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A Motivational Problem

IsSegInter: Given two segments,
defined by their 2D endpoints,
with no three endpoints collinear,
do the segments intersect?

How much precision is needed to
determine this?

Thesis Statement: Degree-driven analysis supports the
development of new, robust geometric algorithms, as I have
demonstrated for computing Post-office query search
structures, Nearest Neighbor Transforms, and Triangulations.
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Input Representation

Input: Geometric configuration specified by numerical coords.

c = (1, 0)

d = (1, 2)

b = (0, 3)

q = ( 13 ,
8
3 )

a = (0, 4)

E.g. IsSegInter problem:
Numerical Coords: (0,4,0,3,1,0,1,2)
Geometric interpretations:

a = (ax ,ay ) = (0,4),
b = (bx ,by ) = (0,3),
c = (cx , cy ) = (1,0),
d = (dx ,dy ) = (1,2),
ac = (a, c), and
bd = (b,d).
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Illustration of an Algorithm that solves IsSegInter

IsSegInterByConstruction(a, c,b,d): Determine if ac
and bd intersect; if so return INTERSECT, if not return
NOINTERSECT

Require: no three points are collinear
1: if←→ac ‖ ←→bd then
2: return NOINTERSECT

3: end if
4: Point q =

←→ac ∩←→bd
5: Real t1 = (qx − ax )/(cx − ax )
6: Real t2 = (qx − bx )/(dx − bx )
7: if t1, t2 ∈ [0,1] then
8: return INTERSECT

9: else
10: return NOINTERSECT

11: end if
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Geometry→ Algebra→ R arithmetic→ IEEE-754

Line 4: Point q =
←→ac ∩←→bd

c = (1, 0)

d = (1, 2)

b = (0, 3)

q = ( 13 ,
8
3 )

a = (0, 4)
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Geometry→ Algebra→ R arithmetic→ IEEE-754

The Intersect(a, c,b,d) construction:

c = (1, 0)

d = (1, 2)

b = (0, 3)

q = ( 13 ,
8
3 )

a = (0, 4)

Input: single-precision coordinates
of a, c,b and d defining
non-parallel lines←→ac and

←→
bd .

Construct: the intersection q of←→ac
and
←→
bd .

qx =

∣∣∣∣axcy − cxay ax − cx
bxdy − dxby bx − dx

∣∣∣∣∣∣∣∣ax − cx ay − cy
bx − dx by − dy

∣∣∣∣ ,qy =

∣∣∣∣axcy − cxay ay − cy
bxdy − dxby by − dy

∣∣∣∣∣∣∣∣ax − cx ay − cy
bx − dx by − dy

∣∣∣∣ .
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Geometry→ Algebra→ R arithmetic→ IEEE-754

The Intersect(a, c,b,d) construction:

c = (1, 0)

d = (1, 2)

b = (0, 3)

q = ( 13 ,
8
3 )

a = (0, 4) Input: single-precision coordinates
of a, c,b and d defining
non-parallel lines←→ac and

←→
bd .

Construct: the intersection q of←→ac
and
←→
bd .

qx = .3
qy = 2.6.
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Geometry→ Algebra→ R arithmetic→ IEEE-754

The Intersect(a, c,b,d) construction:

c = (1, 0)

d = (1, 2)

b = (0, 3)

q = ( 13 ,
8
3 )

a = (0, 4)

Input: single-precision coordinates
of a, c,b and d defining
non-parallel lines←→ac and

←→
bd .

Construct: the intersection q of←→ac
and
←→
bd .

In Python with numpy.float32 type:

fl(qx ) ≈ 0.33333334
fl(qy ) ≈ 2.6666667
fl(q) 6∈ fl(ac)

fl(q) 6∈ fl(bd)
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Predicates and Operations; Analyzing Precision [LPT99]

Precision used by the Orientation operation:

q

o

v

Input: single-precision
coordinates of o, v and q.
Return: whether the straight line
path from o to v to q forms a right
turn, left turn or follows a straight
line.

A predicate is a test of the sign of a multivariate polynomial with
variables from the input coordinates.

P(o, v , q) = sign(
∣∣∣∣vx − ox vy − oy

qx − ox qy − oy

∣∣∣∣)
= sign(vx qy − vx oy − ox qy + ox oy − vy qx + vy ox + qy qx − qy ox)

= sign( 2©)
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How the degree of a predicate relates to precision.

Consider multivariate polynomial Q(x) of degree k and a monomials.
The coordinates of x are b-bit integers.
Each monomial is in {−2bk , . . . ,2bk} (ignoring mult by a constant).
The value of Q(x) is in {−a2bk , . . . ,a2bk}.
=⇒ Values of Q(x) are represented with kb + log(a) + O(1) bits.

Note that kb bits is enough to evaluate the sign.
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q

o

v

U = {1, . . . ,U}2
o, v ,q ∈ U
o = (ox ,oy )
v = (vx , vy )
q = (qx ,qy )

P(o, v ,q) is degree 2

Orientation is degree 2
Operation:
Orientation(o, v , q):
1: Sign eval = P(o, v , q)
2: if eval > 0 then
3: return LEFT
4: else if eval < 0 then
5: return RIGHT
6: else
7: return STRAIGHT
8: end if
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Illustration of an Alg. that solves IsSegInter w/o construction

IsSegInterByOrientation(a, c,b,d): Determine if ac and
bd intersect; if so return INTERSECT, if not return
NOINTERSECT

Require: no three points are collinear
1: if Orientation(a, c,b) 6= Orientation(a, c,d) and
Orientation(b,d ,a) 6= Orientation(b,d , c) then

2: return INTERSECT

3: else
4: return NOINTERSECT

5: end if
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c = (1, 0)

d = (1, 2)

b = (0, 3)

q = ( 13 ,
8
3 )

a = (0, 4)

In summary:
P predicate is degree 2
Orientation Operation is degree 2
Intersect construction is degree 3/2
IsSegInterByOrientation algorithm is degree 2
IsSegInterByConstruction algorithm is degree 3



Other precision approaches

Approaches for implementing geometric algorithms with finite
precision computer arithmetic:

Rely on machine precision (+ε) [NAT90,LTH86,KMP*08]
Exact Geometric Computation [Y97,C92,ABO*97,BEP*97]
Arithmetic Filters [FW93,FW96,BBP01,DP98,DP99]
Adaptive Predicates [P92,S97,BF09]
Topological Consistency [S99,S01,SI90,SI92,SII*00]
Degree-driven algorithm design

[LPT99,BP00,BS00,C00,MS01,MS09,CMS09,MS10]
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Ch. 2: Primitives

Goal: Descriptions, precision analysis and book-quality code
for all predicates, operations and constructions, discussed in
the thesis. This chapter conclude with results on lower bounds
on degree and irreducibility.

Simple Examples:

σ1∗σ∗
2

σ3∗
Orientation

degree 2
q InCircle

degree 4

s1

s2

s3 OrderOnLine
degree 3

q
SideOfBisector

degree 2
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Ch. 3: Post-office Queries for Some Pts. in the Plane

a

b

c
d e

f

Goal: Compute a PO Query
search structure with degree 2.
I propose to provide:

degree 2 algorithm
analysis and implementation
book-quality code
experimental results
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Post-office Query structure

a

b

c
d e

f

Given
A grid of size U and
sites S = {s1, . . . , sn} ⊂ U

Compute
A data structure capable of
returning the closet si ∈ S to a
query point q ∈ U in O(log n) time
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Precision of Voronoi Diagram/Trapeziod Graph

a

b

c
d e

f

Voronoi diagram
region
edge
vertex – rational degree 3/2

Trapezoid graph for proximity
queries

[LPT99]

x-node() – degree 3
y -node() – degree 6

This is a degree 2 trapezoid graph.
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Precision of Constructing the Voronoi Diagram

Three well-known Voronoi diagram constructions.

Sweepline[F87]
– degree 6

General Subdivisions and Voronoi Diagrams l 105 

Fig. 15. The Voronoi diagram (solid) and the Delaunay diagram 
(dashed). 

these facts see Lee’s thesis [13]. The following obvious lemma will be important 
in the sequel. 

LEMMA 7.1. Let L and R be two sets of points. Any edge of the Delaunay 
diagram of L U R whose endpoints are both in L is in the Delaunay diagram of L. 

In other words, the addition of new points does not introduce new edges 
between the old points. 

7.1 Delaunay Triangulations 

A triangulation of n 1 2 sites is a straight-line subdivision of the extended plane 
whose vertices are the given sites and whose faces are all triangular except for 
one, which is the complement of the convex hull of the sites. It is easily shown 
that any triangulation of n sites, of which k lie on the convex hull, has 2(n - 1) 
- k triangles and 3(n - 1) - k edges. 

If no four of the sites happen to be cocircular, then their Delaunay diagram is 
a triangulation; in any case, it can be made into one by introducing zero or more 
additional edges. The subdivisions obtained in this way are called Delaunay 
triangulations of the given sites. They are characterized by either of the following 
properties. 

LEMMA 7.2. A triangulation of n 2 2 sites is Delaunay if and only if every edge 
has a point-free circle passing through its endpoints. 

LEMMA 7.3. A triangulation of n 2 2 sites is Delaunay if and only if the 
circumcircle of every interior face (triangle) is point -free. 

We will say that an edge or triangle is Delaunay when there is a point-free 
circle passing through its vertices. We speak of that circle as being witness to the 

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985. 

Divide and Conquer[GS86]
– degree 4

111. DESIGN OF A ROBUST ALGORITHM 

Fig. 2. 
in the incremental construction of the Voronoi diagram. 

Topological inconsistency arising from numerical errors 

p i ;  in (b) the bisector is represented by a broken line. The 
bisector crosses the boundary of R ( p i )  at two points. Let 
one of them be q. At q the bisector enters the neighboring 
region R ( p j ) .  Next, we draw the bisector of p and p j  to 
find the point of intersection (other than q )  of the bisector 
with the boundary of R ( p j ) .  In this way, we construct a 
sequence of the bisectors between p and the neighboring 
generators until we return to the boundary of the starting 
region R ( p i ) .  Removing the points and edges enclosed by 
the closed sequence of part of the bisectors, we finally 
obtain the Voronoi region of the new generator p .  

A sophisticated data structure with a quarternary tree 
and with buckets enables us to find the starting generator 
pi in constant expected time, and to keep the average 
number of edges on the boundary of the new Voronoi region 
constant [ 151. Hence, the incremental method carries out 
the addition of one generator in constant expected time, 
so that it constructs the Voronoi diagram for n generators 
in O(n) expected time. This expected time complexity is 
theoretically ensured for randomly distributed generators, 
and empirically shown for a wide class of distributions [ 151. 

The incremental method is simple in principle, and it 
is usually said that this method is also robust against 
numerical errors; indeed, a computer program based on 
the incremental method has been used for a number of 
applications [8], [ l l ] ,  [15]. 

However, the incremental-type algorithm as well as other 
algorithms is unstable when degeneracy takes place. An ex- 
ample of a situation in which the conventional incremental- 
type algorithm fails is shown in Fig. 2, where the perpen- 
dicular bisectors between the new generator and the nearest 
old generator pass near a Voronoi point, and the boundary 
of the Voronoi region of the new generator does not form 
a closed cycle because of numerical error. 

Hence, the avoidance of inconsistency arising from nu- 
merical errors is an important problem for practical imple- 
mentation of the algorithm. 

A. Placing the Highest Priority on Topological Consistency 
A Voronoi diagram can be regarded as a planar graph 

embedded in a plane. Let Gi be the embedded graph 
associated with the Voronoi diagram for i generators p l ,  p2,  
. . . , p,. From a topological point of view, the addition of a 
new generator pl to the Voronoi diagram for 1 - 1 generators 
P I ,  p2, . . ' , p l - l  can be considered the task for changing 
G1-1 to GI. This task is done by the next procedure. 

Procedure A 
Al.  
A2. 

A3. 

A4. 

Select a subset, say T ,  of the vertex set of G1-1. 
For every edge connecting a vertex in T with a 
vertex not in T ,  generate a new vertex on it and 
thus divide the edge into two edges. 
Generate new edges connecting the vertices gener- 
ated in A2 in such a way that the new edges form a 
cycle that encloses the vertices in T and them only. 
Remove the vertices in T and the edges incident 
to them (and regard the interior of the cycle as 
the Voronoi region of p l ) ,  and let the resulting 
embedded graph be G1. 

An example of the behavior of this procedure is illus- 
trated in Fig. 3(a). Suppose that the solid lines represent a 
portion of the embedded graph Gl-1 and that the four solid 
circles represent the vertices in T chosen in step Al .  Then, 
the six vertices represented by hollow circles are generated 
in step A2, the cycle represented by the broken lines is 
generated in step A3, and the substructure enclosed by this 
cycle is removed in step A4. 

Note that Procedure A is described in purely combi- 
natorial terms, so that this procedure is not affected by 
numerical errors. However, there is an ambiguity in the 
choice of T in step Al .  Next, we consider what conditions 
should be satisfied by T in order for Procedure A to be the 
correct procedure for constructing the Voronoi diagram. 

Let us consider a triangle that is large enough to include 
all the generators and regard the three vertices of this 
triangle as the additional generators. We renumber the gen- 
erators in such a way that p l ,  p2,  and p3  are the additional 
generators and p4,  p 5 ,  . . . , p ,  the original generators (now, 
n is the number of the original generators plus 3), and try 
to construct the Voronoi diagram for P = {PI, p2,  . . . , p,}. 

The Voronoi diagram for the three generators p l ,  p2,  and 
p3  consists of three infinite edges, as shown in Fig. 4(a). To 
represent the topological structure of this Voronoi diagram 
we consider the embedded graph G3 shown in Fig. 4(b), 
where we introduce a sufficiently large closed curve and 
consider that the infinite Voronoi edges have their terminal 
points on this closed curve, as represented by the small 
solid triangles. With this convention, any Voronoi region is 
explicitly represented by a cycle of the embedded graph. We 
start with G3, and add the other generators p4, p 5 ,  9 . . , p ,  
one by one. 

SUGIHARA AND IRI: CONSTRUCTION OF THE VORONOI DIAGRAM 1473 

Tracing[SI92]
– degree 4
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pi in constant expected time, and to keep the average 
number of edges on the boundary of the new Voronoi region 
constant [ 151. Hence, the incremental method carries out 
the addition of one generator in constant expected time, 
so that it constructs the Voronoi diagram for n generators 
in O(n) expected time. This expected time complexity is 
theoretically ensured for randomly distributed generators, 
and empirically shown for a wide class of distributions [ 151. 

The incremental method is simple in principle, and it 
is usually said that this method is also robust against 
numerical errors; indeed, a computer program based on 
the incremental method has been used for a number of 
applications [8], [ l l ] ,  [15]. 

However, the incremental-type algorithm as well as other 
algorithms is unstable when degeneracy takes place. An ex- 
ample of a situation in which the conventional incremental- 
type algorithm fails is shown in Fig. 2, where the perpen- 
dicular bisectors between the new generator and the nearest 
old generator pass near a Voronoi point, and the boundary 
of the Voronoi region of the new generator does not form 
a closed cycle because of numerical error. 

Hence, the avoidance of inconsistency arising from nu- 
merical errors is an important problem for practical imple- 
mentation of the algorithm. 

A. Placing the Highest Priority on Topological Consistency 
A Voronoi diagram can be regarded as a planar graph 

embedded in a plane. Let Gi be the embedded graph 
associated with the Voronoi diagram for i generators p l ,  p2,  
. . . , p,. From a topological point of view, the addition of a 
new generator pl to the Voronoi diagram for 1 - 1 generators 
P I ,  p2, . . ' , p l - l  can be considered the task for changing 
G1-1 to GI. This task is done by the next procedure. 

Procedure A 
Al.  
A2. 

A3. 

A4. 

Select a subset, say T ,  of the vertex set of G1-1. 
For every edge connecting a vertex in T with a 
vertex not in T ,  generate a new vertex on it and 
thus divide the edge into two edges. 
Generate new edges connecting the vertices gener- 
ated in A2 in such a way that the new edges form a 
cycle that encloses the vertices in T and them only. 
Remove the vertices in T and the edges incident 
to them (and regard the interior of the cycle as 
the Voronoi region of p l ) ,  and let the resulting 
embedded graph be G1. 

An example of the behavior of this procedure is illus- 
trated in Fig. 3(a). Suppose that the solid lines represent a 
portion of the embedded graph Gl-1 and that the four solid 
circles represent the vertices in T chosen in step Al .  Then, 
the six vertices represented by hollow circles are generated 
in step A2, the cycle represented by the broken lines is 
generated in step A3, and the substructure enclosed by this 
cycle is removed in step A4. 

Note that Procedure A is described in purely combi- 
natorial terms, so that this procedure is not affected by 
numerical errors. However, there is an ambiguity in the 
choice of T in step Al .  Next, we consider what conditions 
should be satisfied by T in order for Procedure A to be the 
correct procedure for constructing the Voronoi diagram. 

Let us consider a triangle that is large enough to include 
all the generators and regard the three vertices of this 
triangle as the additional generators. We renumber the gen- 
erators in such a way that p l ,  p2,  and p3  are the additional 
generators and p4,  p 5 ,  . . . , p ,  the original generators (now, 
n is the number of the original generators plus 3), and try 
to construct the Voronoi diagram for P = {PI, p2,  . . . , p,}. 

The Voronoi diagram for the three generators p l ,  p2,  and 
p3  consists of three infinite edges, as shown in Fig. 4(a). To 
represent the topological structure of this Voronoi diagram 
we consider the embedded graph G3 shown in Fig. 4(b), 
where we introduce a sufficiently large closed curve and 
consider that the infinite Voronoi edges have their terminal 
points on this closed curve, as represented by the small 
solid triangles. With this convention, any Voronoi region is 
explicitly represented by a cycle of the embedded graph. We 
start with G3, and add the other generators p4, p 5 ,  9 . . , p ,  
one by one. 
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Tracing[SI92]
– degree 4
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How do we build
a degree 2 trapezoid graph
for proximity queries
when we can’t even construct
a Voronoi vertex?



Implicit Voronoi diagram [LPT99]

a

b

c
d e

f

Implicit Voronoi diagram
is disconnected.
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RP-Voronoi [MS09]

Given n sites in U.

RP-Voronoi
Rand inc construction of the RP-Voronoi of n sites in U.

Time: O(n log(Un)) expected
Space: O(n) expected
Precision: degree 3

Implicit Voronoi
Construct LPT’s implicit Voronoi from RP-Voronoi.

Time: O(n)

Space: O(n) expected
Precision: degree 3
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Contract trees of Voronoi vertices
that occur in the same grid cell
into an rp-vertex.



Voronoi Polygon Set

a

b

c
d e

f

Voronoi polygon is
the convex hull
of the grid points
in a Voronoi cell.

Gaps
Total size Θ(n log U).
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Proxy Segments

a

b

c
d e

f

Proxy segment -
represent Voronoi polygons.

Proxy trapezoidation -
trapezoidation of the proxies.

Voronoi Trapezoidation -
split the trapezoids
of the Proxy trapezoidation
with bisectors.

Proxy Trapezoidation
is a degree 2 trapezoid graph.
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Proxy Trapezoidation [MS10]

Given n sites in U.

Proxy Trapezoidation construction

Time: O(n log n log U) expected*
Space: O(n) expected
Precision: degree 2

Queries on Proxy Trapezoidation

Time: O(log n)

Precision: degree 2

* Analysis of [MS10] is incomplete.
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Completing the analysis of [MS10]

Proxy trapezoidation is built with a randomized incremental
construction (RIC).

Analysis of [MS10] used the RIC construction framework from
the dutch book.

Define: For a grid point g, a set of sites R certifies that g is the
right end point for the proxy of s if all grid points right g are
closer to a site in R than s.

To complete Analysis of [MS10], I need to prove:

Lemma
The maximum number of sites of S required to certify that a
grid point is a right end point of a proxy segment is constant.
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Ch. 3: Post-office Queries for Some Pts. in the Plane

Goals: Complete the analysis of [MS10], describe the
algorithm, provide an implementation, book-quality code and
experimental results.

Should I be unable to complete the analysis, I will explore
whether a divide-and-conquer algorithm can yield a
sub-quadratic time degree 2 construction.

Should that be unsuccessful, I will implement our RIC degree 2
algorithm and observe the experimental running time,
implement the degree 3 solution, and provide book-quality code
and experimental results for both.
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Ch. 4: Nearest Neighbor Transform

a

b

c
d e

f

Goal: Compute Nearest Neighbor
Transform with degree 2.
I propose to provide:

degree 2 algorithm
analysis and implementation
book-quality code
experimental results
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Nearest Neighbor Transform

a

b

c
d e

f

Given
A grid of size U and
Sites S = {s1, . . . , sn} ⊂ U

Label
Each grid point of U with the
closest site of S

Alg Time
Brute Force deg 2 O(nU2)
Query the Voronoi diagram deg 4 O(U2 log n)
Nearest Neighbor Trans. [B90] deg 4 O(U2)
Dim. Reduction [C06,MQR03] deg 3 O(U2)
GPU Cone Rendering [H99] - Θ(nU2)
GPU Dim Reduction [CTM*10] deg 3 O(U2)
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Dimensional Reduction

a

b

c
d e

f

Example of processing one row

Two steps:
(1) Reduce to at most 2U sites.
(2) Compute the intersection

of the Voronoi diagram of the
reduced set of sites
with a line though the row.
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Predicates:

s1

s2

s3

v123
h

[MQR03, CTM*10]:
Above(v123,h) deg 3
OrderOnLine(b12,b13,h) deg 3

σ1∗σ∗
2

σ3∗

[C06]:
σi := y = 1©x + 2©
σ∗i = ( 1©, 2©)
Orient d1 d2(σ1, σ2, σ3) deg 3

σ1

`

σ2

[CMS09]:
σi = y = 1©x + 2©
OrderOnLine d1 d2(σ1, σ2, `) deg 2



Nearest Neighbor Transform [CMS09]

Compute 2D Nearest Neighbor Transform

Time: O(U2) expected time.
Space: O(n + U)

Precision: degree 2

Assuming O(n log n) < O(U2)

Compute Voronoi Polygon Set

Time: O(U2) expected time
Space: O(n log U) and O(n) for proxies only
Precision: degree 2

Query Post Office Structure

Time: O(log n) expected
Precision: degree 2
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Ch. 4: Nearest Neighbor Transform

Goal: Our solution, written up in [CMS09], only contains a
sketch of the construction, without analysis. In this chapter I
propose to provide the details of the construction, analysis,
book-quality code, and experimental results for our
implementation.
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Ch. 5: Triangulations

a

b

c
d e

f

Goals: Compute Triangulation with
degree 2 or degree 3.
I propose to provide:

deg 2 or deg 3 algorithm
analysis and implementation
book-quality code
experimental results
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Triangulations

a

b

c
d e

f

Given
A grid of size U and
sites S = {s1, . . . , sn} ⊂ U

Compute
A planar subdivision with
vertices in S and
edges such that no more edges
can be added without causing the
subdivision to become non-planar
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Delaunay Triangulation

a

b

c
d e

f

InCircle

q

Q() = sign(

∣∣∣∣∣∣
1© 1© 2©
1© 1© 2©
1© 1© 2©

∣∣∣∣∣∣)

degree 4

How can we compute
a triangulation with
less than degree 4,
and what are some properties
of this triangulation?
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Ideas for Computing a Triangulation

a

b

c
d e

f
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Use low degree algorithms
to compute a subset of known Delaunay edges.

Then, complete add edges to complete a triangulation.



Ideas for Computing a Triangulation

a

b

c
d e

f

Convex Hull w/ h hull vertices:
Melkman[M87], O(n log n), deg 2
Chan [C96], O(n log h), deg 2

q

o

v

Orientation deg 2
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Gabriel Graph

a

b

c
d e

f

Defn: An edge pq is in the
Gabriel graph of S if the
closed disk centered at the
midpoint of pq with diameter |pq|
contains no points other
than p and q.

Proposed by:
Gabriel and Sokal [GS69]

Compute Gabriel from Delaunay:
[MS80] O(n) time, degree 6
[L96] O(n) time, degree 2

Directly compute Gabriel graph:
Brute force, O(n3) time, degree 2
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rp-Voronoi [MS09]

a

b

c
d e

f

Defn: Replace connected subtrees
of Voronoi edges inside a cell with
their convex hulls

	
Captures any Voronoi edge longer
that
√

2.
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Ch. 5: Triangulations

Goals: Describe a triangulation that can be computed
sub-quadratic time with two- or three-fold precision, provide
book-quality code and experiments for an implementation and
some of the properties that the proposed triangulation
possesses. Some properties may include angle bounds of the
triangulation, or how far it is in the flip graph from the Delaunay.

Should these properties be too difficult to discover,
experimental results may be supplied.
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Timeline

June 1, 2011 Draft chapters of:
Ch. 2: Geometric Primitives
Ch. 4: Nearest Neighbor Transform

Sept 1, 2011 Implementation of:
degree 2 and/or degree 3 Voronoi construction.
a degree 2 or degree 3 triangulation.

Teach in the Fall:
Jan 1, 2012 Drafts of:

Ch. 3: PO Queries
(status) Ch. 5:
Triangulations

March 1, 2012 Draft of:
Ch. 5: Triangulations

~April 1, 2012 Defense.

Teach in the Spring:
Oct 15, 2012 Draft of:

Ch. 3: PO Queries
Dec 15, 2012 Draft of:

Ch. 5: Triangulations

~March 1, 2012 Defense
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Conclusion

Thesis Statement: Degree-driven analysis supports the
development of new, robust geometric algorithms, as I have
demonstrated for computing Post-office query search
structures, Nearest Neighbor Transforms, and Triangulations.
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