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Abstract. In a paper that considered arithmetic precision as a limited
resource in the design and analysis of algorithms, Liotta, Preparata and
Tamassia defined an “implicit Voronoi diagram” supporting logarithmic-
time proximity queries using predicates of twice the precision of the input
and query coordinates. They reported, however, that computing this di-
agram uses five times the input precision. We define a reduced-precision
Voronoi diagram that similarly supports proximity queries, and describe
a randomized incremental construction using only three times the input
precision. The expected construction time is O(n(log n+log µ)), where µ
is the length of the longest Voronoi edge; we can construct the implicit
Voronoi from the reduced-precision Voronoi in linear time.

Keywords: Voronoi diagram, Low-degree primitives, Randomized
algorithm, Robust computation.

1 Introduction

Geometric algorithms that have been proved correct may still fail due to numer-
ical errors that occur because geometric predicates and constructions require
higher precision than is readily available. For example, computing the topolog-
ical structure of the Voronoi diagram of n sites requires four times the input
precision, Voronoi vertices of sites with integer coordinates have rational co-
ordinates of triple precision over double, and testing whether a query point is
above or below a segment joining two Voronoi vertices requires six times in-
put precision. Liotta, Preparata, and Tamassia [1] derived a structure from the
Voronoi diagram that supports logarithmic-time proximity queries for points on
a grid using only two times the input precision. Unfortunately, they report that
computing their diagram requires five times the input precision.

We introduce a structure that similarly supports proximity queries, but is
computed incrementally using at most triple precision in O(n(log n + log μ))
expected time, where μ is the length of the longest Voronoi edge. From our
structure it is easy to obtain the structure of Liotta et al. in linear time.

Computing Voronoi diagrams is a well studied problem and many optimal algo-
rithms have been proposed [2, 3, 4, 5]. Most are designed for a RealRAM or other
computational model in which coordinate computations may be carried out to ar-
bitrary precision, allowing the computer to work with exact Euclidean geometry.
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There are four popular ways to handle the numerical precision issues that arise
when geometric algorithms are implemented on computers with limited precision:
rounding, exact geometric computation, topological consistency, and degree-
driven algorithm design. Rounding to machine precision is simplest, and results
in fast execution, but calculations with incorrect values may cause algorithms to
have unexpected behavior or even fail. The exact geometric computation paradigm
encapsulates the numerical computations in geometric and combinatorial predi-
cates and constructions that are guaranteed to produce correct decisions. These
predicates can be built into libraries, such as CORE [6, 7], CGAL [8] and LEDA [9],
for reuse by many algorithms. These libraries support various techniques for im-
plementing correct predicates, including arbitrary precision in software, which is
slow but always correct, arithmetic filters [10, 11, 12], which use precomputed error
bounds for machine arithmetic so that arbitrary precision is needed only when ma-
chine precision is insufficient, and adaptive predicates [13], which evaluate only to
the precision needed to guarantee a correct solution. Sugihara and Iri [14] suggest
that topological consistency is more important than geometric correctness – that
inaccurate values of coordinates can be tolerated provided that the data structures
satisfy topological invariants needed by algorithms for correct operation. For ex-
ample, a Voronoi diagramalgorithmmaybe allowed to round vertex coordinates so
that the embedding becomes non-planar, but as the graph itself is connected and
planar, a graph-based traversal will at least terminate. Topological consistency
produces correct results when the numerical computation gives correct predicate
decisions, and at least avoids catastrophic failure when one or more predicate deci-
sions are incorrect. Degree-driven algorithm design considers arithmetic precision
as a limited resource that should be optimized along with running time and mem-
ory. Input is assumed to be single precision; often restricted to an integer grid for
convenient analysis. Liotta, Preparata, and Tamassia [1] named this technique in
their work on point location, in which they suggested polynomial degree to capture
the complexity of predicates. The technique has also been applied to computing
segment intersections [15, 16, 17]. Our work described here falls into degree-driven
algorithm design.

2 Geometric Preliminaries and Related Work

The Voronoi diagram is well known in computational geometry, but because
we will be concerned with the precision of input, we start with a restricted
definition and remind the reader of some properties. Assume that we are given a
set of n sites, S = {s1, s2, . . . , sn}, with each si = (xi, yi) having single precision
coordinates and all of them lying in a region of interest in the plane that can be
described with a O(1) coordinate values. (The easiest assumption is that S lay
in a bounded rectangle in the integer grid.) The distance metric is Euclidean.

The Voronoi diagram, VoD(S), is the partition of our bounded rectangle into
maximally connected regions with the same set of closest sites. The partition
includes Voronoi regions closest to one site, Voronoi edges equidistant to two
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closest sites, and Voronoi vertices equidistant to three or more closest sites. The
Voronoi cell VRS(si) is the closure of the region of si:

VRS(si) = {x ∈ R
2 | ‖x − si‖ ≤ ‖x − sj‖, ∀sj ∈ S}.

Note that we will suppress the S and write VR(si) when S is clear from the
context. Let bij denote the locus of points equidistant to si and sj, the perpen-
dicular bisector of the segment sisj . Note that as we are interested in a particular
region, we can clip bisectors and Voronoi edges to finite segments.

Aurenhammer surveys [18] properties of the Voronoi diagram. In particular,
we use the following:
– Bisectors are straight lines.
– A Voronoi edge on the boundary of cells VR(si) and VR(sj) lies on the

bisector of si and sj .

– A Voronoi cell is the intersection of closed half planes; this implies that
Voronoi cells are convex.

– A site si is contained in its cell, si ∈ VR(si).
The following properties of the Voronoi diagram are also known, but we state

them in a form that will be helpful for our constructions later in the paper.
Lemma 1. The order in which Voronoi cells intersect a line � is the same as
the order of the corresponding sites orthogonal projection onto �.
For our incremental construction we will need to decide if a new cell intersects a
horizontal or a vertical segment. A corollary of Lemma 1 will give us a convenient
way of making this decision.

Corollary 2. Without loss of generality, consider a horizontal segment σ and the
set of sites S whose Voronoi cells intersect σ. Let q be a new site, and let si, sj be
the sites of S whose projections onto σ form the smallest interval containing the
projection of q; site si or sj can be taken as infinite if no finite interval exists.
To determine if VRS(q) intersects σ, it suffices to test if an endpoint of σ or the
intersection of σ ∩ bij is closer to q than to both si and sj .

Proof. Assume that q is above σ and that we would like to determine if VRS(q)
appears below σ. Let xi < xj , and ci, cj ∈ σ be points in the cells of si and sj

respectively. Consider the point q′ that has the same x coordinate as q, but is
raised to infinity. Now, lower q′ continuously, computing the Voronoi diagram
of σ ∪ {q′} until the cell of q′ intersects σ, and let cq′ be this intersection point.
Lemma 1 tells us that ci < cq′ < cj . In addition, cq′ must be on bij , otherwise cq′

would be in the middle of the cell of si or sj causing the cell to be non-convex.
In fact, cq′ is the point equidistant to si, q

′ and sj . Now, if q′ is above q then
the point equidistant to si, q and sj must be below cq′ so the cell of q must
intersect σ. Alternatively, if q′ is below q then the point equidistant to si, q
and sj is above cq′ so the cell of q is completely above σ and therefore, their
intersection is empty.

Next we show that the intersection of a Voronoi diagram and a convex region is
a collection of trees.
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Lemma 3. Given a set of sites S and a convex region R containing no sites of
S; the edges and vertices of the VoD(S) in R form a forest.

Proof. If R∩VoD(S) contained a cycle then R would contain a Voronoi cell, and
therefore a site. Since R contains no sites, we conclude that R ∩ VoD(S) does
not contain a cycle.

The Voronoi diagram can be used to determine the closest site to a query point
q if we build a point location structure on top of it. The trapezoid method of
point location [2] builds a logarithmic-depth directed acyclic graph (DAG) with
two types of nodes: x-nodes evaluate whether q is left or right of a vertical
line through some vertex v by comparing x coordinates, and y-nodes evaluate
whether q is above or below the line through some edge e.

As suggested in the introduction, Voronoi vertices are rational polynomials in
the input coordinates of degree three over degree two. So to compare x coordi-
nates with a single precision input, it would suffice to clear fractions and evaluate
the sign of a degree three polynomial using triple precision computation. (Triple
precision is also necessary; the polynomial for this predicate is irreducible of
degree three.)

If edge e were defined by two arbitrary Voronoi vertices, then y-node test would
require degree six, but since it is enough to test Voronoi edges, which lie on bi-
sectors, we can compare squared distances to pairs using double precision. Liotta
et al. [1] further observed that when the query points are on a grid, an x-node
can store coordinates of v rounded to half grid points, which reduces the x-node
evaluation to single precision. Thus, they defined their implicit Voronoi diagram,
which stores the topology of VoD(S) as a point location DAG, and for each edge
stores the pair of sites defining the bisector, and for each vertex the Voronoi ver-
tex rounded to a half-integer grid. This has the anomaly that the stored vertices
do not lie on the stored edges. Nevertheless, point location with a grid point q as
input will report the containing cell correctly, and in logarithmic time.

Unfortunately, the only method that Liotta et al. [1] suggest to build their
implied Voronoi diagram is to build the true Voronoi diagram and round, which
they report is a degree five computation. We will reduce this to degree three.

Voronoi diagrams on a pixel grid have been considered in both graphics and
image processing. In graphics, Hoff et al. [19] used the GPU to render an image
of the Voronoi diagram and to recover an approximate Voronoi diagram from
the screen buffer. This method generalizes easily to sites that are segments,
curves, or areas. The work does not consider precision or accuracy guarantees
but discusses errors created from multi-precision distance computations rounded
to machine precision.

In image processing, the distance and nearest neighbor transforms are two op-
erations that can be viewed as querying only at pixels for the distance or name
of the nearest feature pixel. Breu et al. [20] developed a linear-time algorithm
for these transforms by computing the Euclidean Voronoi diagram and querying.
Here, linear is in the number of pixels in the grid; the number of sites may be pro-
portional. They avoid extra logarithmic factors by using the locality of the grid in
point location and in divide and conquer construction. Their algorithm assumes
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a RealRAM and uses at least four times input precision; a divide and conquer
version of our algorithm would reduce the precision of computing distance and
neighbor transforms without sacrificing their worst-case running time.

3 Predicates and Constructions

The traditional measures in the theory of algorithms are asymptotic time and
space, usually described up to a multiplicative constant by big-O notation. Li-
otta et al. [1, 15] suggest that we can analyze the arithmetic precision required
by combinatorial and geometric algorithms, up to an additive constant, by ex-
pressing predicates and constructions as rational polynomial functions of the
input variables and looking only at the polynomial degree.

We assume that input coordinates are single variables, which are degree-one
polynomials. The degree of a monomial is the sum of the degrees of its variables,
and the degree of a polynomial is the maximum degree of its monomials. The
degree of a predicate is the maximum degree of its polynomials, and the degree
of an algorithm is the maximum degree of its predicates.

Bisector Side Predicate: To clarify, we illustrate this concept with a bisectorSide
predicate that determines whether a query point q is closer to site p or site r by
comparing squared distances:

(a1) Evaluate (qx − px)2 + (qy − py)2 � (qx − rx)2 + (qy − ry)2.
(a2) The result < implies that p is closer, > implies r is closer, and = implies q

is on the bisector of p and r.

Since this computation can be performed by evaluating the sign of a degree 2
polynomial, it suffices to use double precision plus a couple of bits for possible
carries. In the rest of this section we briefly define three other predicates or
constructions that operate on bisectors.

Stabbing Order Predicate: Given two bisectors b12, and b34, defined by input
sites, and a vertical grid line � that both bisectors intersect, the stabbingOrder
predicate determines if the intersection b12 ∩ � is above, below or at the same
point as the intersection b34 ∩ �.
Lemma 4. We can determine the stabbingOrder of two bisectors on a grid line
using degree three computation in constant time.
Proof omitted for extended abstract.

Bisector-Segment Intersection Predicate: Given bisector b12 and a non-vertical
segment σ ⊂ b34 with left and right endpoints on horizontal gridlines, �l and �r,
the bisectorSegmentIntersection predicate determines if σ intersects b12.

Lemma 5. We can determine if a bisector intersects a segment whose end points
lay on gridlines with degree three computation in constant time.

Proof. The stabbingOrder of b12 and b34 on �l and �r is different if and only if
we have found an intersection; two stabbingOrder tests suffice.
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Bisector Intersection Construction: Given a bisector b12 that intersects a non-
vertical segment σ as defined for Lemma 5, the bisectorIntersection construction
identifies the grid cell containing the intersection of b12 and σ.
Lemma 6. We can identify the grid cell containing the intersection of a bisector
and a segment whose end points lay on gridlines with degree three computation
in time proportional to log of the length of the segment.

Proof. We can do a binary search on the segment for the grid cell containing the
intersection using the degree three stabbingOrder predicate.

4 The Reduced-Precision Voronoi Diagram

Given a set of n sites S = {s1, s2, . . . , sn}, whose coordinates are b-bit integers,
we define a reduced-precision Voronoi diagram that is intermediate between
the true Voronoi diagram VoD(S) and the implicit diagram of Liotta et al. [1].
Because we use predicates of at most degree three, we cannot know exactly how
bisectors intersect inside of a grid cell. The predicates of the previous section,
however, do provide full information at the grid cell borders. This low level of
information inside of a grid cell gives us a “fuzzy” picture of Voronoi vertices
that we contract to rp-vertices. Since we do however know precise information
at the grid boundaries we maintain rp-edges that keep the same edge ordering
as Voronoi edges entering the grid cell. In this way we keep enough control of
the Voronoi vertices to perform constructions efficiently; in contrast, the implicit
diagram rounds Voronoi vertices off their defining edges.

Let us consider the integer grid G as a partition into grid cells of the form
[i, i + 1) × [j, j + 1) for integers i, j. The rp-Voronoi ̂V(S) is the graph with rp-
vertices and rp-edges defined by contracting every edge of the Voronoi diagram
VoD(S) that lies entirely inside some grid cell.

Figure 1(a) depicts and example grid cell G ∈ G and shows the intersection
G ∩ VoD(S), which by Lemma 3 is a forest. In the graph structure of the rp-
Voronoi, ̂V(S), we therefore contract each tree of the forest to an rp-vertex.
Edges that leave the grid cell are preserved as rp-edges. Notice that the planar
embedding of the Voronoi VoD(S) gives a natural planar embedding of ̂V(S)
in which the ordering of edges entering a grid cell is preserved as the ordering
of edges around the rp-vertex. We find it useful to depict these rp-vertices as
the convex hulls of the intersections of rp-edges, as in Figure 1(b). Although we
never actually compute these convex hulls they bound the locations where the
tree of VoD(S) can lie.

Each rp-vertex v maintains the grid cell Gv containing v, and an list of its
incident rp-edges in counter-clockwise order by their entry to Gv. Each rp-edge e
stores the generator sites s1 and s2 of the corresponding Voronoi diagram edge,
and pointers to its location in the lists of its two rp-vertices. Standard data
structures, like the doubly-connected edge list [2], allow us to maintain the order
in the planar subdivision represented by ̂V(S).

Finally we define the boundary of the rp-region of s to be the alternating
sequence of rp-edges storing site s and the connecting rp-vertices that form a
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(a). Voronoi diagram (b). rp-Voronoi diagram

Fig. 1. The Voronoi vertices in a grid cell on the left contract to two rp-vertices,
depicted as gray convex polygons on the right. The ordering of the edges entering the
grid cell is maintained in both diagrams.

cycle. We call the rp-region all the points enclosed in this cycle, and the rp-cell
the union of the rp-region with its boundary.
Observation 7. The number of rp-vertices and rp-edges in the rp-Voronoi dia-
gram of S is less than or equal to the number of Voronoi vertices and Voronoi
edges in the Voronoi diagram of S respectively.
As we will show in Section 5.3, we can retrieve the implicit Voronoi diagram
once we have constructed the rp-Voronoi.

5 Constructing the Reduced-Precision Voronoi Diagram

Next we describe how to construct the rp-Voronoi, analyze the expected time
and space, describe how to use the rp-Voronoi for point location and show how
to convert the rp-Voronoi to the implicit Voronoi diagram.

We create the rp-Voronoi by a randomized incremental construction [2] that
parallels Sugihara and Iri’s method [14]: inserting a new site by “carving” out
the new cell from the previous diagram. Inserting a new site invalidates a sub-
graph of the Voronoi diagram, referred to as the conflict region. Sugihara and
Iri made the observation that the conflict region is a tree, and that by walking
the tree we identify the invalid sub-graph.

Specifically, their method constructs a Voronoi diagram of the first k−1 sites
and then inserts site sk. To start carving, the site si closest to sk is identified
and the bisector bik is traced until it enters the neighboring Voronoi cell, VR(sj).
The bisector bjk is then traced, and the process continues until it returns back
to VR(si). The tracing process requires the identification of the next bisector
intersection with a Voronoi edge. Sugihara and Iri do this by walking around the
cell of sj on the side of the new site sk until the next intersection is found (see
Figure 2a).

Our method does the same computation, but since we restrict ourselves to
degree three, it is too costly to compute and compare coordinates of bisector
interesections.
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sk

si

sj

(a). Voronoi diagram

sk

si

sj

(b). rp-Voronoi diagram

Fig. 2. The cell for the new dark gray site sk is “carved” out of the diagram of light
gray sites. The traced bisectors are emphasized with dotted lines, and the tree walk is
shown with gray arrows.

5.1 Incremental Construction

We initialize the rp-Voronoi diagram with two sites s1 and s2, and use their
bisector b12 to split the initial region of interest (the grid) by using the binary
search of bisectorIntersection.

Now, assume that we have already constructed the rp-Voronoi of k − 1 sites
Sk−1 and that we would like to insert site sk. The rp-Voronoi Update Procedure
takes as input the rp-Voronoi of Sk−1 and a new input site sk and returns the
rp-Voronoi of Sk−1 ∪ {sk}.
rp-Voronoi Update Procedure: We sketch the procedure in this paragraph and
then fill in the details in the remainder of the section. We first locate the site
si ∈ Sk−1 closest to sk, and proceed in two steps. We find the subgraph T that
consists of the set of rp-vertices and rp-edges that are no longer part of the
rp-Voronoi of Sk−1 ∪ {sk}. In the Voronoi diagram, the conflict region is a tree
and the sum of all conflict region sizes is linear in expectation. In the rp-Voronoi
we walk a subset T of the edges of this tree, and their vertices; once we have
identified this subset, we maintain our data structure in time proportional to its
size, which is therefore also linear (see Figure 2b).

To identify T we start by tracing out the si, sk bisector bik. We walk around
the boundary of the region of si until we find the grid cell G containing the
intersection of bik and the boundary of the rp-region of si. As in Sugihara and
Iri’s algorithm, we would like to pick the next bisector to trace, thus, allowing
us to continue our tree walk. To pick the next bisector for the rp-Voronoi with
limited precision there are two cases: one simple and the other interesting.

In the simple case, bik intersects the rp-edge e that stores sites si and sj . This
intersection is determined by applying the bisectorIntersection construction. We
switch to the sk, sj bisector and continue building T by walking around the
boundary of the region of sj on the side of sk.
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In the more interesting case, bik intersects an rp-vertex v. This intersection is
determined by first checking if bik passes through the grid cell containing v. If it
does, we compare the stabbingOrder of bik and the two rp-edges incident on v
of the rp-cell of sk to determine if bik intersects v.

Let GN , GE , GS and GW be the north, east, south and west grid walls, re-
spectively, of G, and without loss of generality, assume that we have entered G
from the south, with si below the bik bisector (see Figure 3).

VR(si)

VR(sk)

bik

GVR(sr)

VR(sp)

Fig. 3. We enter grid cell G from the south while walking the tree of the new site sk

along the si, sk bisector bik in dashed gray. The projections of sites sp and sr onto the
west grid line are directly above and below the projection of sk onto the west grid line
respectively.

Since Voronoi cells are convex, the new cell of sk can intersect each of the
grid cell boundary walls at most twice. This gives us four cases for how the
traced bisectors of the new Voronoi cell enter and exit a grid wall Gx of G (see
Figure 4). Traced bisectors of the new Voronoi cell,

(c1) do not exit through Gx.
(c2) exit through Gx and do not return to G.
(c3) exit through Gx and return through Gx.
(c4) exit through Gx and return through a different grid wall Gy.

First, we determine if the Voronoi cell VR(si) pokes out of the GW grid wall.
We find the two sites sp and sr whose Voronoi cells intersect GW and whose y
coordinate is directly above and below the y coordinate of sk, respectively. We
then determine if VR(si) pokes out by applying Corollary 2.

If VR(sk) does not poke out of GW (case 1) we repeat the process with
GN , followed by GE . If VR(sk) does poke out then there are some points in
the VR(sr) that are now in the VR(sk). Since no site has an empty cell there
must be a Voronoi edge e ∈ VR(sk) that is a subset of the sr, sk bisector. We
trace brk, following the tree, towards bik until we return back to G. Now, we
have identified the next bisector to trace for our tree walk. In addition, we just
walked backwards through a subtree of T , and we continue the procedure by
tracing brk in the opposite direction as before.
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VR(si)

VR(sk)

bik

G

bik

G

bik

G

bik

G

Case 1 Case 2 Case 3 Case 4

VR(si)

VR(sk)

VR(si)

VR(sk)

VR(si)

VR(sk)

Gx Gx Gx Gx

Gy

Fig. 4. Grid cell G with grid walls Gx and Gy as west and north walls respectively. A
bisector enters G through the south wall by tracing the si, sk bisector bik, in dashed
gray. In alternating dashed and dotted gray are the four cases per wall for bisector
tracing.

The other three cases are determined by continuing the walk. Case 3 corre-
sponds to the walk returning back to the grid cell through the same cell wall it
exited. Case 4 occurs when the walk returns back to the grid cell, but through
a different grid wall. This allows us to determine cases 3 and 4 that can cause
multiple rp-vertices to occur in one grid cell.

We continue this process until we have completed the cycle, identified T and
the new rp-vertices and rp-edges. We update the rp-Voronoi of Sk−1 to get the
rp-Voronoi of Sk−1 ∪ {sk}.

Note that if a Voronoi vertex v is outside our region of interest we do not
need to identify the grid cell containing v since it will not be used for proximity
queries. However, to continue with our tree walk we can apply Corollary 2 similar
to the case where a bisector intersects an rp-vertex.

5.2 Analysis

Point location is accomplished by the standard method of maintaining the con-
struction history [4] allowing for point location in expected O(log n) time. To
achieve a degree two algorithm we use grid cells in x-nodes and bisectorSide for
y-nodes, much like the structure in [1]. The incremental construction described
above relies on bisectorSide and bisectorIntersection operations, which are of
degree two and three respectively, as shown in Section 3.

As explained by Observation 7, the rp-Voronoi and Voronoi diagram have
the same combinatorial complexity. The update procedure creates at most as
many rp-vertices as Voronoi vertices. As shown by [2, 4] the number of Voronoi
vertices created is expected linear throughout the algorithm. Furthermore, the
tree walk touches only edges that are modified, and the number of modified
edges is constant in expectation [4].

However, we must pay two additional charges in each update. First there is
an extra O(log μ) charge for finding bisector segment intersections. Secondly, we
must pay an O(log n) to find the upper and lower neighbors when a bisector
intersects an rp-vertex. So we have shown the expected time to insert a new site
into the reduced-precision Voronoi diagram of size n is O(log n + log μ) where μ



Computing the Implicit Voronoi Diagram in Triple Precision 505

is the length of the longest Voronoi edge, and that this insertion can be done
with degree three predicates. We conclude:

Theorem 8. We can construct a reduced-precision Voronoi diagram of n sites
with a degree three algorithm in expected O(n(log n + log μ)) time where μ is the
length of the longest Voronoi edge.

5.3 Reduced-Precision Voronoi to Implicit Voronoi

Next we describe how to convert the reduced-precision Voronoi to the implicit
Voronoi of [1], described in Section 4. An rp-vertex corresponds to a tree T ,
of Voronoi vertices and Voronoi edges. Some of the Voronoi vertices of T may
be on grid lines and the implicit Voronoi would assign these vertices integer
coordinates. To create the implicit Voronoi we must separate these vertices from
an rp-vertex.

Theorem 9. We can convert the reduced-precision Voronoi diagram to the im-
plicit Voronoi diagram in O(n) time with degree three computations.

Proof omitted for extended abstract.

6 Conclusion and Open problems

To our knowledge, this is the first construction of a proximity query structure
in less than degree four and sub-quadratic time, that allows for logarithmic
query times. In addition, we believe that this is the first construction of the
implicit Voronoi diagram without fully computing the Voronoi diagram. Is there
a reasonable algorithm for creating a proximity query structure with only degree
two predicates? We believe that there is, but perhaps at the cost of an additional
logarithmic factor in space and time.

There is more to discover with respect to restricted predicates for computing
Voronoi diagrams. It is easy to generalize the ideas presented in this paper to
the power diagram, but further investigation is necessary to understand how
these methods effect the complexity of the power diagram, as well as other
generalized Voronoi diagrams with linear bisectors. The basis for the method of
bisector intersection relies on linearity. What if the diagram’s bisectors are more
complicated, such as hyperbolic arcs, as in the Voronoi diagram of disks?

One final observation is the algebraic complexity of standard predicates, such
as orientation and inSphere, increases with dimension. Distance based predicates,
on the other hand, maintain the same algebraic complexity regardless of the
dimension. Our last question is can we compute some form of a Voronoi diagram
with reduced precision in any dimension?
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