Parallel Multi-Core Geometric Algorithms in CGAL

Vicente H. F. Batista* David L. Millman® Sylvain Pion Johannes Singler®

Abstract

We describe an approach to efficiently use multiple processing cores and shared memory for several
geometric algorithms. The d-dimensional algorithms we target are (a) spatial sorting of points, (b)
kd-tree construction, (c) axis-aligned box intersection computation, and finally (d) bulk insertion of
points in Delaunay triangulations. Underlying these comes also a thread-safe, efficient and memory-wise
compact container for storing dynamic geometric data structures. This work has been implemented in
the framework of CGAL http://cgal.org/l We also show experimental results for these algorithms
in the 3D case. This work is hopefully a step towards a parallel mode for CGAL, where algorithms
automatically use the available parallel resources without requiring significant user intervention.

1 Introduction

Many application domains require computation on geometric objects. There are for example meshes used in
medical images visualization, geological data representation, fluid dynamics simulations, geographic informa-
tion systems, etc. More generally, one can approach geometric computing as finding some proximity relations
between objects like points. The result of such computations can usually be represented as a graph, such
as a triangulation whose vertices correspond to points and edges, faces or tetrahedra (simplices in general
dimension) are also nodes of the graph encoding the incidence relations.

Many core geometric algorithms and data structures have been devised over the past decades, and many
proved to be useful in more than one application domain. The Computational Geometry Algorithms Library,
CGAL, is a project that aims at gathering efficient, easily adaptable, and robust implementations of such
useful core algorithms. The CGAL library is now a large (almost 1 million lines of code total), mature
(12 years old, and commercialized since 6 years) and reliable code base. It is written in C+4, which helps
on the efficiency aspects as well as for building abstractions. The main design guidelines are genericity,
robustness and efficiency. The use of generic programming, the fundamental paradigm behind the C++
Standard Template Library (STL), helps in producing data structures and algorithms that are re-usable
and adaptable to several particular applied problems. Geometric algorithms are particularly sensitive to
numerical roundoff errors that violate mathematical invariants. These problems are efficiently dealt with in
CGAL by the careful use of certified arithmetic operations, using techniques based on multiple precision,
interval arithmetic and static error propagation analysis.

Nowadays, one cannot think about practical efficiency without wondering how to make good use of
parallelism. Parallel computing comes in several flavors: from SIMD vector units, to GPGPUs, to multiple
processor cores using shared memory, and finally to distributed systems and the grids in cloud computing.
A core geometric data structure like a triangulation is not naturally amenable to vectorization. Indeed,
the corresponding 1D object is a linked list, not an array. Moreover, in 1D, a sorted list provides some
guarantees of locality, which is not the case for higher dimensional triangulations. For example, the Delaunay
triangulation of points sampled on the surface of an object will contain tetrahedra which connect points from
several remote sheets of the surface which are visible from each other. So, geometric computing has some

*Universidade Federal do Rio de Janeiro/COPPE, Brazil. Email: helano@coc.ufrj.br

TUniversity of North Carolina at Chapel Hill, USA. Email: dave@cs.unc.edu

fGEOMETRICA project-team, INRIA Sophia-Antipolis, France. Email: Sylvain.Pion@sophia.inria.fr
§Universitit Karlsruhe, Germany. Email: singler@ira.uka.de

http://cgal.org/

locality aspects, but there are no a priori rules for this which can be used to split a computation among
independant computing units. This means that some inter-processor communication is required to achieve
good parallelism for geometric computation, and one goal is of course going to be to reduce the communication
needs as much as possible to achieve performance. Multiple core computers, which provide shared memory
and efficient atomic operations, are a good platform to start parallelizing core geometric algorithms.

In this paper, we investigate the parallelization of the following d-dimensional algorithms: (a) spatial
sorting of points, as is typically used for preprocessing during incremental algorithms, (b) kd-tree construc-
tion, (c) axis-aligned box intersection computation, and finally (d) bulk insertion of points in Delaunay
triangulations for mesh generation algorithms or simply computing Delaunay triangulations. For the sake of
getting conclusive outcomes, we decided to base our work upon CGAL, which already provides mature codes
that are among the most efficient for several geometric algorithms [6]. Indeed, when evaluating achieved
speedups of parallel algorithms, care must be taken as to take an efficient sequential implementation as a
base for compariso

The paper is organized as follows. Section [2] describes our hardware and software platform for reference.
We begin in Section [3] with the description of the compact container that we use for storing geometric graphs.
Sections [6] and [7] then describe our parallel algorithms and experimental results for (a), (b), (c) and (d)
respectively. Note that a more detailed description of these algorithms can be found in [2].

2 Platform

OpenMP We opted for OpenMP, which is implemented by almost all up-to-date compilers. The OpenMP
specification in version 3.0 includes the #pragma omp task construct. This creates a task, a code block
executed asynchronously, that can be nested recursively. The enclosing region may wait for all direct children
tasks to finish using #pragma omp taskwait. A #pragma omp parallel region at the top level provides a
user specified number of threads to process the tasks.

Libstdc++ parallel mode The C++ STL implementation distributed with the GCC features a so-called
parallel mode [7] based on [§]. It provides parallel versions of many STL algorithms. We use some of these
algorithmic building blocks, such as partition, nth_element and random,shuffleEl

Evaluation system We evaluated the performance of our algorithms on a two AMD Opteron 2350
quad-core processors machine at 2 GHz and 16 GB of RAM. We used GCC 4.3 and 4.4 (prerelease, for the
algorithms using the task construct), enabling optimization (-02 and -~DNDEBUG).

3 Thread-safe compact container

CGAL currently provides a sequential version of a compact container, which is an STL container-like data
structure allowing: iteration over its elements, addition and removal of elements in amortized constant time,
stability of the iterators under these operations, and good memory locality (elements added consecutively
have good probability of being not far away in memory). This data structure is used to store graphs such
as Delaunay triangulations, but it can also store kd trees for example. This container is compact in the
sense that the wasted memory is on the order of O(y/n), where n is the number of stored elements, at least
for cases where essentially element additions are performed (algorithms doing decimations of elements need
further consideration). Note that the STL 1list wastes O(n) memory, as well as vector which in addition
is not as flexible in the operations.

In order to allow easy parallelization of several geometric algorithms using it, we made this container
thread-safe, by allowing concurrent addition and removal of elements, with minimal constant-time overhead.

1Empty loops parallelize very well. Even turning on compiler optimization completely changes the deal.
2 partition partitions a sequence w.r.t. a given pivot. nth_element permutes a sequence such that the element with a given
rank k is placed at index k and the smaller ones to the left. random_shuffle permutes a sequence randomly.

5 5 !
8 thr
7 thr
4 4r 6 thr
5 thr
S 3 2 3L 4thr
% % 3 thr
o 9 a o 2thr 72—
1) 1) 1ty
1 1=l)
0 e ‘ ‘ ‘ o= ‘ ‘ ‘ ‘
100 1000 10000 100000 108 107 100 1000 10* 10° 10° 107 108
Input Size Input Size
Figure 1: Speedup for 2D spatial sort. Figure 2: Speedup for kd tree construction.

4 Spatial sorting

Many geometric algorithms are incremental, and their speed depends on the order of insertion for locality
reasons in geometric space and in memory. For cases where some randomization is still required for complexity
reasons, the Biased Randomized Insertion Order method [I] (BRIO) is an optimal compromise between
randomization and locality. Given n randomly shuffled points and a parameter o, BRIO recurses on the first
|an| points, and spatially sorts the remaining points. For these reasons, CGAL provides algorithms to sort
points along a Hilbert space-filling curve as well as a BRIO.

The sequential implementation uses a divide-and-conquer (D&C) algorithm. It recursively partitions the
set of points with respect to a dimension, taking the median point as pivot. The dimension is then changed
and the order is reversed appropriately for each recursive call, such that the process results in arranging
the points along a Hilbert curve. Parallelizing this algorithm is straightforward. The partitioning is done
by calling the parallel nth_element function, and the parallel random_shuffle for BRIO. The recursive
subproblems are processed by newly spawned OpenMP tasks.

Experimental results The speedup (ratio of the running times between the parallel and sequential
versions) obtained for 2D Hilbert sorting are shown in Figure[l} For a small number of threads, the speedup
is good for problem sizes greater than 1000 points, but the efficiency drops to about 60% for 8 threads. We
blame the memory bandwidth limit for this decline. The results for the 3D case are very similar except that
the speedup is 10-20% less for large inputs.

5 Kd tree construction

A kd tree [3] is a fundamental spatial search data structure, allowing efficient queries for the subset of points
contained in an orthogonal query box. In principle, a kd tree is a dynamic data structure. However, it is
unclear how to do balancing dynamically, so worst-case running time bounds for the queries are only given
for trees constructed offline. Also, insertion of a single point is hardly parallelizable. Thus, we chose the
construction of the kd tree for a given set of points. The approach is actually quite similar to spatial sorting.
The algorithm partitions the data and recursively constructs the subtrees for each half in parallel.

Experimental results The speedup for the parallel kd tree construction of 3D random points is shown
in Figure 2] The achieved speedup is similar to the spatial sort case, a little less for small inputs.
6 D-dimensional box intersection

We consider the problem of finding all intersections among a set of n iso-oriented d-dimensional boxes. This
problem simplifies the intersection between complex shapes by approximating them by their bounding boxes.

30 T 7 30 5

8thr —=— . .
25 7thr —a A 6 g 25¢ . H I vt
, h £ . n
- S:h: 7 5 20 : ! : . . o
< —/ 5 A 1 = = 43 3
) L 4thr (o] L [. S
£ 20 AR =~ 15 " ja}
] 3 thr fé; AN 4 2 5] L] s - " = 12 2
é 2 thr \ 2 E 10l : &
> 150 rnr 3 s : :
5 13 8 = 5b = — = = = 1
2 /) X H . .
2 10t M .) s
= /A / 2 0 Z > % % P 0
X = %, %, %, 9 /)%
st Yoy, T, b, R %,
o 1 1, < %, %, ‘S %
W 9 77 7 % %,
/ % “s 4N %,
0¥ : . i 0 7 1 7
100 1000 10000 100000 10° 107 108
Input Size Input Size
(a) Randomly generated integer coordinates (b) Real world data sets

Figure 3: Intersecting boxes. Speedup is denoted by squares, relative memory overhead by circles.

We parallelize the algorithm described in [I0], which is used as the sequential implementation in CGAL,
and practically efficient. The algorithm is described in terms of nested segment and range trees, leading
to an O(nlogd n) space algorithm in the worst case. Since this is too much space overhead, the trees
are not actually constructed, but traversed on the fly. So we end up with a D&C algorithm using only
logarithmic extra memory (apart from the possibly quadratic output). Again, the D&C paradigm promises
good parallelization opportunities. We can assign the different parts of the division to different threads, since
their computation is usually independent. However, we have a detail problem in the two most important
recursive conquer calls: the data they process is in general not disjoint. Worse, although they do not change
the input elements, the recursive calls may reorder them. This is a problem for parallelization, since we
cannot just pass the same data to both calls if they are supposed to run in parallel. Thus, we have to copy.
Details of the rest of the algorithm are described in [2].

Experimental results 3D boxes with integer coordinates were randomly generated as in [I0] such that
the expected number of intersections for n boxes is n/2. Results are shown in Figure The memory
overhead is limited to 100%, but as we can see, the relative memory overhead is much lower in practice,
below 20% for not-too-small inputs. The speedups are quite good, reaching more than 6 for 8 cores, and
being just below 4 for 4 cores. Note that, for reference, the sequential code performs the intersection of 106
boxes in 1.86s. Figure shows the results for real-world data. We test 3D models for self-intersection, by
approximating each triangle with its bounding box. The memory overhead stays reasonable. The speedups
are a bit worse than for the random input of the equivalent size. This could be due to the much higher
number of found intersections (~ 7n).

7 Bulk insertion into Delaunay triangulations

Given a set S of n points in R?, a triangulation of S partitions the convex hull of its points into simplices
(cells) with vertices in S. The Delaunay triangulation D7 (S) is characterized by the empty sphere property
that states the circumsphere of any cell does not contain any other point of S in its interior. A point ¢ is
said to be in conflict with a cell in DT (.S), if it belongs to the interior of the circumsphere of that cell, and
the conflict region of ¢ is defined as the set of all such cells.

Sequential framework CGAL provides 2D and 3D incremental algorithms [4]. After a spatial sort using
a BRIO, points are iteratively inserted using a locate step followed by an update step. The locate step finds
the cell containing ¢ by navigating using orientation tests and the adjacency relations between cells and
starting at some cell incident to the vertex created by the previous insertion. The update step determines
the conflict region of ¢ using the Bowyer-Watson algorithm [5], @], that is, by checking the empty sphere
property for all the neighbors of the cell containing ¢, recursing using the adjacency relations again. The

8 6
‘l thry —s— ‘ 3thr —=— 6thr —=— +‘ molechle ‘ +‘ dryer héndle ‘
7 1thr —=— 4 thr 7thr —=— 5| —=— Buddha ellipsoid |
6 2 thr 5thr —=— gthr —=—
~ o
4 -— |
5
S S P -
S 3 _
o 4 o) P .
<] <] -
& Q. -
n 3 0
2 P |
- 1
1,
0 i 1 0 1 1 1 1 1 1 1
1000 10000 100000 108 107 lthr, 1thr 2thr 3thr 4thr Sthr 6thr 7thr 8thr
(a) Random points. (b) Other data sets.

Figure 4: Speedups for 3D Delaunay triangulation.

conflict region is then removed, creating a “hole”, and the triangulation is updated by creating new cells
connecting ¢ to the vertices on the boundary of the “hole”. From a storage point of view, a vertex stores its
point and a pointer to an incident cell, and a cell stores pointers to its vertices and neighbors. Vertices and
cells are themselves stored in two compact containers (see Section .

Parallel algorithm We parallelize by allowing concurrent insertions into the same triangulation, and
spreading the input points over all threads. First, a bootstrap phase inserts a small random subset of the
points using the sequential algorithm, in order to avoid contention for small data sets. Next, the remaining
points are Hilbert-sorted in parallel, and the resulting range is divided into almost equal parts attributed
to all threads. Threads then insert their points using an algorithm similar to the sequential case, with the
addition that threads protect against concurrent modifications to the same region of the triangulation. This
protection is performed using fine-grained locks stored in the vertices.

A lock conflict occurs when a thread attempts to acquire a lock already owned by another thread. To
avoid deadlocks, lock conflicts are handled by priority locks where each thread is given a unique priority. If
the acquiring thread has a higher priority it simply waits for the lock to be released. Otherwise, it retreats,
releasing all its locks and restarting an insertion operation, possibly with a different point (the choice of
which is described in [2]). This approach avoids deadlocks and guarantees progress.

Locking strategies There are several ways of choosing the vertices to lock. A simple strategy consists
in locking the vertices of all cells a thread is currently considering. This strategy is simple and easily proved
correct. However, as the experimental results show, high degree vertices become a bottleneck with this
strategy. We therefore propose improved strategies which are described in [2].

Experimental results Our 3D implementation currently uses the simple locking strategy. We carried
out experiments on 5 different point sets: 2 synthetic and 3 real-world data. The former consist of evenly
distributed points in a cube, and 10% points on the surface of an ellipsoid. The real instances are composed
of points on the surfaces of a molecule, a Buddha statue and a dryer handle. Figures and show the
results. We observe that a speedup of almost 5 is reached with 8 cores for 10° random points. However, we
note that surfacic data sets are not so positively affected, and we blame the simple locking strategy for that.

8 Conclusion

We have described several parallel algorithms for 4 core geometric problems, efficient on multi-core architec-
tures. In the future, we plan to tackle more algorithms and propose their integration in CGAL.

References

1]
2]
3]

[4]

N. Amenta, S. Choi, and G. Rote. Incremental constructions con brio. In SCG ’03: Proceedings of the nineteenth
annual symposium on Computational geometry, pages 211-219, 2003.

V. H. F. Batista, D. L. Millman, S. Pion, and J. Singler. Parallel geometric algorithms for multi-core computers.
Research Report 6749, INRIA, 2008. http://hal.inria.fr/inria-00343804/.

J. L. Bentley. Multidimensional binary search trees used for associative searching. Commun. ACM, 18(9):509—
517, 1975.

J.-D. Boissonnat, O. Devillers, S. Pion, M. Teillaud, and M. Yvinec. Triangulations in CGAL. Comput. Geom.
Theory Appl., 22:5-19, 2002.
A. Bowyer. Computing Dirichlet tesselations. The Computer Journal, 24(2):162-166, 1981.

Y. Liu and J. Snoeyink. A comparison of five implementations of 3D delaunay tessellation. In J. E. Goodman,
J. Pach, and E. Welzl, editors, Combinatorial and Computational Geometry, volume 52 of MSRI Publications,
pages 439-458. Cambridge University Press, 2005.

J. Singler and B. Kosnik. The libstdc++ parallel mode: Software engineering considerations. In International
Workshop on Multicore Software Engineering (IWMSE), 2008.

J. Singler, P. Sanders, and F. Putze. MCSTL: The multi-core standard template library. In Euro-Par ’07:
Proceedings of the thirteenth Furopean Conference on Parallel and Distributed Computing, pages 682—-694, 2007.

D. F. Watson. Computing the n-dimensional Delaunay tesselation with application to Voronoi polytopes. The
Computer Journal, 24(2):167-172, 1981.

A. Zomorodian and H. Edelsbrunner. Fast software for box intersections. Int. J. Comput. Geometry Appl.,
12(1-2):143-172, 2002.

http://hal.inria.fr/inria-00343804/

	Introduction
	Platform
	Thread-safe compact container
	Spatial sorting
	Kd tree construction
	D-dimensional box intersection
	Bulk insertion into Delaunay triangulations
	Conclusion

