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ABSTRACT 

 
In this paper we consider a new generalized algorithm for the efficient calculation of component 

object volumes given their equivalent constructive solid geometry (CSG) definition. The new 

method relies on domain decomposition to recursively subdivide the original component into 

smaller pieces with volumes that can be computed analytically or stochastically, if needed. Unlike 

simpler brute-force approaches, the proposed decomposition scheme is guaranteed to be robust 

and accurate to within a user-defined tolerance. The new algorithm is also fully general and can 

handle any valid CSG component definition, without the need for additional input from the user. 

The new technique has been specifically optimized to calculate volumes of component definitions 

commonly found in models used for Monte Carlo particle transport simulations for criticality 

safety and reactor analysis applications. However, the algorithm can be easily extended to any 

application which uses CSG representations for component objects. The paper provides a 

complete description of the novel volume calculation algorithm, along with a discussion of the 

conjectured error bounds on volumes calculated within the method. In addition, numerical results 

comparing the new algorithm with a standard stochastic volume calculation algorithm are 

presented for a series of problems spanning a range of representative component sizes and 

complexities.  

 

Key Words: Monte Carlo, Constructive Solid Geometry, Octree, Robust Computation, Volume 

Calculation. 

 

 

1. INTRODUCTION 

 

One of the major strengths of Monte Carlo (MC) particle transport methods is their ability to 

model complex geometries with a high degree of fidelity. Monte Carlo methods that use 

constructive solid geometry (CSG) representations for modeling component objects offer nearly 

unlimited flexibility for model construction. In addition, CSG models allow most curved surfaces 

(typically up to second-order) to be represented exactly, without the need for the spatial 

discretization required by mesh-based transport solvers. This level of geometric detail is 

frequently desired when dealing with complex models for criticality safety and reactor analysis 

applications, and, as a result, the CSG representation has been used in several major MC 

transport solvers, such as MC21 [1] and MCNP [2]. Through taking Boolean operations (union, 
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intersection, and set difference) of surface half-spaces, the CSG representation allows users to 

construct many component objects more accurately than with a polygonal mesh. 

 

Ray tracing through CSG components involves computing the distance to each bounding surface 

of the component object along a given ray and then applying simple Boolean logic operations to 

determine which surface intersection will occur first along the ray. This does not require 

explicitly representing the boundary of the component object, but, as a result, ray tracing for 

CSG representations is more computationally expensive than for mesh-based geometries. 

 

While CSG representations allow MC codes to support nearly unlimited flexibility in model 

creation, it leads to other issues such as detecting invalid object definitions (e.g., overlapping 

components), lost particles during ray tracing (e.g., near surface intersections), and computing 

the volume of components. While many work-around solutions have been found for these issues, 

they still continue to plague MC calculations with CSG component representations. 

 

Initially, MC calculations were primarily used to compute the global eigenvalues.  As a result, 

emphasis was placed on resolving particle tracking (ray tracing) errors, as opposed to computing 

component volumes. While component volumes are often used as a model quality assurance 

check, their calculation does not influence the radiation transport calculation itself. However, 

recent efforts to include in-line feedback effects (e.g. depletion, thermal feedback, xenon 

feedback, etc.) in MC reactor calculations have provided a need for MC solvers to calculate 

component volumes with a high degree of accuracy. While some popular MC codes, such as 

MCNP [2] calculate the volumes of simple component objects, no code available today is able to 

guarantee an accurate volume calculation for all possible CSG component definitions involving 

second-order surfaces. In cases where codes cannot calculate component volumes analytically, 

users are typically required to input a volume for the component, which must be obtained from 

some external calculation or a priori information. 

 

For complicated CSG component definitions, the options for computing volumes robustly are 

limited and fairly simplistic. Analytical volume calculation methods may be used for objects with 

a simple two-dimensional projection (such as extruded components, or those with a rotational 

symmetry), but are impractical for general three-dimensional components. Stochastic (Monte 

Carlo) methods rely on sampling points within a fixed volume that is known to bound the object 

of interest and then applying a binomial estimator to estimate the component volume (relative to 

the known volume of the bounding box). Alternatively, discretization techniques may be applied. 

However, such approaches require the construction of a mesh representation for the original CSG 

object, which is, itself, a formidable task for complex component definitions. Unfortunately, both 

the stochastic and discretization approaches to volume computation are computationally 

intensive and are too slow for routine use, such as for an in-line volume calculation module in a 

MC transport solver. 

 

In this paper we consider a new generalized algorithm for the efficient calculation of component 

volumes, given their equivalent CSG definition. The new method relies on domain 

decomposition to recursively subdivide the original component into smaller pieces with volumes 

that can be computed analytically or stochastically, if needed. Unlike simpler brute-force 

approaches, the proposed decomposition scheme is guaranteed to be robust and accurate to 
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within a user-defined tolerance. The new algorithm is also fully general and can handle any valid 

CSG component definition, without the need for additional input from the user. 

 

The volume calculation algorithm is actually a framework, based on the concept of 

decomposability and the use of integrator modules that are designed to handle volume 

calculations for simple base cases.  In this paper, we present an outline for this framework, along 

with a specific example of a robust decomposition scheme that uses representative integrators 

designed to handle the size, and potential complexity, of components found in MC radiation 

transport models.  Through a series of controlled numerical experiments we demonstrate that the 

new algorithm can produce accurate volume estimates for complex components to within 

specified accuracy and confidence bounds.  Furthermore, the results from these experiments 

indicate that the new method can produce these volume estimates up to several hundred times 

faster than traditional brute-force volume calculation methods.   

 

This paper attempts to provide a solid theoretical foundation for CSG component representations 

and the proposed volume calculation algorithm.  Section 2 of the paper describes a standard CSG 

representation of MC components, using up to second-order (quadric) surfaces, and discusses the 

use of component hierarchy in models.  This section also provides precise mathematical 

definitions for surfaces and components, which are used throughout the remainder of the paper.  

Section 3 describes a robust domain decomposition algorithm that can be used to subdivide a 

given component into a set of simpler objects.  This section also defines a set of efficient 

predicate operations to determine how many intersections occur between surfaces of a 

component and an arbitrary, axis-aligned test box.  These predicates are used to classify partition 

volume boxes created during the decomposition process.  Section 4 describes a set of efficient 

volume integration algorithms, which have been optimized to certain base-case volumes.  These 

base volume cases correspond to many of the surface-box intersection classifications described 

in Section 3.  It should be noted that the divide and conquer strategy for volume computation 

employed in this paper is a well-known paradigm in computer science.  The novelty of this new 

framework is that we aim for a minimal set of predicates (tests that control branching) on 

surfaces, which not only ensures robustness by limiting numerical computation to within 

surfaces, but also facilitates speed and accuracy improvements by specially coding common 

cases, as we demonstrate through experiments reported in Section 5. 

 

In addition, this paper is intended to provide a brief introduction to some of the concepts and 

terminology used in the field of computational geometry.  During the early stages of this research 

it was discovered that the computational geometry/computer graphics community has already 

looked at many problems of interest for MC radiation transport, especially with respect to 

efficient algorithms for ray tracing through CSG representations.  As a result, algorithm 

descriptions and related proofs (for completeness, robustness, accuracy, etc.) will follow 

conventions and terminology adopted from computational geometry.  It is our hope that this 

introduction will promote additional collaboration and flow of information between the two 

technical communities.    

 

While the example components used for the numerical experiments in this paper are intended to 

be representative of complex components used in reactor and criticality safety analysis 

calculations, the algorithm itself can be easily extended to any application which uses CSG 
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representations for component objects.  In addition, the performance of the new method is 

approaching a point where in-line volume calculations for all components in MC models may 

become feasible.  Furthermore, the data structures and general algorithms described in this paper 

may also have additional applications beyond volume calculations.  For example, the new 

algorithm can be used to produce axis-aligned bounding boxes, which are guaranteed to include 

all points located inside of a given component definition. The use of bounding boxes to 

accelerate ray tracing to components is a standard technique within the computer graphics 

community, but has seen limited use in MC particle transport calculations due to the difficulty in 

computing bounding boxes that are guaranteed to be correct. Therefore, it is expected that the 

algorithm presented in this paper will also lead to future improvements in tracking efficiency. 

 

2. MODEL REPRESENTATION 

 

Many Monte Carlo codes that solve the neutron transport equation, such as MC21 [1] and MCNP 

[2], use a constructive solid geometry (CSG) or combinatorial geometry representation to define 

regions of space.  A combinatorial geometry model combines basic spatial primitives, bounded 

by surfaces (planes, cylinders, spheres, ellipsoids, etc.), using Boolean operations (union, 

intersection, complement, difference).  A model consists of one or more interior disjoint, closed 

regions, called components, which may be organized in a parent/child hierarchy to reduce 

memory overhead and to accelerate tracking.  We give concrete details for the surfaces, Boolean 

formulae, and components, as well as the interface that these objects should provide. 

 

2.1.  Primitives: Signed Quadric Surfaces 

 

A primitive of the model is a signed surface that represents the points in one of the regions that it 

bounds. To be more specific, we consider quadratic surfaces. 

 

A signed quadric Q consists of a quadric polynomial q(x, y, z) and a sign bit. The zero set of this 

polynomial is the points on the surface Q. The set      3, , | , , 0x y z q x y z    is the negative 

halfspace of Q, and     , , | , , 0x y z q x y z   is the positive halfspace.  A point 3p  has a 

negative sense with respect to Q if p is in the negative halfspace of Q, and a positive sense if p is 

in the positive halfspace. The sign bit for Q indicates which halfspace the primitive represents. 

 

Quadric Q is traditionally stored as ten single precision floating point coefficients, A through J of  

 

  2 2 2, , .q x y z Ax By Cz Dxy Exz Fyz Gx Hy Iz J              (1) 

 

Positive scalar multiples of Eq. (1) give the same surface, while negative multiples reverse the 

positive and negative senses.  In addition, many "natural quadrics," have more compact 

representations, such as, 

 

1. Planes by quadrics with A = B = C = 0, 

2. Spheres by center (A, B, C) and radius D or as a quadric:      
2 2 2 2 0,x A y B z C D         

3. Axis aligned ellipsoids by the form:      
2 2 2

0,A x B C y D E z F G        

4. Cylinders orthogonal to the xy-plane:    
2 2

0.A x B C y D E      
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As an abstract data type, a surface must provide a point test, which identifies whether a point p 

has the same sense as the surface sign, and, thus, is in the primitive. For our framework, the 

surface must also provide a box classification test, which reports whether all points in an axis-

aligned box have the same sense, or opposite sense, or both, with respect to the surface. The 

surface can optionally provide an integrator that calculates the volume of the primitive 

intersected with a box. 

 

2.2.  Component Hierarchy: Boolean Formulae 

 

In many solid modeling tools, primitives are combined by Boolean operations
1
 (union, 

intersection, difference, and complement) to describe more complicated regions. A multi-

component model is described as a tree hierarchy in which each node represents a component 

defined by Boolean operations, which is contained in its parent, disjoint from its siblings, and 

contains its children. 

 

To be precise, there are three types of components that pertain to an object represented as a node 

N in the hierarchy tree. A simple example is illustrated in Figure 1. 

 

• The basic component B(N) is a region defined as a DNF (Disjunctive Normal Form, i.e., 

a union of intersections) formula of primitives that are bounded by quadric surfaces.  

B(N) is a blue rectangle in the figure.  The requirement that the region be defined in DNF 

is not limiting, since any region definition may be rewritten in DNF. 

 

• The restricted component R(N), drawn as a purple-striped rectangle, is the intersection of 

B(N) with the restricted component of its parent. Thus, restricted components nest, with 

the one at the root, N0, always containing the entire model. The interiors of restricted 

components of siblings of N are assumed to be disjoint from that of N; that is, sibling 

components on the same level of hierarchy are not allowed to overlap. If we explicitly 

include the intersection of ancestors, a restricted component has a 3-level formula (i.e., an 

intersection of unions of intersections). 

 

• The hierarchical component C(N), striped purple and blue, is the restricted component 

R(N) minus the restricted components of the children of N.  We seek to compute the 

volumes of all hierarchical components in the tree. 

 

As an abstract data type, the Boolean formulae and hierarchy tree must provide point location, 

which locates the restricted component containing a query point q, and formula restriction to a 

box which takes the results of the box classification test for all primitives and returns simplified 

formulae and tree by replacing primitives that are entirely outside or containing the box with 

false or true, respectively, and applying logical rules to obtain a equivalent formula without these 

logical constants.  Note that these operations are entirely logic and data structure manipulation. 

As all the numeric evaluations are performed in the surfaces, these operations cannot introduce 

any numerical errors. 

                                                 
1

Often by regularized operations [3], which follow the operation by taking the boundary of the interior.  Regularization does not change volume, 

but does remove lower dimensional features from an object. 
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2.3.  Problem Statement 

 

The tree also drives the process of volume computation for the components, and we ask it to 

provide the volume of each restricted component. The volumes of the hierarchical components 

are then computed by having each parent subtract the volumes of its children. 

 

To obtain these volumes we extend the notion of an integrator from a surface to the entire 

hierarchy of components: an integrator is supposed to provide the volumes of a given box 

intersected with each restricted component in a hierarchy tree. Since it will do so by creating a 

spatial subdivision, referred to as an octree, which is a third hierarchical structure, we find the 

following sections more clear if we consider the problem of a single restricted component, so 

that we have only a 3-level Boolean formula and an octree to distinguish between. Thus, in the 

following sections we focus on Problem 1. In fact, however, we evaluate all restricted 

components in the hierarchy tree together, which is important to prevent the subtractions from 

compounding errors. 

 

Problem 1 Given an axis-aligned bounding box BB and a restricted component R, defined as a 

3-level formula on signed surfaces {S1,..., Sn}, compute the volume of their intersection, 

BB ∩ R, to specified precision. 

 

3. DIVIDE AND CONQUER USING PREDICATES 

 

Here is a brief top-down description of the divide and conquer integrator for computing the 

volume of a restricted component (actually, the entire component hierarchy, as suggested in 

Section 2) using predicates mentioned in the previous section, and described in detail below. 

 

 
 

Figure 1.  Hierarchy Np – N – Nc with component C(N) striped purple and blue. 
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The input is the Boolean formula on a set of surfaces defining primitives, and an initial axis-

aligned bounding box. The procedure depends on a set of integrators for base cases, such as 

boxes that intersect a couple of surfaces; these are described in Section 4. The formula is first 

simplified by restriction to the box, which involves applying box classification for all surfaces; 

these predicates are detailed in the remainder of this section. If it is then simple enough, or if the 

box is small enough to apply a base case integrator, then this completes the computation. 

Otherwise the box is subdivided and copies of the formula are given to each box; we use a 

subdivision into eight boxes, forming an octree [4] for our implementation and experiments. 

Evaluation on smaller boxes can be performed in parallel, as the only dependency is the 

summation of return values. 

 

3.1.  Surface/Axis-Aligned Box Classification 

 

Before going into the details of the box classification test we recall the conic classification of 

Levin [5], and derive a method for sampling a point inside an ellipse or ellipsoid. 

 
3.1.1. Primitives of the box classification test 

 

Recall that the intersection of a quadric and a plane is represented by the zero set of a conic, a 

polynomial of degree 2 over two variables: 

 

   2 2

2 2

, 1 0
2 2

1
2 2

GDA
x

D Hc x y Ax By Dxy Gx Hy J x y B y

G H J

 
  
           
    

 

  (2) 

 

Conics represent ellipses, hyperbolas, parabolas, lines, etc. Levin [5] describes how to classify a 

conic by properties of its discriminant, the 3 × 3 symmetric matrix shown in Eq. (2). This 

classification is summarized in Table I. Levin describes how to classify quadrics as well; we use 

his test when initializing a quadric to identify ellipsoids and sample a point from inside each one. 

 

Table I.  Classification table for conics with real coefficients. 

 
d m s Condition Classification 

1 1 1  Coincident lines 

2 0 0  Single line 

2 1 1 δ < 0 Two parallel lines 

2 2 0 |Qu| < 0 Two intersecting lines 

2 2 2 |Qu| > 0 Point 

3 1 1  Parabola 

3 2 0 |Qu| < 0 Hyperbola 

3 2 2 |Qu| > 0 and |Q|t<0 Ellipse 

else  Invalid or imaginary conic 
For a conic given in matrix form (Eq. 2), let Q be the discriminant and d be the rank of the 
matrix.  Let Qu be the upper left 2×2 submatrix, with rank m, signature s (defined as the  

number of positive eigenvalues minus the number of negative eigenvalues), and trace t  

(defined by t = A + B).  Finally, let δ=4(AB+AJ+BJ) –D2–H2–G2. 
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Silhouette curves, which help define bounding boxes and integration domains and help in 

sampling points inside bounded surfaces and curves, are also conics. We can write a quadric as a 

function of z, as q(x, y, z) = az
2
 + b(x,y)z + c(x,y), where b(x,y) is a linear function and c(x,y) is 

quadratic. The silhouette curve is the locus of double roots of z, which occur at x, y positions 

where b(x,y)
2
 = 4ac(x,y), and have z = –b(x,y)/(2a). For quadrics the silhouette curves in 

coordinate directions lie in easily derived planes since, for example, the silhouette curve satisfies 

   , , 2 0d q x y z Cz Ex Fy I
dz

     , and all such points satisfy    / 2 .z Ex Fy I C     

This plane separates the surface into two z-monotone pieces. The projection of the silhouette 

curve of a quadric onto the xy-plane is r(x,y) = q(x,y,–b(x,y)/(2a)).  For an ellipse c(x,y), the 

silhouette curve is two points, s1 and s2, that lie on the line  , 2 0d q x y By Dx H
dy

     that 

separates the ellipse into two x-monotone curves. Their average, (s1 + s2)/2, is a point inside. For 

an ellipsoid, we can sample a point in the silhouette curve and raise it to the plane through the 

silhouette curve. 

 
3.1.1. The box classification test 

 

Given an axis-aligned box, B, and a signed surface, Q, that defines a primitive, we want to label 

box B as Inside if all its points have the same sense as the surface, Outside if all its points have 

the opposite sense as the surface, or Intersecting if it contains points of both senses. Below we 

summarize the box classification test. We implemented specific cases for a plane, axis-aligned 

cylinder, and the general form of a quadric. 

 

• For planes, the box classification can be done easily by having Q perform point tests on 

all corners of B.  However, for other quadrics we need to test intersections with box edges 

and faces, and even containment for bounded primitives. This is especially important 

because we will use this as the basic test to simplify a formula while traversing the 

octree. If we were to misclassify a surface (say, it only passed though the faces of a box) 

it would be simplified out of the formula too early, perhaps losing a surface that should 

be integrated by an ancestor. 

 

• Axis-aligned cylinders are common enough that we test them by projecting along their 

axes. 

 

• For general quadrics, edge tests assign values from box corners to pairs of variables in a 

quadric, and evaluate the discriminant of the third variable. This algebra computes the 

vertex tests along the way. If these tests identify the box as Intersecting, we return that 

label.  Otherwise, we must continue to test faces and containment since, for example, a 

pipe could intersect a box boundary only at faces. 

 

To test if a face f intersects surface Q, we classify the intersection of Q with the axis-

parallel plane P that contains f.  If this curve is not an ellipse, it is unbounded, and since 

we already know that vertices and edges around f do not intersect Q, we know the face 

also does not intersect Q. If it is an ellipse, then we test a point from the interior of the 

ellipse to detect intersection with face f. Again, if we ever detect Intersecting, we return 

that label immediately. 
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Finally, if Q is an ellipsoid, we test a sample point inside to ensure it has the same sense 

as all corners, and report the final classification label for B. 

 

3.2.  Component/Box Classification and Restriction 

 

Extending the classification of a box B from surfaces to components is a purely logical operation, 

and the restriction of the 3-level formula to B is just data structuring. 

 

The input is the box B and the restricted component's 3-level formula R, which involves surfaces 

already classified with respect to B. We can apply the formula to conservatively combine the 

labels of B by the following rules, where we have abbreviated X: Intersecting, I: Inside, and O: 

Outside, and α: any. 

 

 , , and .X X I O I O  complement  

 , , and .X X X O I I    union  

 , , and .X X X O O I    intersection  

 

This is a conservative extension because the union of two objects that intersect box B may 

actually completely cover B, or their intersection within B may be empty. By classifying all such 

cases as Intersecting, however, the octree will simply refine the box and retest. Thus, the result 

can be guaranteed correct to the level of refinement. 

 

To avoid classifying every child box for every surface, we need to simplify formula R by 

restriction to box B. We describe how this can be done recursively, while exploring the octree in 

depth-first order. At any step we have a box B and the 3-level formula for B ∩ R that uses only 

surfaces that were deemed Intersecting with respect to the parent of B. 

 

Initially, we begin with a bounding box and the entire formula, represented as a tree of height 

three. (Recall that R is ∩ of  of ∩ of surface primitives; each operator is represented by a list of 

pointers to the formulae or variables that it operates on.) We evaluate B with respect to each 

surface remaining in the formula. If B is Inside or Outside any surface, we apply the above 

union/intersection operations (with commutativity and associativity) to simplify the formula. If 

the formula simplifies to Inside or Outside, or if we decide for some other reason to stop 

traversing at box B, then we are done. Otherwise, we refine box B, pass the simplified formula to 

each child, and recursively evaluate each child. 

 

In this recursive algorithm it is imperative that any surface that intersects a box B must be 

detected as intersecting the parent of B. For example, if faces were not tested in the box 

classification test and a cylinder was missed because it pierced only a face of B, then it would be 

simplified away, and not be evaluated in any children of B. 
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4. VOLUME ESTIMATORS 

 

An integrator determines if the geometry inside a box is sufficiently simple that it can evaluate 

the volumes in a component hierarchy; integrators serve as the base cases for the recursive 

divide-and-conquer algorithm. 

 

Each integrator receives as input: a box, an error interval and confidence value expressed either 

in absolute terms or relative to the volume of the box, and a component hierarchy. It can look at 

the size of the box, the number and kind of surfaces in the hierarchy, and its task is to evaluate 

the volumes of the relative components in the box to within the error interval with given 

confidence. We first describe several possible integrators, and then return to the analysis of error 

intervals.  As a part of the description, each integrator is given an abbreviation, which is used to 

refer to the integrator throughout the rest of the paper.  

 

The Box Integrator (Box) - The simplest integrator assigns a user-specified fraction of box 

volume to each component that can intersect a box in the spatial hierarchy. This is exact when no 

surface passes through a box, since then the box is entirely inside one component. Otherwise the 

confidence is directly proportional to the volume of the box, so this can always be a fallback 

integrator when boxes become small. 

 

The General Integrator: Monte Carlo (MC) - A Monte Carlo integrator simply performs 

point-in-component tests. We obtain confidence bounds using the Wilson test [6], which, at the 

95% confidence level suggests that the volume v of a component that receives x out of n samples 

is in the confidence interval 

 

 
95

2 1 / 12

4 4

x x nx
CI

n n

 
 

 
    (3) 

 

We estimate the volume as v x n  so that the total volume within the box is conserved. 

 

Single Plane Integrator (1pl) - When a single surface defines the portion of a component in an 

axis aligned box, by some case analysis (often a non-trivial amount) we can derive the domains 

of integrals for the component's volume, which we can then evaluate numerically or analytically. 

Single planes are the easiest and most frequent case, and their implementation shows benefits 

immediately. 

 

Pairs of Planes Integrator (2pl) - Extending the single quadric integrator to a pair is also 

possible. Again, the biggest payoff for the effort comes from handling pairs of planes.  By 

implementing a special integrator for this case, any box that contains two planes becomes a base 

case and needs not be further subdivided. 

 

Capped Cylinder Integrator (Cyl) - As elliptic cylinders arc infinite in one direction, they are 

often truncated by some other quadric (usually a plane). We found that implementing a special 

integrator for an axis-aligned cylinder truncated by a plane orthogonal to its axis showed 

benefits. Non-truncated axis aligned cylinders are also handled by this integrator. 
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Bundle of Cylinders Integrator (Bun) - Because bundles of axis-aligned pins and cylindrical 

pipes and vessels are so common in models, we found it worthwhile to implement a special 

integrator for pairwise-disjoint collections of axis-aligned cylinders (capped and uncapped) with 

circular cross sections. Intersecting cylinders are reduced to this case by subdivision. 

 

4.1.  Error Bounds 

 

One concern that arises with the spatial subdivision of the problem is how to combine error 

bounds from individual boxes. In the worst case, bounds on the errors from each box would have 

to sum: an error of ±δ from K boxes would become an error of ±δK. This worst case occurs if all 

errors are not independent and occur in the same direction, perhaps by a rounding problem in an 

integrator. Careful coding is needed to avoid accumulation of such error. 

 

We get an average case if the errors are independent; the error bound from a combination would 

grow more like ±δ K . The easiest illustration of this is to imagine a Monte Carlo volume 

estimate that chooses random points in each box and decides if they are inside or outside the 

volume, giving independent Bernoulli trials. It could instead choose points from the union of all 

boxes with the variance going from  1np p  for each of K boxes to  1Knp p  overall, so the 

standard deviation increases by K . 

 

The best case is also relevant — dependent errors can cancel if they are made in opposite 

directions, and we actually benefit from that by evaluating the entire component hierarchy at 

once. Consider Monte Carlo estimates again; if we determine which component contains a trial 

point, then the estimates to volume will at least add up to the volume of the box (up to machine 

precision) so that the volume lost by one component will be gained by another and the total 

volume will be conserved. 

 

5. EXPERIMENTS 

 

In this section we demonstrate how adding integrators in our framework can reduce the running 

time and/or increase the accuracy of volume computation on a set of models shown in Figure 2. 

Timings are from a 3.2GHz Intel Xeon processor with 12GB RAM running Ubuntu 10.04. 

 

We ran several experiments on each of five models, four of which are shown in Figure 2 (the 

image of the fifth model is omitted as it is visually similar to the images in the bottom row). Each 

model consists of a single component enclosed within a cube of unit volume. In all models, the 

units of length and volume are arbitrary, but may be assumed to be in cm and cm
3
, respectively, 

for reader convenience.  The first model is a randomly rotated 0.5 × 0.5 × 0.5 cube (referred to as 

the “Cube” model), with volume approximately 0.125 (randomly rotating the cube induces a 

small error, reducing the volume by approximately l×10
-7

). We use this example to assess the 

accuracy of combinations of plane and Monte Carlo (MC) integrators. The second model is a 

union of intersections of capped cylinders with drilled holes (referred to as the “DrillCyl” 

model). We use this example to assess the performance of combinations of integrators on models 

with curved primitives. The third model is a wedge with twelve L-shaped pipes of radius 0.035 

removed, defined by 55 surfaces and 31 unions of intersections (referred to as the “cPiped12” 

model).  We also consider larger models based on the cPiped12 model, but with different  
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Figure 2.  Models used for testing of volume calculation algorithm.  a) Cube model is      

≈ 0.125 volume cube with a random rotation; b) DrillCyl model is a union of two 

intersections of a dozen cylinders and planes; c) cPiped12 model is a wedge-shaped 

block minus a 3×4 bundle of L-shaped pipes; d) cPiped100 is similar to cPiped12 but 

with a 10×10 bundle of L-pipes; cPiped10000 (not shown) is similar to cPiped12 but 

with a 100×100 bundle of L-pipes. 

a) Cube b) DrillCyl

c) cPiped12 d) cPiped100
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numbers of pipes.  These additional models include the “cPiped100” model, which contains 100 

L-shaped pipes of radius 0.01, defined by over 475 surfaces and 200 unions of intersections, and 

the “cPiped10000” model, with 10,000 L-shaped pipes of radius 0.001, defined by over 40,800 

surfaces and 20,400 unions of intersections. 

 

For each model we evaluated volume with tolerances of ±2.2×10
-3

 and ±1.1×10
-4

. In our current 

implementation, tolerance is used primarily to determine the number of MC samples needed over 

the unit volume, which, in turn, determines the maximum depth of our octree, since the number 

of samples in a box is proportional to its volume, and we require at least eight points in a box to 

subdivide it. Thus, with tolerance 2.2×10
-3

 we stop at depth 6, and with 1.1×10
-4

 at depth 11. 

Descending further can change which integrators run. For example, in cPiped100 with tolerance 

±2.2×10
-3

 Cyl integrates 7.6% of the boxes in volume calculation. However, when we explore 

the tree further with tolerance ±1.1×10
-4

, we find that Cyl integrates about 35.7% of the boxes. 

Because Cyl only integrates capped and uncapped single cylinders we need to travel further 

down the tree before we isolate a cylinder. 

 

Tables II and III present results from the numerical experiments described above.  For each 

model considered, each line of Tables II and III reports statistics of a run using all the integrators 

above that line, which explains the triangular pattern of numbers (e.g., the last line for each 

model uses all integrators). Table II reports the number of boxes on which integrators are run, 

and reports, for each type of integrator, the percentage of boxes that it evaluated. The number of 

boxes has a big effect on running time, but it does not tell the whole story. Table III shows the 

drastic decrease in the number of samples required by the MC integrator as some of its boxes are 

given to other integrators (the number of samples is directly proportional to the volume of the 

boxes in which MC integration is performed). Adding other integrators decreases the number of 

boxes for the MC integrator by a factor of 2, but the volume of boxes integrated by MC decrease 

by factors of more than 10. An integrator that is added but not used in many boxes can still 

reduce the number of boxes dramatically by serving as an early base case. 

 

We observe that in all cases, the volume calculated with additional integrators is within the error 

bounds from MC, but between 1 and 5 orders of magnitude faster. We attribute the speedup 

mainly to the reduction in number of MC samples.  Thus, even for coarse volume estimates with 

tolerance 2.2×10
-3

, we see the benefit of additional integrators. 

 

6. CONCLUSIONS 

 

We have developed a new generalized algorithm for computing volumes in CSG models.  The 

algorithm follows a divide-and-conquer framework that intelligently applies specific integrators 

to each of the boxes of the octree that arise from the subdivision.  We have described six 

different integrators, though the real strength of the algorithm is that it supports unlimited 

additional integrators.  In this way, the algorithm can be specifically tailored to different problem 

types for decreased runtime and increased accuracy.  The new algorithm is fully general and can 

handle any valid CSG component definition with up to second-order surfaces. 
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Table II.  Numbers of boxes evaluated by different integrators for different models and 

tolerances, with volume and timing information provided.  Cube model has no cylinders so 

the +Cyl integrator is omitted; other models have few planes so the +1 Plane integrator is 

omitted.  

 
Model Alg Total Integrators (% of total boxes) Total Time 

Name  Boxes MC Box 1pl 2pl Cyl Bun Volume (sec) 

Cube MC 1 100.0 - - - - - 0.1245446 0.09 

  tol: ±2.2e-03  +octree 20,280 42.6 57.4 - - - - 0.1251001 0.02 

  vol: 0.1249998 +1 Plane 4,768 15.4 58.6 26.0 - - - 0.1249996 <.01 

 +2 Plane 610 3.0 64.3 9.8 23.0 - - 0.1250019 <.01 

Cube MC 1 100.0 - - - - - 0.1249980 131.12 

  tol: ±1.1e-04  +octree 2,060,7294 42.9 57.1 - - - - 0.1250000 18.16 

  vol: 0.1249998 +1 Plane 168,428 14.3 57.3 28.4 - - - 0.1249998 0.37 

 +2 Plane 1,380 1.2 66.5 10.0 22.3 - - 0.1249998 <.01 

DrillCyl MC 1 100.0 - - - - - 0.3867179 0.20 

  tol: ±2.2e-03  +octree 73,200 44.7 55.3 - - - - 0.3866701 0.08 

  vol: 0.3866281 +2 Plane 66,144 43.2 55.1 1.3 0.4  - 0.3868198 0.08 

 +Cyl 10,872 15.5 48.2 1.5 2.2 32.7 - 0.3866121 0.02 

DrillCyl MC 1 100.0 - - - - - 0.3866408 286.00 

  tol: ±1.1e-04  +octree 78,737,968 42.9 57.1 - - - - 0.3866279 73.62 

  vol: 0.3866281 +2 Plane 67,367,700 42.8 57.1 <0.1 <0.1 - - 0.3866278 62.73 

 +Cyl 378,512 14.1 54.2 1.3 2.7 27.6 - 0.3866278 0.65 

cPiped12 MC 1 100.0 - - - - - 0.0660653 0.13 

  tol: ±2.2e-03  +octree 24,753 51.4 48.6 - - - - 0.0655403 0.03 

  vol: 0.0657512 +2 Plane 13,784 53.4 43.1 1.9 1.5 - - 0.0658770 0.03 

 +Cyl 8,667 32.7 39.3 2.5 2.4 23.1 - 0.0657460 0.02 

 +Bun 3,322 22.3 44.5 6.3 6.2 12.9 8.1 0.0657594 0.02 

cPiped12 MC 1 100.0 - - - - - 0.0657498 192.75 

  tol: ±1.1e-04  +octree 34,070,947 43.4 56.6 - - - - 0.0657512 32.73 

  vol: 0.0657512 +2 Plane 20,543,405 43.7 56.2 <0.1 <0.1 - - 0.0657509 20.05 

 +Cyl 1,296,975 23.1 39.4 0.9 1.0 35.7 - 0.0657511 2.36 

 +Bun 198,090 15.1 52.0 5.9 6.6 19.4 1.0 0.0657512 0.56 

cPiped100 MC 1 100.0 - - - - - 0.0731463 0.60 

  tol: ±2.2e-03  +octree 23,003 62.4 37.6 - - - - 0.0731258 0.07 

  vol: 0.0731920 +2 Plane 11,936 75.6 21.0 2.6 0.8 - - 0.0733605 0.06 

 +Cyl 11,887 68.2 20.7 2.6 0.8 7.6 - 0.0732219 0.06 

 +Bun 3,228 28.7 34.8 7.8 3.1 2.3 24.0 0.0732155 0.03 

cPiped100 MC 1 100.0 - - - - - 0.0731951 790.28 

  tol: ±1.1e-04  +octree 62,392,744 45.2 54.8 - - - - 0.0731921 63.96 

  vol: 0.0731920 +2 Plane 48,958,575 45.6 54.2 <0.1 <0. I - - 0.0731919 51.32 

 +Cyl 8,527,009 25.2 38.4 0.3 0.4 35.7 - 0.0731919 14.58 

 +Bun 482,756 16.8 49.6 4.8 7.0 18.5 3.3 0.0731919 1.41 

cPiped10000 MC 1 100. 0 - - - - - 0.0768654 183.04 

  tol: ±2.2e-03  +octree 23,003 56.4 43.6 - - - - 0.0767527 2.40 

  vol: 0.0767715 +2 Plane 11,936 63.4 32.4 3.3 0.8 - - 0.0768464 2.33 

 +Cyl 11,887 63.6 32.2 3.3 0.8 <0.1 - 0.0768258 2.34 

 +Bun 3,228 25.0 39.5 9.6 3.1 0.3 23.1 0.0767881 2.36 

cPiped10000 MC - - - - - - - - N/Aa 

  tol: ±1.1e-04  +octree 208,125,506 67.0 33.0 - - - - 0.0767697 358.09 

  vol: 0.0767715 +2 Plane 195,211,080 68.6 31.4 <0.1 <0.1 - - 0.0767696 348.25 

 +Cyl 162,382,473 43.7 23.1 <0.1 <0.1 33.2 - 0.0767696 346.37 

 +Bun 1,539,063 30.3 30.6 0.3 4.9 13.0 20.9 0.0767691 9.43 
a
Halted after 12 hours.  Extrapolating from cPiped10000 with tolerance ±2.2e-3, time will be about 76 hours. 
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Table III.  Percentages of the unit volumes integrated by the different integrators; the 

decrease in Monte Carlo volume is directly related to the number of samples and running 

time.  

 
Model Alg Integrators (% of total volume) Total Time 

Name  MC Box 1pl 2pl Cyl Bun Samples (sec) 

Cube MC 100.0 - - - - - 999,995 0.09 

  tol: ±2.2e-03  +octree 3.3 96.7 - - - - 34,528 0.02 

  vol: 0.1249998 +1 Plane 0.3 80.7 19.0 - - - 2,928 <.01 

 +2 Plane <0.1 61.1 9.3 29.6 - - 72 <.01 

Cube MC 100.0 - - - - - 1,410,065,909 131.12 

  tol: ±1.1e-04  +octree 0.1 99.9 - - - - 17,663,096 18.16 

  vol: 0.1249998 +1 Plane <0.1 80.9 19.1 - - - 48,176 0.37 

 +2 Plane <0.1 61.1 9.3 29.6 - - 32 <.01 

DrillCyl MC 100.0 - - - - - 999,995 0.20 

  tol: ±2.2e-03  +octree 12.5 87.5 - - - - 130,784 0.08 

  vol: 0.3866281 +2 Plane 10.9 83.7 4.6 0.8 - - 114,256 0.08 

 +Cyl 0.6 36.1 2.5 0.8 60.0 - 6,720 0.02 

DrillCyl MC 100.0 - - - - - 1,410,065,909 286.00 

  tol: ±1.1e-04  +octree 0.4 99.6 - - - - 67,494,688 73.62 

  vol: 0.3866281 +2 Plane 0.3 94.2 4.7 0.8 - - 57,664,680 62.73 

 +Cyl <0.1 36.5 2.5 0.8 60.2 - 106,576 0.65 

cPiped12 MC 100.0 - - - - - 999,995 0.13 

  tol: ±2.2e-03  +octree 4.9 95.1 - - - - 50,932 0.03 

  vol: 0.0657512 +2 Plane 2.8 70.4 6.2 20.6 - - 29,468 0.03 

 +Cyl 1.1 69.2 6.2 20.6 2.9 - 11,332 0.02 

 +Bun 0.3 68.3 6.2 20.6 0.9 3.8 2,964 0.02 

cPiped12 MC 100.0 - - - - - 1,410,065,909 192.75 

  tol: ±1.1e-04  +octree 0.2 99.8 - - - - 29,604,860 32.73 

  vol: 0.0657512 +2 Plane 0.1 73.0 6.2 20.6 - - 17,953,588 20.05 

 +Cyl <0.1 69.8 6.2 20.6 3.4 - 598,522 2.36 

 +Bun <0.1 68.5 6.2 20.6 1.0 3.8 59,964 0.56 

cPiped100 MC 100.0 - - - - - 999,995 0.60 

  tol: ±2.2e-03  +octree 5.5 94.5 - - - - 57,392 0.07 

  vol: 0.0731920 +2 Plane 3.4 72.2 6.8 17.6 - - 36,100 0.06 

 +Cyl 3.1 72.2 6.8 17.6 0.4 - 32,440 0.06 

 +Bun 0.4 70.4 6.7 17.6 <0.1 4.9 3,700 0.03 

cPiped100 MC 100.0 - - - - - 1,410,065,909 790.28 

  tol: ±1.1e-04  +octree 0.3 99.7 - - - - 56,352,288 63.96 

  vol: 0.0731920 +2 Plane 0.3 75.3 6.8 17.6 - - 44,694,892 51.32 

 +Cyl <0.1 73.7 6.8 17.6 1.9 - 4,295,224 14.58 

 +Bun <0.1 70.5 6.7 17.6 0.1 5.0 162,002 1.41 

cPiped10000 MC 100.0 - -  - - 999,995 183.04 

  tol: ±2.2e-03  +octree 5.0 95.0 -  - - 51,920 2.40 

  vol: 0.0767715 +2 Plane 2.9 72.7 6.8 17.6 - - 30,280 2.33 

 +Cyl 2.9 72.7 6.8 17.6 <0.1 - 30,220 2.34 

 +Bun 0.3 70.4 6.7 17.6 <0.1 4.9 3,232 2.36 

cPiped10000 MC - - - - - - - N/Aa 

  tol: ±1.1e-04  +octree 1.6 98.4 - - - - 279,088,846 358.09 

  vol: 0.0767715 +2 Plane 1.6 74.0 6.8 17.6 - - 267,848,220 348.25 

 +Cyl 0.8 73.7 6.8 17.6 1.1 - 141,769,844 346.37 

 +Bun <0.1 70.5 6.7 17.6 <0.1 5.1 931,534 9.43 
a
Halted after 12 hours.  Extrapolating from cPiped10000 with tolerance ±2.2e-3, time will be about 76 hours. 
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In addition, we believe that volume computation is just one of many possible applications for this 

algorithm.  From our current structure it is easy to label boxes of the octree with components of 

the hierarchy that straddle them.  Such a data structure may more quickly locate and track 

particles while solving the transport equation. 

 

Our exploration of error bounds and their propagation is rudimentary at this point, and much 

more can be said about decisions that affect the error from the various integrators. For example, 

if we start with a bounding box whose minimal point's coordinates and side lengths are powers 

of two, each octree cell could have an exact representation. Thus, the volume of outside boxes 

would be exactly zero, and inside would be at most 3 ULP away from the true box volumes. 

Developing tight error bounds for the other integrators is not so easy. Perhaps by keeping tight 

bounds on the numerical errors introduced by an integrator we could make a more informed 

traversal of the octree. 
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