)

hypothesis
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Bayes Theorem and Concept Learning Brute-Force Bayes Concept Learning

Posterior probabilities become zero for inconsistent hypotheses:
Total probability summing to 1 is shared equally among remaining hypotheses:

P(h)

hypothesis
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Bayes Theorem and Concept Learning MAP Hypotheses and Consistent Learners
Consistent Learners

consistent learner: a learning algorithm that outputs a hypothesis
that commits zero errors over the training examples.

Every consistent learner outputs a MAP hypothesis if we assume:
@ uniform prior probability distribution over H
@ deterministic, noise-free training data

Example: Find-S outputs the maximally specific consistent hypothesis,
which is a MAP hypothesis.
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Bayes Theorem and Concept Learning MAP Hypotheses and Consistent Learners

Characterizing the Behavior of Learning Algorithms

Recall: the inductive bias of a learning algorithm is the set of
assumptions B sufficient to deductively justify the inductive inference
performed by the learner.
@ inductive inference can also be modeled using probabilistic
reasoning based on Bayes theorem.
@ assumptions are of the form: "the prior probabilities over H are
given by the distribution P(h), and the strength of data in rejecting
or accepting a hypothesis is given by P(D | h)."
@ P(h) and P(D | h) characterize the implicit assumptions of the
algorithms being studied:
e Candidate-Elimination
e Find-S
@ P(D | h) can also take on values other than 0 or 1.
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Maximum Likelihood and Least-Squared Error Hypotheses

Premise: "...under certain assumptions any learning algorithm that
minimizes the squared error between the output hypothesis predictions
and the training data will output a maximum likelihood hypothesis." (pg.

164)
@ neural networks do this
@ so do other curve fitting methods
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Maximum Likelihood and Least-Squared Error Hypotheses

More Terminology

-1
@ probability density function: p(xp) = Ilr% ;P(xo <X < Xo+e€)

@ e: a random noise variable generated by a Normal probability
distribution

@ (xy...Xm): the sequence of instances (as before)

@ (d;...dn): the sequence of target values with d; = f(x;) + e
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Maximum Likelihood and Least-Squared Error Hypotheses

We wish to show that...

...the least-squared error hypothesis is, in fact, the maximum likelihood
hypothesis (within our problem setting).
@ Using the previous definition of hy, we have: argmax p(D | h)
heH
@ Assuming training examples are mutually independent given h:
m

hw = argmax | [ p(d; | h)
heH i—1
@ Since ¢; follows a Normal distribution, d; must also follow the
same. Therefore:

e with mean x and variance o2
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Maximum Likelihood and Least-Squared Error Hypotheses

m
1 _ 1 (di—p)2
hy, = argmax | | ——=e 2.2 (A=)

heH ,11 V2mo?

m
1 st (d=h0)y?
= argmax 202! !
%GH ,-11\/27ra2
= argmax n—— d h(x;
T
—argmax >  ———(di — h(x;))?
gm: ; 5.2(0 — h(x)
m

= argmin Z(d,

heH
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Maximum Likelihood and Least-Squared Error Hypotheses

Therefore...

The maximum likelihood hypothesis hyy is the one that minimizes the
sum of the squared errors between the observed training values d; and
the hypothesis predictions h(x;).
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Outputs and Inputs

@ We have a target function f(x) whose output is a probabilistic
function of the input.

f: X—{0,1}
@ We want a function approximator whose output is the probability
that f(x) =1
f': X — [0,1] such that f'(x) = P(f(x) = 1)
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Maximum Likelihood Hypotheses for Predicting Probabilities

m
P(D | h)=T] P(xid | h)
=1
’m
=[] P(di | h,x;)P(x;) (applying the product rule)
i=1
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Maximum Likelihood Hypotheses for Predicting Probabilities

Therefore...

|fd_1
P(d; | h.x;) = { |fd,_0}

h X,)d’(1 - h( x;))! =
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Maximum Likelihood Hypotheses for Predicting Probabilities

Furthermore...

m
. = argmax ] | h(x) (1~ ()"~ P(x)
€=

m
= argmax | [ h(x)%(1 — h(x;))' =9
heH i=1

The right side of the last expression can be seen as a generalization of
the Binomial distribution (table 5.3).
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Maximum Likelihood Hypotheses for Predicting Probabilities

Log likelihood is used by the book:

m
hy = argmax » _ diinh(x;) + (1 — dj)In(1 — h(x;))
heH 4

Note: The above is sometimes called cross entropy due to it's
similarity to the general form of the entropy function — _; pilogp;
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Maximum Likelihood Hypotheses for Predicting Probabilities Gradient Search to Maximize Likelihood in a Neural Net

What we want:

@ We desire a weight-training rule for neural network learning that
seeks to maximize the maximum likelihood hypothesis (G(h, D))
using gradient ascent.
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Maximum Likelihood Hypotheses for Predicting Probabilities Gradient Search to Maximize Likelihood in a Neural Net

OG(h, D) Oh(x;)
oh(x;)  Ow

8G(h,D)
8ij

I
.MS

1

a(diInh(x;) + (1 — d;) In(1 — h(x;))) Oh(x;)
dh(x;) OWjk
d,‘ — h(X,‘) ah(X,)
h(x;)(1 — h(x;)) Ow

I
NE

Il
R

s

1
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Maximum Likelihood Hypotheses for Predicting Probabilities Gradient Search to Maximize Likelihood in a Neural Net

Example:

Single layer of sigmoid units:
G, = 0" (xi)xip = () (1 = h(q)) b

aij
where x;j is the kth input to unit j for the Jth training
example, and ¢’(x) is the derivative of the sigmoid
squashing function.
m
9G(h,D) _ Z(di _ h(Xi))Xijk

8ij
i=1
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Maximum Likelihood Hypotheses for Predicting Probabilities Gradient Search to Maximize Likelihood in a Neural Net

Gradient ascent:

We want to maximize P(D | h):
On each iteration of search the weight vector is adjusted in the
direction of the gradient:

Wik < Wik + AW
where:

m
Awg =n>_(d; = h(x;))Xj
s
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Maximum Likelihood Hypotheses for Predicting Probabilities Gradient Search to Maximize Likelihood in a Neural Net

Gradient ascent:

Contrast this with the weight-update rule used by the Backpropagation
algorithm:

Wik < Wik + Awj
where:
m
Awg =1y h(x)(1 = h(x))(di — h(x))xik

i=1
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Minimum Description Length Principle

What the is the Minimum Description Length Principle?

@ A Bayesian perspective on Occam’s razor

@ Motivated by interpreting the definition of hyap in the light of basic
concepts from information theory.
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Minimum Description Length Principle

Consider this:

huyap = argmax P(D | h)P(h)
heH
= argmax log>P(D | h) + logz P(h)
heH
= argmin —log>P(D | h) — logo P(h)

heH
@ short hypotheses are preferred.
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Minimum Description Length Principle

Terminology

@ C: the code used to encode a message
@ /: the message

@ L(i): the description length of message i with respect to C...or
more simply, the number of bits used to encode the message
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Minimum Description Length Principle

Interpreting the equation hyap = argmin —logo P(D | h) — log> P(h):
heH

@ —/ogoP(h): the description length of h under the optimal encoding
for the hypothesis space
H: Lc,(h) = —log-P(h)

@ —log> P(D | h): the description length of the training data D given
hypothesis h, under the optimal encoding fro the hypothesis space
H: Lc, (D | h) = —log2P(D | h)

@ hyap = argn:lin Le,(h)+ Lc, (D | h)

S
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Minimum Description Length Principle:

Choose hyp. where:

huypr = argmin Le, (h) + L, (D | h)
heH

@ provides a way of trading off hypothesis complexity for the number
of errors committed by the hypothesis.
@ provides a way to deal with the issue of overfitting the data.

@ short imperfect hypothesis may be selected over a long perfect
hypothesis.
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Minimum Description Length Principle

Thank you!

48/47



	Outline
	Introduction
	Background

	Bayes Theorem
	Bayes Theorem and Concept Learning
	Brute-Force Bayes Concept Learning
	MAP Hypotheses and Consistent Learners

	Maximum Likelihood and Least-Squared Error Hypotheses
	Maximum Likelihood Hypotheses for Predicting Probabilities
	Gradient Search to Maximize Likelihood in a Neural Net

	Minimum Description Length Principle

