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1. INTRODUCTION

The correct implementation of geometric algorithms is surprisingly difficult. In part, this stems from the fact that

geometric algorithms are often designed for Real-RAM, a computational model that provides arbitrary precision arith-

metic operations at unit cost. Commodity hardware provides only finite precision and may result in arithmetic errors.

While the errors may seem small, if ignored, they may cause branching errors, which may cause an implementation

to reach an undefined state, produce erroneous output, or crash. Liotta, Preparata and Tamassia [29] proposed that

in addition to considering the resources of time and space, an algorithm designer could also consider the precision

necessary to guarantee a correct implementation, they called this design technique degree-driven algorithm design.

By considering the time, space, and precision for a problem we arrive at new solutions, gain further insight, and find

simpler representations.

I propose to investigate and implement degree-driven algorithms for Voronoi diagrams and organize the imple-

mentations into a kernel for a degree-driven algorithm library. In Section 2 I define terminology, we recall the cause

of numerical error and various approaches to its management in geometric algorithms, I describe the model of com-

putation used in this thesis, and we recall the main results using this model of computation. In Section 3 I outline

the thesis, each subsection corresponds to a chapter, which focuses on a problem. In each subsection, I present the

problem; provide a brief summary of the related work; and describe the chapter goal, what is complete, and what is

left. In Section 4 I provide the time line for the defense in Spring 2012.

2. BACKGROUND

Precision analysis provides us with tools for determining the maximal precision required by an algorithm, and helps

us classify the conditions under which an algorithm’s implementation will be “correct”, which we see in Section 2.1

has different meanings in different contexts and communities. In this section, I define some terminology, we recall the

cause of numerical error and various approaches to its management in geometric algorithms, I describe the model of

computation used in this thesis and we recall the main results using this model of computation.

Date: April 20, 2011.
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FIGURE 1. Two segments with an
intersection coordinate that does
not lend itself to a floating point
representation.

Let us illustrate some important definitions and concepts on the example:

IsSegInter: Given two, two-dimensional line-segments, ac and bd, de-

fined by their endpoints, determine if the segments intersect. Assume

that no three endpoints are collinear.

The input to a geometric algorithm is a set of single-precision numeric coor-

dinates and combinatorial relationships between the coordinates. In IsSegInter,

the numerical coordinates are the x and y values of the segment endpoints, and

the combinatorial relationships are the pairing of values into points and the par-

ing of points into segments.

A geometric construction produces a new geometric object from the coordi-

nate values of the input (Sometimes, the output precision of a construction is

higher than the input, in Section 2.2 I describe how one can analyze precision.)

Consider, for example, producing the intersection point q of lines←→ac and
←→
bd .

Intersect(a, c, b, d): We define a construction on the single-precision

coordinate values of the two-dimensional points a, c, b, and d to com-

pute the coordinates of the intersection point of non-parallel lines ←→ac and
←→
bd . The construction returns the

point q, whose coordinates are:

qx =

∣∣∣∣∣∣∣
axcy − cxay ax − cx

bxdy − dxby bx − dx

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ax − cx ay − cy

bx − dx by − dy

∣∣∣∣∣∣∣
, qy =

∣∣∣∣∣∣∣
axcy − cxay ay − cy

bxdy − dxby by − dy

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ax − cx ay − cy

bx − dx by − dy

∣∣∣∣∣∣∣
.(1)

In Algorithm 1, IsSegInterByConstruction, we solve IsSegInter by constructing the intersection point q

of the lines through our segments and testing properties of q.

Recall that a computer uses finite precision floating point numbers to approximate a subset of the reals. Most often,

floating point numbers are represented in base 2 with a biased exponent E. They are stored as a sign s, exponent

e, and mantissa m1. The sign is 1 bit, and the exponent and mantissa are some fixed number of bits (dependent on

representation and precision). In a normalized floating point value, the highest order bit of the mantissa is assumed

to be 1 and so it does not need to be explicitly represented. The value of a normalized floating point number is

(−1)s × 1.m× 2e−E .

1The base is sometimes called the radix, the mantissa is sometimes called the significand and the exponent is sometimes called the characteristic.
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Algorithm 1 IsSegInterByConstruction(a, c, b, d): Determine if ac and bd intersect; if so return INTERSECT,
if not return NOINTERSECT

Require: no three points are collinear
1: if←→ac ‖

←→
bd then

2: return NOINTERSECT
3: end if
4: Point q = Intersect(a, c, b, d) /* See Equation 1 */
5: Real t1 = (qx − ax)/(cx − ax)
6: Real t2 = (qx − bx)/(dx − bx)
7: if t1, t2 ∈ [0, 1] then
8: return INTERSECT
9: else

10: return NOINTERSECT
11: end if

This now familiar representation was not always so common. In an interview [41], Kahan recalls some of the

peculiarities of early implementations of floating point arithmetic. For example, two floating point values could test as

not-equal, yet there difference was zero. Kahan, along with Coonen and Stone proposed the IEEE Standard 754-1985,

which is the basis for the “float” and “double” types in may high level programming languages such as C, C++, C#,

and Java. In these languages, “float” is implemented with the IEEE-754 single precision floating point format called

binary32 with 1 bit for the sign, 8 bits for the exponent and 23 bits for the mantissa. In fact, binary32 specifies a

floating point number as (−1)s × (1 + Σ23
i=1bi2

−i)× 2e−127.

Thus, the computer rounds even a simple rational such as 8/3 to a number near 2.6. For a real value x, we notate its

floating point representation as fl(x). For a geometric object o, defined by coordinate values, fl(o) is the geometric

object induced from applying fl to the coordinate values of o. For example, the point fl(q) has coordinate values

(fl(1/3),fl(8/3)). For some calculations the effect of rounding to a floating point value is negligible, however,

without care, errors in geometric calculations may occur. For example, in Figure 2, fl(q) does not lie on either

segment.

Let us now consider a different solution to IsSegInter that avoids a possibly erroneous construction of an intersection

point. The algorithm is built from primitives called predicates, which are tests of the sign of multivariate polynomials

with variables from the input coordinates. Operations supply a geometric meaning to the positive, negative and zero

values returned by a predicate. Consider an example seen throughout the introduction:

Orientation(p, q, r): We define a predicate on the single precision-coordinate values of of two-dimensional

points p, q and r as,
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sign(qxry − qxpy − pxry − rxqy + rxpy + pxqy) = sign(

∣∣∣∣∣∣∣∣∣∣
1 px py

1 qx qy

1 rx ry

∣∣∣∣∣∣∣∣∣∣
).(2)

The positive, negative or zero result of the predicate is interpreted by the Orientation(p, q, r) operation

as whether the path from p to q to r forms a left turn, right turn or follows a line, respectively. For the segments

shown in Figure 2, Orientation(a, c, d) is a left hand turn, Orientation(a, c, b) is a right hand turn

and Orientation(a, c, q), with q not rounded, follows a line.

In Algorithm 2, IsSegInterByOrientation, we use Orientation to determine if the two segments in-

tersect by checking if the endpoints of bd are on opposite sides of ←→ac and the endpoints of ac are on opposite sides

of
←→
bd .

Algorithm 2 IsSegInterByOrientation(a, c, b, d): Determine if ac and bd intersect; if so return INTERSECT,
if not return NOINTERSECT

Require: no three points are collinear
1: if Orientation(a, c, b) 6= Orientation(a, c, d) and Orientation(b, d, a) 6= Orientation(b, d, c)

then
2: return INTERSECT
3: else
4: return NOINTERSECT
5: end if

The IsSegInterByOrientation algorithm avoids the construction of an intersection coordinate and arrives

at a simpler algorithm. In Section 2.2, we see how to analyze the arithmetic precision of both segment intersection algo-

rithms, and find that IsSegInterByOrientation uses less precision than IsSegInterByConstruction.

2.1. Definitions to Correctness. Theoreticians usually prove an algorithm’s correctness in the Real-RAM model of

computation [35]. In this model, arithmetic operations are exact and take unit time. The proof provides the algo-

rithm’s preconditions and an implementer uses the preconditions to check if an input is appropriate. However, if

too few arithmetic bits are available to correctly evaluate the algorithm’s predicates, operations and constructions, an

implementation may fail for some inputs that satisfy Real-RAM preconditions [20, 23].

A branch of computational geometry investigates approaches for avoiding the numerical errors that can be intro-

duced in implementations. One could naively rely on machine precision (or some ε-tolerances). Kettner et al. [27]

investigate the errors introduced with floating point arithmetic using simple operations, such as Orientation, and

generate simple examples where an incremental convex hull algorithm fails. Their numerical experiments show that

the errors of a floating point based orientation predicate have a complicated (and non-intuitive) structure. Kettner also
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points out that ε-tolerances will not fix the problems raised by their investigation, it only rounds non-zero values to

zero and enlarges the complicated error structure.

Sophisticated approaches add steps to ensure correct results. Yap [49] calls the study of algorithms with running

time dependent on the precision of the input or output, numerical computational geometry. Below I outline what I

believe to be the five main approaches to numerical computational geometry.

Approach 1: Exact Geometric Computation (EGC). We can think of geometric computing as part combinatorial,

for example traversing an embedded graph, and part numeric, for example determining if two segments intersect.

Yap [48] observed that the interplay between the numerical and the combinatorial causes geometric algorithms to

be difficult to implement. Thus, the exact geometric computation paradigm dictates that an algorithm’s control flow

should be independent of the machine on which the implementation is run; in particular, it should be the same as if the

algorithm was implemented with real arithmetic.

Some predicates can be reduced to computing the sign of a determinant. Kaltofen and Villard [25] survey methods

for computing the sign of the determinant of an integer matrix, and mention that computing the sign is at most as hard

as computing the value. Clarkson [16] uses orthogonalization and approximate arithmetic to compute the sign of a

d× d determinant with b-bit integer entries using (2b+ 1.5d) bits, and Avnaim et al. [1] describes how to compute the

sign of 2× 2 and 3× 3 determinants with b-bit integer entries with b and b+ 1 bits respectively.

Many geometric operations are determined by evaluating and comparing the signs of polynomials. The evalua-

tion may demand more bits than are provided by floating point arithmetic. Thus, libraries such as CORE [26] and

LEDA [9], which can represent and compare algebraic numbers, are a key ingredient for implementing EGC.

Approach 2: Arithmetic Filters. Usually, comparing low precision approximations to algebraic numbers is

enough to get a correct result. Arithmetic filter approaches [8, 18, 19, 21] avoid comparing algebraic number when

possible. They use floating point arithmetic to compute an interval that bounds the result of an expression, and com-

pare the intervals. If the intervals overlap, expressions are reevaluated at a higher precision to tighten the interval to

certify the answer.

For example, if we wanted to test the sign of the evaluation of a polynomial, it suffices to first use floating point

arithmetic to compute an interval that bounds the evaluation, and then check if the lower bound is positive (or the

upper bound is negative). However, if zero is in the interval, we reevaluate the polynomial with exact arithmetic to

find the correct sign.

Approach 3: Adaptive Predicates. As mentioned for Arithmetic Filters, it is not always necessary to evaluate

a predicate exactly to produce the correct result. Adaptive predicates, described in Priest’s Ph.D. thesis [36] and

implemented in Shewchuk’s InCircle and Orientation Predicates [42], as well as Bernstein and Fussell’s modeling

system [4], evaluate only up to enough precision to guarantee a correct result.
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Approach 4: Topological Consistency. For some applications an exact geometric construction is unnecessary and

only some properties of the construction are required. Topologically consistent algorithms [43, 44, 45, 46, 47] strive to

maintain the required properties; when multiple branch options are possible, the most likely branch is chosen. While

the resulting construction may not be exact, it is in some sense consistent. For example, an exact Voronoi diagram is

an embedding of a connect planar graph. A topologically consistent Voronoi diagram construction may only ensure

that the output graph is connected (but maybe non-planar). If we were to pass the output graph to a search algorithm

that assumes connectivity, the search will at least terminate.

Sometimes maintaining a limited set of properties is enough to achieve a goal. Sugihara and Iri [46] used a topolog-

ically consistent algorithm to build the first Voronoi diagram of over a million sites with single precision arithmetic.

Approach 5: Degree-Driven Algorithm Design. Most theoretical computer scientists analyze and optimize the

running time and space used by an algorithm. Degree-driven algorithm design, proposed by Liotta, Preparata and

Tamassia [29], adds the precision used by an algorithm into the mix. The design seeks to optimize (and balance) run-

ning time, space and precision simultaneously. This thesis explores degree-driven algorithm design for point location

and triangulation. Next, I present the model of computation proposed by Liotta, Preparata and Tamassia and survey

the results in degree-driven algorithm design.

2.2. Model of Computation. Liotta, Preparata, and Tamassia [29] proposed analyzing the precision of a geometric

algorithm in terms of the arithmetic degree of the polynomials used in its predicates. Suppose that the input can be

scaled to b-bit integers, then, a monomial of degree k can be evaluated in bk bits, and a polynomial of a monomials

can be summed in bk + log2 a bits. Therefore, the degree k can be thought of as the leading term, determining the

required precision. Just as we ignore constants in time and space analysis, we ignore carry bits from addition in this

analysis. In the second chapter of the thesis, I build a simple summation primitive that allows us to recover the bits

lost in the summation (should that be an issue). This summation primitive is simpler than the Kahan sum [24], which

we suggested earlier [34], and is based on the observation that evaluating the sign of a polynomial is at most as hard

as evaluating its value.

Following Liotta, Preparata, and Tamassia’s definitions, define: the degree of an operation as the maximal degree

of the predicates used in the operation; the degree of a construction as the degree of the polynomials used to represent

the output of the construction; the degree of a data structure as the highest degree of the operations and constructions

represented by the data structure; the degree of an algorithm as the maximum degree of its predicates, operations, and

constructions; and the degree of a problem as the minimal degree of all algorithms that solve the problem. We pause

for a moment to see an example of precision analysis carried out on the two algorithms, described earlier, for solving

IsSegInter. (The analysis below is brief, the second chapter of this thesis will present a detailed analysis).
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First, consider Algorithm 1, IsSegInterByConstruction. Testing if ←→ac is parallel to
←→
bd , in line 1, is de-

gree 2. The Intersect construction, in line 4, computes the Cartesian coordinates of q, which are rational polyno-

mials of degree 3 over degree 2. Solving for t1 and t2, in lines 5 and 6 respectively, computes rational polynomials of

degree 3 over degree 3. Testing if t1 and t2 are in [0, 1], in line 7, is degree 3. Thus, IsSegInterByConstruction

is degree 3.

Next, consider Algorithm 2, IsSegInterByOrientation. The predicate in Equation 2, is degree 2. The four

Orientation operations, in line 1, which evaluate only Equation 2, are degree 2. Thus, IsSegInterByOrientation

is degree 2.

This discussion shows the degree of the IsSegInter problem is at most degree 2. One could ask, can we do better

and solve IsSegInter degree 1? To provide an answer, the definition of the degree of a problem needs to be more clearly

spelled out. I defer lower bounds on degree until the second chapter of the thesis.

We pause for a moment, again, so that I may explain why we carry out our analysis under the assumption that our

input is scaled to an integer grid. As Chan and Pǎtraşcu [15] point out, the floating point plane is the union of integer

grids with different scalings around the origin. In this thesis, we are interested in translation independent problems.

Thus, the ability to have more precision for input near the origin is not particularly meaningful.

2.3. Previous Results in Degree-Driven Algorithm Design. The most complete study of degree-driven analysis was

carried out for segment intersection problems [5, 6, 11, 30]. Boissonnat and Preparata [5] describe three problems for

a set of n line segments, defined by their endpoints:

P1: report all pairs of intersecting segments;

P2: construct the arrangement of the segments;

P3: construct the trapezoid graph of the segments.

They also describe variants where the input segments are divided into two disjoint sets, and each segment is colored

with the set in which they belong. The colors are often red and blue, so the colored variants are often called red-blue

intersection problems.

For n segments we can have Θ(n2) intersections; as such, a trivial algorithm checks all pairs using the degree two

segment intersection test. However, more interesting algorithms consider the number of intersections k. Boissonnat

and Preparata show that a degree 3 variant of the degree 5 Bentley-Ottmann sweep line algorithm [3] solves P1 in

O((n + k) log n) time. They also show that P1 for red and blue segments with only bichromatic intersections can be

solved with degree 2.

Chan [11], and Boissonnat and Snoeyink [6], investigate degree-driven algorithm design by using a restricted set of

predicates and abstract the above/below test on curve segments (whose degree is dependent on the complexity of the
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carrier of the curve). Boissonnat and Snoeyink consider segment intersection problems on a set of pseudo-segments,

which are x-monotone segments such that any pair have at most one point in their intersection. They show that when

limited to the three tests: ordering of endpoints; checking if an endpoint, in the vertical slap defined by a segment, is

above or below the segment; and testing if two curves intersect; P1 is lower bounded by Ω(n
√
k). They also show

that for segments, Balaban’s [2] degree 3, O(n log n + k), algorithm can be modified to degree 2 with a slight loss

of efficiency, running in O(n log2 n + k log n) time (this seems to be the first example of a time-precision trade off).

Finally, they show that even with restricted predicates, the red and blue intersection problem (with pseudo-segments)

can be solved in O(n log n+ k) time.

As touched upon in almost all the literature on degree-driven algorithms for segment intersections, but most clearly

stated by Mantler and Snoeyink [30], P2 requires four-fold precision, and P3 requires five-fold precision. Mantler

and Snoeyink consider P2 for red and blue segments. They show that the arrangement (but not the coordinates of the

intersections) can be computed using a sweep line algorithm that runs in optimal O(n log n + k) using O(n) space

and degree 2.

Researchers also consider point location queries. By assumption, the coordinates of the input sites and query points

are b-bit integers. Let U = 2b, the set of representable points from which sites and queries are drawn is a U × U grid,

sometimes referred to as a universe of size U [15].

Liotta, Preparata and Tamassia [29] describe a degree 6 algorithm for rounding a trapezoidation of the Voronoi

diagram to a degree 1 data structure capable of reporting nearest neighbor queries in O(log n) time with degree 2.

Unfortunately, they have to construct the trapezoidation. Millman and Snoeyink [33] consider how to construct Liotta’s

structure with a degree 3 randomized algorithm in a size U universe in time O(n logUn). Using a different approach,

Millman and Snoeyink [34] describe a degree 2 construction of a degree 1 data structure that supports degree 2

logarithmic time point location queries. We further explore this construction in Section 3.2.

To compute the nearest neighbor for all query points in a universe of size U with degree 2, we could simply test

all query points against all sites to achieve an O(nU2) algorithm. Chan and co-authors [14] show how to compute

all nearest neighbor queries using degree 2 predicates with an expected time O(U2) algorithm, which we encounter

in Section 3.3

The Gabriel graph of a point set S is a embedded graph whose vertices are the points of S and whose edges ei

have the property that the circle centered at the midpoint of ei with diameter length of ei contains no other points of S.

Matula and Sokal [31] show how to construct the Gabriel graph from the Delaunay triangulation inO(n) time using the

observation that a Delaunay edge is in the Gabriel graph if and only if it intersects the Voronoi edge to which it is the

dual. Liotta [28] shows that Matula and Sokal’s algorithm is degree 6, but provides a degree 2 algorithm accomplishing

the same result. However, Liotta’s algorithm must first use degree 4 to compute the Delaunay triangulation.
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3. OUTLINE

In this section, I outline the thesis, each subsection corresponds to a chapter, which focuses on a problem. In each

subsection, I present the problem; provide a brief summary of the related work; and describe the chapter goal, what is

complete, and what is left.

3.1. Chapter 2: Primitives. In this chapter, I present predicates, operations, constructions, and results of the ongoing

degree lower bounds and irreducibility discussions. This chapter is the furthest along, as such, I only present the goal.

Goal: I propose to provide descriptions, precision analysis and book quality code for all predicates, operations and

constructions, discussed in the thesis and useful for degree-driven algorithm design. This chapter will conclude with

results on lower bounds and irreducibility.

3.2. Chapter 3: Post-office Queries for Some Points in the Plane. A common geometric problem is to preprocess a

set of n point sites in the plane to efficiently answer queries of the form: what is the closest site to a point p. A popular

solution, shown in Figure 3.2, is to compute a trapezoidation of the Voronoi diagram in O(n log n) time, the interior

of each trapezoid is closest to only one site, therefore, a O(log n) time point location on the trapezoidation provides

the desired result.

a

b

c
d e

f

FIGURE 2. A trapezoidation of the
Voronoi diagram of 6 sites. The interior
each trapezoid contains points closest to
only one site.

However, this solution uses at least degree 4 to compute the Voronoi

diagram, degree 5 to to build the trapezoidation and degree 6 for queries

(degree 3 queries are possible if we are a little clever). For cases where the

query points are of the same precision as the input sites, Liotta, Preparata,

and Tamassia [29] describe a degree 6 algorithm that produces a degree 1

data structure capable of answering queries with degree 2 predicates. We

can think of the sites and query points of the same precision as lying on a

U × U grid.

Millman and Snoeyink [33] showed how to build Liotta’s structure with

a degree 3 randomized algorithm in time O(n logUn). Recently, Millman

and Snoeyink [34] provided a degree 2 constriction for a degree 1 data

structure that answers post office queries in degree 2 and O(log n) time.

The analysis for the running time of our construction is incomplete. We

used the generalized random incremental analysis framework [17, Chapter 9], but one of the conditions for the frame-

work is more difficult to prove than originally expected. (The degree of a configuration must be constant, however it

is not clear this is true in our case).
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Goal: I propose to complete the analysis of [34], describe the algorithm, provide an implementation, book quality

code and experimental results. Should I be unable to complete the analysis, I will explore whether a divide-and-

conquer algorithm can give us a sub-quadratic time degree 2 construction. Should that be unsuccessful, I would like to

implement our RIC degree 2 algorithm and observe the experimental running time, implement the degree 3 solution,

and provide book quality code and experimental results for both.

3.3. Chapter 4: Nearest Neighbor Transform. The nearest neighbor transform of a U × U black and white image

assigns to every pixel the coordinates of the closest black pixel under the Euclidean metric. It is equivalent to com-

puting the Voronoi diagram on a grid; optimal algorithms to compute the transform perform this computation starting

from the list of coordinates of the black pixels [7, 13, 32], and take O(U2) time.

Many researchers explored GPU and parallel and serial CPU algorithms for computing the nearest neighbor trans-

form; however, none of the previous work can guarantee a correct output without exact arithmetic. Breu et al. [7]

proposed the first linear time algorithm, but their algorithm requires five-fold precision. Both Chan and Maurer et al.’s

dimensional reduction algorithms [12, 13, 32] require three-fold precision. Hoff and others [22] presented the earliest

work on using the GPU to compute the nearest neighbor transform. Their algorithm is dependent on the number of

black pixels in addition to the size of the image; the precision is determined by the resolution of the Z-buffer. Re-

cently, approximate GPU algorithms were proposed [37, 38, 40], but they cannot guarantee an exact result. Cao et

al. [10] showed how to adapt Maurer’s algorithm to the GPU, focusing on efficient data structures that take advantage

of the memory and the multi-threaded processing power of the GPU. Cao’s implementation did not address the preci-

sion of the predicates. In a private correspondence, we determined that their published implementation uses degree 5

predicates, and can be reduced to degree 3.

Chan and co-authors [14] showed how to adapt Chan’s dimensionality reduction algorithm [12, 13] to two-fold

precision, focusing on the algebraic degree of the geometric predicates. Our degree 2 algorithm takes expected O(U2)

time and O(U2) space. We also propose a representation that can be stored and implemented using O(n logU) space.

Goal: Our solution, written up in [14], only contains a sketch of the construction, without analysis. In this chapter

I propose to provide the details of the construction, analysis, book quality code, and experimental results for our

implementation.

3.4. Chapter 5: Triangulations. A triangulation of a finite set of points S in the plane, is a planar subdivision whose

vertices are the points of S and no edges can be added without causing the subdivision to become non-planar. Since

every polygon in the plane can be triangulated, the bounded faces of a triangulation are triangles. The boundary of a

triangulation is the convex hull of S, which can be computed with degree 2.
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(A) Voronoi diagram (B) rp-Voronoi diagram

FIGURE 3. The Voronoi vertices in a grid cell on the left contract to two rp-vertices, depicted as gray
convex polygons on the right. Voronoi edges that intersect a grid line are present in the rp-Voronoi
diagram.

A triangle τ of a triangulation of S has an empty circle if the interior of the circumcircle of τ contains no points

of S. Every triangle of the Delaunay triangulation has this empty circle property. It is well know that the Delaunay

triangulation is the dual of the Voronoi diagram. Less well known is that the InCircle predicate, and computing

the Delaunay triangulation, requires degree 4.

In this chapter, I will explore computing triangulations with less than degree 4 predicates. Below are a few directions

that I would like to explore, then I state my goals for this chapter.

Millman and Snoeyink [33] proposed the degree 3 rp-Voronoi diagram for a point location. The diagram captures

any Voronoi edge that intersects a grid line, and thus its dual captures corresponding Delaunay edges. However, as seen

in Figure 3, our construction collapses trees of Voronoi vertices that occur in the same grid cell to a single rp-vertex.

The result creates (possible non-convex) polygonal holes in the induced subdivision. If all of holes can be triangulated

in O(n log n) time this would produce a triangulation with degree 3.

The Gabriel graph is a subgraph of the Delaunay triangulation that contains only the edges e such that a circle,

centered at the midpoint of e with diameter length of e contains no other points of S. Matula and Sokal [31] showed

how to construct the Gabriel graph from the Delaunay triangulation inO(n) time using the observation that a Delaunay

edge is in the Gabriel graph if and only if it intersects the Voronoi edge to which it is the dual. Liotta [28] showed

that Matula and Sokal’s algorithm is degree 6, but provided a degree 2 algorithm that accomplishes the same result.

However, Liotta’s algorithm must first use degree 4 to compute the Delaunay triangulation. We can test if an edge of

the Gabriel graph has the empty circle property with degree 2; thus, by brute force we can compute the Gabriel graph

with degree 2 with O(n3) time. But, can we compute the Gabriel graph directly in sub-cubic time with degree 2?
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In chapter 4 I will describe how to compute, using degree 2, the nearest neighbor transform of a point set on a

grid in expected O(U2) time. Rong et al. [39] investigates how to adapt the nearest neighbor transform to a Delaunay

triangulation, but they use degree 4 to test the empty circle property. Can we do a similar adaptation without using

InCircle and produce a valid triangulation? Can we get rid of the O(U2) preprocessing by applying some of the

techniques described by Millman and Snoeyink [34]?

Goal: I propose to describe a triangulation that can be computed efficiently with two or three-fold precision, provide

book quality code and experiments for an implementation and some of the properties that the proposed triangulation

possesses. Some properties may include angle bounds of the triangulation, or how far it is in the flip graph from the

Delaunay? Should these properties be too difficult to discover, experimental results may be supplied.

4. TIME LINE FOR SPRING 2012 GRADUATION

• June 1, 2011 Draft chapters of:

– Chapter 2: Geometric Primitives

– Chapter 4: Nearest Neighbor Transform

• Sept 1, 2011 Implementation of:

– degree 2 and/or degree 3 Voronoi construction.

– a degree 2 or degree 3 triangulation.

In Sept 2010, I contacted Professor Jeffay about teaching Fall 2011 or Spring 2012. He said Fall 2011 will “likely

work” and Spring 2012 is “absolutely doable”. As many students report that little research is accomplished in their

teaching semester, below, I split my time line dependent on the semester that I teach.

Teach in the Fall:

• Jan 1, 2012 Drafts of:

– Chapter 3: Post-office Queries for Some Points in the Plane.

– (working draft of) Chapter 5: Triangulations.

• March 1, 2012 Draft of:

– Chapter 5: Triangulation.

• ~April 1, 2012 Thesis Defense.

Teach in the Spring:

• Oct 15, 2012 Draft of:

– Chapter 3: Post-office Queries for Some Points in the Plane.

• Dec 15, 2012 Draft of:

– Chapter 5: Triangulation.
12



• ~March 1, 2012 Thesis Defense
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