Degree-Driven Design of Geometric Algorithms for Point Location, Proximity, and Volume Calculation PhD Defense

David L. Millman
University of North Carolina at Chapel Hill

October 10, 2012

Geometric Algorithms

Geometric Algorithms

Geometric Algorithms

Point location data structure

Overview

- Derive \& upper bdd precision of many common preds
- Show the polys in the common preds are irreducible
- Compute point location data structure with double \& triple precision
- Compute nearest neighbor transform with double precision
- Compute volumes of CSG models with five-fold precision
- Compute Gabriel graph with double precision

Overview

- Derive \& upper bdd precision of many common preds
- Show the polys in the common preds are irreducible
- Compute point location data structure with double \& triple precision
- Compute nearest neighbor transform with double precision
- Compute volumes of CSG models with five-fold precision
- Compute Gabriel graph with double precision

A Motivational Problem

> DoSegsIntersect: Given two segments, defined by their 2D endpoints, with no three endpoints collinear, do the segments intersect?

A Motivational Problem

> DoSegsIntersect: Given two segments, defined by their 2D endpoints, with no three endpoints collinear, do the segments intersect?

> How much arithmetic precision is needed to determine this?

Input Representation

Input: Geometric configuration specified by single precision numerical coordinates and relationships between coordinates.

E.g. DoSegsintersect problem: Numerical coordinates:

$$
(0,4,0,3,1,0,1,2)
$$

Relationships between coordinates:

$$
\begin{aligned}
& a=\left(a_{x}, a_{y}\right)=(0,4) \\
& b=\left(b_{x}, b_{y}\right)=(0,3) \\
& c=\left(c_{x}, c_{y}\right)=(1,0) \\
& d=\left(d_{x}, d_{y}\right)=(1,2) \\
& \overline{a c}=(a, c) \\
& \overline{b d}=(b, d)
\end{aligned}
$$

Solving DoSegsIntersect with Construction

InterByConstruction (a, c, b, d) :
Determine if $\overline{a c}$ and $\overline{b d}$ intersect;
if so return InTERSECT, if not return Nolntersect

Require: no three points are collinear
1: if $\overleftrightarrow{a c} \| \overleftrightarrow{b d}$ then
2: return Nolntersect
$\left\{\begin{array}{l}a=(0,4) \\ b=(0,3) \\ q=\left(\frac{1}{3}, \frac{8}{3}\right) \\ d \stackrel{\bullet}{=}(1,2)\end{array}\right.$
11: end if

Solving DoSegsIntersect with Construction

InterByConstruction (a, c, b, d) :
Determine if $\overline{a c}$ and $\overline{b d}$ intersect;
if so return InTERSECT, if not return Nolntersect

Require: no three points are collinear
1: if $\overleftrightarrow{a c} \| \overleftrightarrow{b d}$ then
2: return Nolntersect
$\left\{\begin{array}{l}a=(0,4) \\ b=(0,3) \\ q=\left(\frac{1}{3}, \frac{8}{3}\right) \\ d \stackrel{\bullet}{=}(1,2)\end{array}\right.$
11: end if

Geometry \rightarrow Algebra $\rightarrow \mathbb{R}$ arithmetic \rightarrow IEEE-754

Line 4: Point $q=\overleftrightarrow{a c} \cap \overleftrightarrow{b d}$

Geometry \rightarrow Algebra $\rightarrow \mathbb{R}$ arithmetic \rightarrow IEEE-754

The Intersect (a, c, b, d) construction:

Geometry \rightarrow Algebra $\rightarrow \mathbb{R}$ arithmetic \rightarrow IEEE-754

The Intersect (a, c, b, d) construction:

Input: single precision coordinates of a, c, b and d defining non-parallel lines $\overleftrightarrow{a c}$ and $\overleftrightarrow{b d}$
Construct: the intersection q of $\overleftrightarrow{a c}$ and $\overleftrightarrow{b d}$.

$$
\begin{aligned}
& q_{x}=0 . \overline{3} \\
& q_{y}=2 . \overline{6}
\end{aligned}
$$

Geometry \rightarrow Algebra $\rightarrow \mathbb{R}$ arithmetic \rightarrow IEEE-754

The Intersect (a, c, b, d) construction:
Input: single precision coordinates of a, c, b and d defining

non-parallel lines $\overleftrightarrow{a c}$ and $\overleftrightarrow{b d}$.
Construct: the intersection q of $\overleftrightarrow{a c}$ and $\overleftrightarrow{b d}$.
In Python with numpy.float32 type ${ }^{\text {a }}$:

$$
\begin{aligned}
& \mathrm{fl}\left(q_{x}\right) \approx 0.33333334 \\
& \mathrm{fl}\left(q_{y}\right) \approx 2.66666675 \\
& \mathrm{fl}(q) \notin \mathrm{fl}(\overline{a c}) \& \mathrm{fl}(q) \notin \overline{\mathrm{ac}} \\
& \mathrm{fl}(q) \notin \mathrm{fl} \overline{\mathrm{bd}}) \& \mathrm{fl}(q) \notin \overline{\mathrm{bd}}
\end{aligned}
$$

${ }^{a}$ Values are the shortest decimal fraction that rounds correctly back to the true binary value.

Thesis Statement

Real-RAM has 3 unbounded quantities.
The number of:
(1) steps an algorithm may take
(2) memory cells an algorithm may use
(3) bits for representing numbers in cells

Thesis Statement

Real-RAM has 3 unbounded quantities.
The number of:
(1) steps an algorithm may take
(2) memory cells an algorithm may use
(3) bits for representing numbers in cells

Thesis Statement

Real-RAM has 3 unbounded quantities.
The number of:
(1) steps an algorithm may take
(2) memory cells an algorithm may use
(3) bits for representing numbers in cells

Thesis Statement:

Degree-driven design supports the development of new and robust geometric algorithms.

Analyzing Precision [LPT99]

Precision used by the isRightTurn:

> Input: single precision coordinates of a, b and q.
> Return: whether the straight line path from a to b to q forms a right turn.

Analyzing Precision [LPT99]

Precision used by the isRightTurn:

$$
\begin{aligned}
& \mathbb{U}=\{1, \ldots, U\}^{2} \\
& a, b, q \in \mathbb{U} \\
& a=\left(a_{x}, a_{y}\right) \\
& b=\left(b_{x}, b_{y}\right) \\
& q=\left(q_{x}, q_{y}\right)
\end{aligned}
$$

Analyzing Precision [LPT99]

Precision used by the isRightTurn:

$$
\begin{aligned}
& \mathbb{U}=\{1, \ldots, U\}^{2} \\
& a, b, q \in \mathbb{U} \\
& a=\left(a_{x}, a_{y}\right) \\
& b=\left(b_{x}, b_{y}\right) \\
& q=\left(q_{x}, q_{y}\right)
\end{aligned}
$$

A predicate is a test of the sign of a multivariate polynomial with variables from the input coordinates.

Orientation $(a, b, q)=\operatorname{sign}\left(b_{x} a_{y}-b_{x} a_{y}-a_{x} q_{y}-q_{x} b_{y}+q_{x} a_{y}+a_{x} b_{y}\right)$

Orientation <0 Right turn
Orientation > 0 Left turn
Orientation $=0$ Collinear

Analyzing Precision [LPT99]

Precision used by the isRightTurn:

$$
\begin{aligned}
& \mathbb{U}=\{1, \ldots, U\}^{2} \\
& a, b, q \in \mathbb{U} \\
& a=\left(a_{x}, a_{y}\right) \\
& b=\left(b_{x}, b_{y}\right) \\
& q=\left(q_{x}, q_{y}\right)
\end{aligned}
$$

A predicate is a test of the sign of a multivariate polynomial with variables from the input coordinates.

$$
\begin{aligned}
\text { Orientation }(a, b, q) & =\operatorname{sign}\left(b_{x} q_{y}-b_{x} a_{y}-a_{x} q_{y}-q_{x} b_{y}+q_{x} a_{y}+a_{x} b_{y}\right) \\
& =\operatorname{sign}((2))
\end{aligned}
$$

Orientation <0 Right turn
Orientation >0 Left turn
Orientation $=0$ Collinear

Analyzing Precision [LPT99]

Precision used by the isRightTurn:

$$
\begin{aligned}
& \mathbb{U}=\{1, \ldots, U\}^{2} \\
& a, b, q \in \mathbb{U} \\
& a=\left(a_{x}, a_{y}\right) \\
& b=\left(b_{x}, b_{y}\right) \\
& q=\left(q_{x}, q_{y}\right)
\end{aligned}
$$

Orientation is degree 2

A predicate is a test of the sign of a multivariate polynomial with variables from the input coordinates.

```
Orientation \((a, b, q)=\operatorname{sign}\left(b_{x} q_{y}-b_{x} a_{y}-a_{x} q_{y}-q_{x} b_{y}+q_{x} a_{y}+a_{x} b_{y}\right)\)
    \(=\operatorname{sign}(2))\)
```

Orientation <0 Right turn
Orientation >0 Left turn
Orientation $=0$ Collinear

Analyzing Precision [LPT99]

How the degree relates to precision:
Consider multivariate poly $Q\left(x_{1}, \ldots, x_{n}\right)$ of deg k and s monomials (for simplicity, assume that coefficient of each monomial is 1).

Analyzing Precision [LPT99]

How the degree relates to precision:
Consider multivariate poly $Q\left(x_{1}, \ldots, x_{n}\right)$ of deg k and s monomials (for simplicity, assume that coefficient of each monomial is 1).
Let each x_{i} be an ℓ-bit integer $\Longrightarrow x_{i} \in\left\{-2^{\ell}, \ldots, 2^{\ell}\right\}$.

Analyzing Precision [LPT99]

How the degree relates to precision:
Consider multivariate poly $Q\left(x_{1}, \ldots, x_{n}\right)$ of deg k and s monomials (for simplicity, assume that coefficient of each monomial is 1).
Let each x_{i} be an ℓ-bit integer $\Longrightarrow x_{i} \in\left\{-2^{\ell}, \ldots, 2^{\ell}\right\}$.
Each monomial is in $\left\{-2^{\ell k}, \ldots, 2^{\ell k}\right\}$.

Analyzing Precision [LPT99]

How the degree relates to precision:
Consider multivariate poly $Q\left(x_{1}, \ldots, x_{n}\right)$ of deg k and s monomials (for simplicity, assume that coefficient of each monomial is 1).
Let each x_{i} be an ℓ-bit integer $\Longrightarrow x_{i} \in\left\{-2^{\ell}, \ldots, 2^{\ell}\right\}$.
Each monomial is in $\left\{-2^{\ell k}, \ldots, 2^{\ell k}\right\}$.
The value of $Q\left(x_{1}, \ldots, x_{n}\right)$ is in $\left\{-s 2^{\ell k}, \ldots, s 2^{\ell k}\right\}$.

Analyzing Precision [LPT99]

How the degree relates to precision:
Consider multivariate poly $Q\left(x_{1}, \ldots, x_{n}\right)$ of deg k and s monomials (for simplicity, assume that coefficient of each monomial is 1).
Let each x_{i} be an ℓ-bit integer $\Longrightarrow x_{i} \in\left\{-2^{\ell}, \ldots, 2^{\ell}\right\}$.
Each monomial is in $\left\{-2^{\ell k}, \ldots, 2^{\ell k}\right\}$.
The value of $Q\left(x_{1}, \ldots, x_{n}\right)$ is in $\left\{-s 2^{\ell k}, \ldots, s 2^{\ell k}\right\}$.
$\Longrightarrow \ell k+\log (s)+O(1)$ bits are enough to evaluate Q.

Analyzing Precision [LPT99]

How the degree relates to precision:
Consider multivariate poly $Q\left(x_{1}, \ldots, x_{n}\right)$ of deg k and s monomials (for simplicity, assume that coefficient of each monomial is 1).
Let each x_{i} be an ℓ-bit integer $\Longrightarrow x_{i} \in\left\{-2^{\ell}, \ldots, 2^{\ell}\right\}$.
Each monomial is in $\left\{-2^{\ell k}, \ldots, 2^{\ell k}\right\}$.
The value of $Q\left(x_{1}, \ldots, x_{n}\right)$ is in $\left\{-s 2^{\ell k}, \ldots, s 2^{\ell k}\right\}$.
$\Longrightarrow \ell k+\log (s)+O(1)$ bits are enough to evaluate Q.
Note that ℓk bits is enough to evaluate the sign.

Analyzing Precision [LPT99]

Precision used by the isRightTurn:

$$
\begin{aligned}
& \mathbb{U}=\{1, \ldots, U\}^{2} \\
& a, b, q \in \mathbb{U} \\
& a=\left(a_{x}, a_{y}\right) \\
& b=\left(b_{x}, b_{y}\right) \\
& q=\left(q_{x}, a_{y}\right) \\
& \text { Orientation is degree } 2
\end{aligned}
$$

Analyzing Precision [LPT99]

Precision used by the isRightTurn:

$$
\begin{aligned}
& \mathbb{U}=\{1, \ldots, U\}^{2} \\
& a, b, q \in \mathbb{U} \\
& a=\left(a_{x}, a_{y}\right) \\
& b=\left(b_{x}, b_{y}\right) \\
& q=\left(q_{x}, q_{y}\right)
\end{aligned}
$$

Orientation is degree 2
isRightTurn(a, b, q):
1: if Orientation $(a, b, q)<0$ then
2: return True
3: else
4: return FALSE
5: end if

Analyzing Precision [LPT99]

Precision used by the isRightTurn:

$$
\begin{aligned}
& \mathbb{U}=\{1, \ldots, U\}^{2} \\
& a, b, q \in \mathbb{U} \\
& a=\left(a_{x}, a_{y}\right) \\
& b=\left(b_{x}, b_{y}\right) \\
& q=\left(q_{x}, q_{y}\right)
\end{aligned}
$$

Orientation is degree 2 isRightTurn is degree 2
isRightTurn(a, b, q):
1: if Orientation $(a, b, q)<0$ then
2: return True
3: else
4: return FALSE
5: end if

Solving DoSegsIntersect without Construction

InterByOrientation (a, c, b, d) :
Determine if $\overline{a c}$ and $\overline{b d}$ intersect;
if so return INTERSECT, if not return Nolntersect

Require: no three points are collinear
1: if Orientation $(a, c, b) \neq$ Orientation (a, c, d) and Orientation $(b, d, a) \neq$ Orientation (b, d, c) then
2: return INTERSECT
3: else
4: return Nolntersect
5: end if

Solving DoSegsIntersect without Construction

Determine if $\overline{a c}$ and $b d$ intersect;

if so return INTERSECT, if not return NOINTERSECT

Require: no three points are collinear

\square
\square

In summary:
Orientation predicate is degree 2
InterByOrientation algorithm is degree 2
InterByConstruction algorithm is degree 3

More Predicates

Some other well known predicates:

SideOfBisector $\left(B_{a b}, q\right)$ degree 2

$$
\begin{aligned}
& \text { OrderOnLine }\left(B_{a b}, B_{c d}, \ell\right) \\
& \text { degree } 3
\end{aligned}
$$

Precision/Robust Techniques

Techniques for implementing geometric algorithms using finite precision computer arithmetic:

- Rely on machine precision (+ + [[NAT90,LTH86,KMP*08]
- Topological Consistency [S99, S01, SI90, SI92, SII*00]
- Exact Geometric Computation [Y97]
- Software based arithmetic [CORE, LEDA, GMP, MPFR]
- Predicate eval schemes [ABO*97, FW93, BBP01, S97]
- Degree-driven algorithm design [LPT99] and [BP00,BS00,C00,MS01,MS09,MS10,MV11,MLC*12]

Precision/Robust Techniques

Techniques for implementing geometric algorithms using finite precision computer arithmetic:

- Rely on machine precision (+ + [[NAT90,LTH86,KMP*08]
- Topological Consistency [S99, S01, SI90, SI92, SII*00]
- Exact Geometric Computation [Y97]
- Software based arithmetic [CORE, LEDA, GMP, MPFR]
- Predicate eval schemes [ABO*97, FW93, BBP01, S97]
- Degree-driven algorithm design [LPT99] and [BP00,BS00,C00,MS01,MS09,MS10,MV11,MLC*12]

Overview

- Derive \& upper bdd precision of many common preds
- Show the polys in the common preds are irreducible
- Compute point location data structure with double \& triple precision
- Compute nearest neighbor transform with double precision
- Compute volumes of CSG models with five-fold precision
- Compute Gabriel graph with double precision

Point Location Data Structure

Given
A grid of size U and sites $S=\left\{s_{1}, \ldots, s_{n}\right\} \subset \mathbb{U}$

Compute

A data structure capable of returning the closest $s_{i} \in S$ to a query point $q \in \mathbb{U}$ in $O(\log n)$ time

Precision of Voronoi Diagram/Trapezoid Graph

Voronoi diagram
- region

Precision of Voronoi Diagram/Trapezoid Graph

Voronoi diagram

- region
- edge

Precision of Voronoi Diagram/Trapezoid Graph

Voronoi diagram

- region
- edge
- vertex

Precision of Voronoi Diagram/Trapezoid Graph

Voronoi diagram

- region
- edge
- vertex

Trapezoid graph for proximity queries

Precision of Voronoi Diagram/Trapezoid Graph

Voronoi diagram

- region
- edge
- vertex

Trapezoid graph for proximity queries

- x-node() - degree 3

Precision of Voronoi Diagram/Trapezoid Graph

Voronoi diagram

- region
- edge
- vertex

Trapezoid graph for proximity queries

- x-node() - degree 3
- y-node() - degree 6

Precision of Voronoi Diagram/Trapezoid Graph

Voronoi diagram

- region
- edge
- vertex

Trapezoid graph for proximity queries

- x-node() - degree 3
- y-node() - degree 6

Precision of Voronoi Diagram/Trapezoid Graph

Voronoi diagram

- region
- edge
- vertex

Trapezoid graph for proximity queries [LPT99]

- x-node() - degree 1
- y-node() - degree 2

The Implicit Voronoi diagram is a degree 2 trapezoid graph.

Precision of Constructing the Voronoi Diagram

Three well-known Voronoi diagram constructions.

Sweepline[F87]
 - degree 6

Divide and Conquer[GS86]

- degree 4

Tracing[SI92]

- degree 4

Precision of Constructing the Voronoi Diagram

Three well-known Voronoi diagram constructions.

How do we build
a degree 2 trapezoid graph for proximity queries when we can't even construct a Voronoi vertex?

Implicit Voronoi Diagram [LPT99]

Implicit Voronoi diagram is disconnected.

Reduced Precision Voronoi [MS09]

Given n sites in \mathbb{U}
RP-Voronoi randomized incremental construction

- Time: $O(n \log (U n))$ expected
- Space: $O(n)$ expected
- Precision: degree 3

LPT's Implicit Voronoi constructed from RP-Voronoi

- Time: $O(n)$
- Space: $O(n)$
- Precision: degree 3

Reduced Precision Voronoi [MS09]

Voronoi Polygon Set

- Voronoi polygon is the convex hull of the grid points in a Voronoi cell.

Voronoi Polygon Set

- Voronoi polygon is the convex hull of the grid points in a Voronoi cell.
- Gaps

Voronoi Polygon Set

- Voronoi polygon is the convex hull of the grid points in a Voronoi cell.
- Gaps
- Voronoi polygon set is the collection of the n Voronoi polygons.

Voronoi Polygon Set

- Voronoi polygon is the convex hull of the grid points in a Voronoi cell.
- Gaps
- Voronoi polygon set is the collection of the n Voronoi polygons.
- Total size of the Voronoi polygon set is $\Theta(n \log U)$.

Proxy Segments

- Proxy segment represent Voronoi polygons

Proxy Segments

- Proxy segment represent Voronoi polygons

Proxy Segments

- Proxy segment represent Voronoi polygons
- Proxy trapezoidation trapezoidation of the proxies

Proxy Segments

- Proxy segment represent Voronoi polygons
- Proxy trapezoidation trapezoidation of the proxies
- Voronoi trapezoidation split the trapezoids of the proxy trapezoidation with bisectors

Proxy Segments

- Proxy segment represent Voronoi polygons
- Proxy trapezoidation trapezoidation of the proxies
- Voronoi trapezoidation split the trapezoids of the proxy trapezoidation with bisectors

Proxy trapezoidation
is a degree 2 trapezoid graph supporting $O(\log n)$ time and degree 2 queries.

Point Location[MS09,MS10]

Given n sites in \mathbb{U}
RP-Voronoi randomized incremental construction

- Time: $O(n \log (U n))$ expected
- Space: $O(n)$ expected
- Precision: degree 3

LPT's Implicit Voronoi constructed from RP-Voronoi

- Time: $O(n)$
- Space: $O(n)$
- Precision: degree 3

Queries on Proxy Trapezoidation

- Time: $O(\log n)$
- Precision: degree 2

Overview

- Derive \& upper bdd precision of many common preds
- Show the polys in the common preds are irreducible
- Compute point location data structure with double \& triple precision
- Compute nearest neighbor transform with double precision
- Compute volumes of CSG models with five-fold precision
- Compute Gabriel graph with double precision

Nearest Neighbor Transform

Given
 A grid of size U and
 Sites $S=\left\{s_{1}, \ldots, s_{n}\right\} \subset \mathbb{U}$
 Label
 Each grid point of \mathbb{U} with the closest site of S

Nearest Neighbor Transform

Given
A grid of size U and
Sites $S=\left\{s_{1}, \ldots, s_{n}\right\} \subset \mathbb{U}$

Label

Each grid point of \mathbb{U} with the closest site of S

Algorithm	Precision	Time
Brute Force	degree 2	$O\left(n U^{2}\right)$
Nearest Neighbor Trans. [B90]	degree 5	$O\left(U^{2}\right)$
Discrete Voronoi diagram [C06, MQR03]	degree 3	$O\left(U^{2}\right)$
GPU Hardware [H99]	-	$\Theta\left(n U^{2}\right)$

Problem Transformations: Part 1

Problem (NNTrans-min)

For each pixel $q \in U^{2}$, find the site with lowest index $s_{i} \in S$ minimizing $\left\|q-s_{i}\right\|$.

Problem Transformations: Part 1

Problem (NNTrans-min)

For each pixel $q \in U^{2}$, find the site with lowest index $s_{i} \in S$ minimizing $\left\|q-s_{i}\right\|$.

$$
\begin{gathered}
\left\|q-s_{i}\right\|^{2}<\left\|q-s_{j}\right\|^{2} \\
q \cdot q-2 q \cdot s_{i}+s_{i} \cdot s_{i}<q \cdot q-2 q \cdot s_{j}+s_{j} \cdot s_{j} \\
2 x_{i} x_{q}+2 y_{i} y_{q}-x_{i}^{2}-y_{i}^{2}>2 x_{j} x_{q}+2 y_{j} y_{q}-x_{j}^{2}-y_{j}^{2}
\end{gathered}
$$

Problem Transformations: Part 1

Problem (NNTrans-min)

For each pixel $q \in U^{2}$, find the site with lowest index $s_{i} \in S$ minimizing $\left\|q-s_{i}\right\|$.

$$
\begin{gathered}
\left\|q-s_{i}\right\|^{2}<\left\|q-s_{j}\right\|^{2} \\
q \cdot q-2 q \cdot s_{i}+s_{i} \cdot s_{i}<q \cdot q-2 q \cdot s_{j}+s_{j} \cdot s_{j} \\
2 x_{i} x_{q}+2 y_{i} y_{q}-x_{i}^{2}-y_{i}^{2}>2 x_{j} x_{q}+2 y_{j} y_{q}-x_{j}^{2}-y_{j}^{2} .
\end{gathered}
$$

Problem (NNTrans-max)

For each pixel q, find the site with lowest index $s_{i} \in S$ maximizing $2 x_{i} x_{q}+2 y_{i} y_{q}-x_{i}^{2}-y_{i}^{2}$.

Problem Transformations: Part 2

Problem (NNTrans-max)

For each pixel q, find the site with lowest index $s_{i} \in S$ maximizing $2 x_{i} x_{q}+2 y_{i} y_{q}-x_{i}^{2}-y_{i}^{2}$.

Problem Transformations: Part 2

Problem (NNTrans-max)

For each pixel q, find the site with lowest index $s_{i} \in S$ maximizing $2 x_{i} x_{q}+2 y_{i} y_{q}-x_{i}^{2}-y_{i}^{2}$.

For a fixed, $y_{q}=Y$

$$
\begin{aligned}
2 x_{i} x_{q}+2 y_{i} y_{q}-x_{i}^{2}-y_{i}^{2} & >2 x_{j} x_{q}+2 y_{j} y_{q}-x_{j}^{2}-y_{j}^{2} \\
2 x_{i} x_{q}+\left(2 y_{i} Y-x_{i}^{2}-y_{i}^{2}\right) & >2 x_{j} x_{q}+\left(2 y_{j} Y-x_{j}^{2}-y_{j}^{2}\right) \\
\text { (1) } x_{q}+(2) & >\text { (1) } x_{q}+\text { (2) }
\end{aligned}
$$

Problem Transformations: Part 2

Problem (NNTrans-max)

For each pixel q, find the site with lowest index $s_{i} \in S$ maximizing $2 x_{i} x_{q}+2 y_{i} y_{q}-x_{i}^{2}-y_{i}^{2}$.

For a fixed, $y_{q}=Y$

$$
\begin{aligned}
2 x_{i} x_{q}+2 y_{i} y_{q}-x_{i}^{2}-y_{i}^{2} & >2 x_{j} x_{q}+2 y_{j} y_{q}-x_{j}^{2}-y_{j}^{2} \\
2 x_{i} x_{q}+\left(2 y_{i} Y-x_{i}^{2}-y_{i}^{2}\right) & >2 x_{j} x_{q}+\left(2 y_{j} Y-x_{j}^{2}-y_{j}^{2}\right) \\
\text { (1) } x_{q}+(2) & >\text { (1) } x_{q}+\text { (2) }
\end{aligned}
$$

Problem (DUE-Y)

For a fixed $1 \leq Y \leq U$, and for each $1 \leq X \leq U$, find the smallest index of a line of L_{Y} with maximum y coordinate at $x=X$.

Problem Transformations: Part 2

Problem (DUE-Y)

For a fixed $1 \leq Y \leq U$, and for each $1 \leq X \leq U$, find the smallest index of a line of L_{Y} with maximum y coordinate at $x=X$.

Sketch of NNTransform Algorithm

Three Algorithms for Computing the DUE [MLCS12]

Given m lines of the form $y=(1) x+$ (2)
Discrete Upper Envelope construction

- DUE-DEG3: $O(m+U)$ time and degree 3
- DUE-ULgU: $O(m+U \log U)$ time and degree 2
- DUE-U: $O(m+U)$ expected time and degree 2

Three Algorithms for Computing the DUE [MLCS12]

Given m lines of the form $y=(1) x+$ (2)

Discrete Upper Envelope construction

- DUE-DEG3: $O(m+U)$ time and degree 3
- DUE-ULgU: $O(m+U \log U)$ time and degree 2
- DUE-U: $O(m+U)$ expected time and degree 2

For each algorithm:
(1) Reduce to at most $O(U)$ lines.
(2) Compute DUE of lines.

Three Algs for Computing the NNTransform [MLCS12]

Given n sites from \mathbb{U}
Nearest Neighbor Transform construction

- Deg3: $O\left(U^{2}\right)$ time and degree 3
- UsqLgu: $O\left(U^{2} \log U\right)$ time and degree 2
- Usq: $O\left(U^{2}\right)$ expected time and degree 2

Three Algs for Computing the NNTransform [MLCS12]

Given n sites from \mathbb{U}
Nearest Neighbor Transform construction

- Deg3: $O\left(U^{2}\right)$ time and degree 3
- UsqLgu: $O\left(U^{2} \log U\right)$ time and degree 2
- Usq: $O\left(U^{2}\right)$ expected time and degree 2

Experiments: Part 1

Experiments: Part 2

> Boundaries extracted from 120 images of the MPEG 7 CE Shape-1 Part B data set.

Experiments：Part 2

	回口	－	\square																		
					0																
						－	－														
							\square	－													
									可												
										\square											
											可										
												－	－								
													\square								
															\square	－					
															\square	碞	－	ㅁ	－	\square	可
																					可
																					－

Experiments: Part 2

Time per image

NNTransform [MLCS12]

Given m lines of the form $y=(1) x+(2)$
Discrete Upper Envelope construction

- DUE-DEG3: $O(m+U)$ time and degree 3
- DUE-ULgU: $O(m+U \log U)$ time and degree 2
- DUE-U: $O(m+U)$ expected time and degree 2

Given n sites from \mathbb{U}
Nearest Neighbor Transform construction

- Deg3: $O\left(U^{2}\right)$ time and degree 3
- UsqLgu: $O\left(U^{2} \log U\right)$ time and degree 2
- Usq: $O\left(U^{2}\right)$ expected time and degree 2

Overview

- Derive \& upper bdd precision of many common preds
- Show the polys in the common preds are irreducible
- Compute point location data structure with double \& triple precision
- Compute nearest neighbor transform with double precision
- Compute volumes of CSG models with five-fold precision
- Compute Gabriel graph with double precision

Motivation and Background

Image from Idaho National Lab, Flickr

Image from: T.M. Sutton, et al., The MC21 Monte Carlo Transport Code, Proceedings of M\&C + SNA 2007

Primitives: Signed Quadratic Surfaces

Model Representation
 Basic Component: Boolean Formula

A basic component defined by intersections and unions of signed surfaces.

$$
\left(-s_{\text {blue }} \cap s_{\text {grey }} \cap s_{\text {green }} \cap-S_{\text {orange }}\right) \cup-S_{\text {yellow }}
$$

Model Representation
 Component Hierarchy: Boolean Formulae

Basic comp: $B(N), \cup$ and \cap of signed surfaces

Model Representation
 Component Hierarchy: Boolean Formulae

Basic comp: $B(N), \cup$ and \cap of signed surfaces Restricted comp: $R(N)=B(N) \cap R\left(N_{p}\right)$

Model Representation
 Component Hierarchy: Boolean Formulae

Basic comp: $B(N), \cup$ and \cap of signed surfaces Restricted comp: $R(N)=B(N) \cap R\left(N_{p}\right)$ Hierarchical comp: $H(N)=R(N) \backslash\left(\bigcup_{i} R\left(N_{c i}\right)\right)$

Model Representation
 Component Hierarchy: Boolean Formulae

Basic comp: $B(N), \cup$ and \cap of signed surfaces Restricted comp: $R(N)=B(N) \cap R\left(N_{p}\right)$ Hierarchical comp: $H(N)=R(N) \backslash\left(\bigcup_{i} R\left(N_{c i}\right)\right)$

Volume Calculation

Given

A component hierarchy and an accuracy

Compute

The volume of each hierarchical component to accuracy

Operations on Surfaces

Operations on signed surfaces s with a query point q or an axis-aligned box b :

- Inside($s, q)$ - return if q is inside s.
- Classify (s, b) - return if the points in b are inside, outside or both with respect to s.

- Integrate (s, b) - return the volume of $s \cap b$.

Inside Test

Inside (s, q) - return if query point q is inside signed surface s.

$$
\begin{aligned}
& q=\left(q_{1}, q_{2}, q_{3}\right) \\
& s=\left(s_{1}, s_{2}, \ldots, s_{10}\right) \\
& p_{i}, s_{i} \in\{-U, \ldots, U\}
\end{aligned}
$$

$$
\begin{aligned}
\text { PointInside }(s, q) & =s_{1} q_{1}^{2}+s_{2} q_{2}^{2}+s_{3} q_{3}^{2} \\
& +s_{4} q_{1} q_{2}+s_{5} q_{1} q_{3}+s_{6} q_{2} q_{3} \\
& +s_{7} q_{1}+s_{8} q_{2}+s_{9} q_{3}+s_{10} \\
& =\operatorname{sign}(3)
\end{aligned}
$$

Classify Test

Classify (s, q) - return if the points in axis-aligned box b are inside, outside or both with respect to signed surface s.

$$
\begin{aligned}
& b=\left(b_{1}, b_{2}, \ldots, b_{6}\right) \\
& s=\left(s_{1}, s_{2}, \ldots, s_{10}\right) \\
& b_{i}, s_{i} \in\{-U, \ldots, U\}
\end{aligned}
$$

Classify (s, b), check if:
(1) any Vertices of b are on different sides of s. - Degree 3
(2) any Edge of b intersects s. - Degree 4
(3) any Face b intersects s. - Degree 5

Classify Test

Classify (s, q) - return if the points in axis-aligned box b are inside, outside or both with respect to signed surface s.

$$
\begin{aligned}
& b=\left(b_{1}, b_{2}, \ldots, b_{6}\right) \\
& s=\left(s_{1}, s_{2}, \ldots, s_{10}\right) \\
& b_{i}, s_{i} \in\{-U, \ldots, U\}
\end{aligned}
$$

Classify (s, b), check if:
(1) any Vertices of b are on different sides of s. - Degree 3
(2) any Edge of b intersects s. - Degree 4
(3) any Face b intersects s. - Degree 5

Face Test

Test if a face f intersects s.
Let c be the intersection curve of the plane P containing f and s.

$$
c(x, y)=\left(\begin{array}{lll}
x & y & 1
\end{array}\right)\left(\begin{array}{lll}
(1) & (1) & (2) \\
(1) & 1 & (2) \\
(2) & (2) & (3)
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

Face Test

Test if a face f intersects s.
Let c be the intersection curve of the plane P containing f and s.

$$
c(x, y)=\left(\begin{array}{lll}
x & y & 1
\end{array}\right)\left(\begin{array}{lll}
(1) & (1) & (2) \\
(1) & 1 & (2) \\
(2) & (2) & (3)
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

To determine if s intersects f, test properties of the matrix.
Test if c is an ellipse: $\quad \operatorname{sign}\left(\left|\begin{array}{ll}1 & (1) \\ (1) & 1\end{array}\right|\right)=\operatorname{sign}($ (2) $)$
Test if c is real or img: $\quad \operatorname{sign}\left(\left.\begin{array}{lll}1 & (1) & (2) \\ 1 & (1) & (2) \\ (2) & (2) & (3)\end{array} \right\rvert\,\right)=\operatorname{sign}(5)$

Algorithm Animation

Algorithm Animation

2Plane	1Plane	2Plane	Box
	MunCyl	MC	Cyl
		MC	Cyl
	Box	Box	

Experiments: Models

> L-Pipe12,
> L-Pipe100, and L-Pipe10k

Experiments: Accuracy and Time for L-Pipe100

Algorithm	Requested Accuracy	Error	Time (sec)
MC	$1 \mathrm{e}-4$	$<1 \mathrm{e}-4$	790.28
New	$1 \mathrm{e}-4$	$<1 \mathrm{e}-6$	1.41

Experiments: Accuracy and Time for L-Pipe100

Algorithm	Requested Accuracy	Error	Time (sec)
MC	$1 \mathrm{e}-4$	$<1 \mathrm{e}-4$	790.28
New	$1 \mathrm{e}-4$	$<1 \mathrm{e}-6$	1.41

Experiments: Larger Model for L-Pipe10k

L-Pipe10k is similar to L-Pipe100 but defined by over 40k surfaces.

Algorithm	Requested Accuracy	Error	Time
MC	$1 \mathrm{e}-4$	-	$>12.00 \mathrm{~h}^{*}$
New	$1 \mathrm{e}-4$	$<1 \mathrm{e}-6$	9.43 s

*Halted after 12 hours. Extrapolating from other experiments, 76 hours.

Overview

- Derive \& upper bdd precision of many common preds
- Show the polys in the common preds are irreducible
- Compute point location data structure with double \& triple precision
- Compute nearest neighbor transform with double precision
- Compute volumes of CSG models with five-fold precision
- Compute Gabriel graph with double precision

Acknowledgements

Adviser: Jack Snoeyink
Committee: David Griesheimer, Ming Lin, Dinesh Manocha, and Chee Yap
Collaborators and research group
UNC CS tech and admin support
Funding: DOE, Bettis, NSF, and Google

Acknowledgements

Adviser: Jack Snoeyink
Committee: David Griesheimer, Ming Lin, Dinesh Manocha, and Chee Yap
Collaborators and research group
UNC CS tech and admin support
Funding: DOE, Bettis, NSF, and Google
My fiancée: Brittany Fasy

Acknowledgements

Adviser: Jack Snoeyink
Committee: David Griesheimer, Ming Lin, Dinesh Manocha, and Chee Yap
Collaborators and research group
UNC CS tech and admin support
Funding: DOE, Bettis, NSF, and Google
My fiancée: Brittany Fasy
My friends and family

Acknowledgements

Adviser: Jack Snoeyink
Committee: David Griesheimer, Ming Lin, Dinesh Manocha, and Chee Yap
Collaborators and research group
UNC CS tech and admin support
Funding: DOE, Bettis, NSF, and Google
My fiancée: Brittany Fasy
My friends and family
Everyone here today!!

THANK YOU!!!

Contributions

- Derive \& upper bdd precision of many common preds
- Show the polys in the common preds are irreducible
- Compute point location data structure with double \& triple precision
- Compute nearest neighbor transform with double precision
- Compute volumes of CSG models with five-fold precision
- Compute Gabriel graph with double precision

Contact

David L. Millman dave@cs.unc.edu
http://cs.unc.edu/~dave

