Thesis Proposal: Degree-driven Geometric Algorithm Design

David L. Millman
University of North Carolina at Chapel Hill

April 25, 2011

A Motivational Problem

> IsSegInter: Given two segments, defined by their 2D endpoints, with no three endpoints collinear, do the segments intersect?

How much precision is needed to determine this?

Thesis Statement: Degree-driven analysis supports the development of new, robust geometric algorithms, as I have demonstrated for computing Post-office query search structures, Nearest Neighbor Transforms, and Triangulations.

Input Representation

Input: Geometric configuration specified by numerical coords.
E.g. IsSegInter problem:

Numerical Coords: (0, 4, 0, 3, 1, 0, 1, 2)
Geometric interpretations:

$$
\begin{aligned}
& a=\left(a_{x}, a_{y}\right)=(0,4), \\
& b=\left(b_{x}, b_{y}\right)=(0,3), \\
& c=\left(c_{x}, c_{y}\right)=(1,0), \\
& d=\left(d_{x}, d_{y}\right)=(1,2), \\
& \overline{a c}=(a, c), \text { and } \\
& \overline{b d}=(b, d) .
\end{aligned}
$$

Illustration of an Algorithm that solves IsSegInter

IsSegInterByConstruction (a, c, b, d) : Determine if $\overline{a c}$ and $\overline{b d}$ intersect; if so return INTERSECT, if not return Nolntersect
Require: no three points are collinear
1: if $\overleftrightarrow{a c} \| \overleftrightarrow{b d}$ then
2: return Nolntersect
3: end if
4: Point $q=\overleftrightarrow{a c} \cap \overleftrightarrow{b d}$
5: Real $t_{1}=\left(q_{x}-a_{x}\right) /\left(c_{x}-a_{x}\right)$
6: Real $t_{2}=\left(q_{x}-b_{x}\right) /\left(d_{x}-b_{x}\right)$
7 : if $t_{1}, t_{2} \in[0,1]$ then
8: return INTERSECT
9: else
10: return NolNTERSECT
11: end if

Illustration of an Algorithm that solves IsSegInter

IsSegInterByConstruction (a, c, b, d) : Determine if $\overline{a c}$ and $\overline{b d}$ intersect; if so return INTERSECT, if not return Nolntersect
Require: no three points are collinear
1: if $\overleftrightarrow{a c} \| \overleftrightarrow{b d}$ then
2: return Nolntersect
3: end if
4: Point $q=\overleftrightarrow{a c} \cap \overrightarrow{b d}$
5: Real $t_{1}=\left(q_{x}-a_{x}\right) /\left(c_{x}-a_{x}\right)$
6: Real $t_{2}=\left(q_{x}-b_{x}\right) /\left(d_{x}-b_{x}\right)$
7 : if $t_{1}, t_{2} \in[0,1]$ then
8: return INTERSECT
9: else
10: return NolNTERSECT
11: end if

Geometry \rightarrow Algebra $\rightarrow \mathbb{R}$ arithmetic \rightarrow IEEE-754

Line 4: Point $q=\overleftrightarrow{a c} \cap \overleftrightarrow{b d}$

Geometry \rightarrow Algebra $\rightarrow \mathbb{R}$ arithmetic \rightarrow IEEE-754

The Intersect (a, c, b, d) construction:

Geometry \rightarrow Algebra $\rightarrow \mathbb{R}$ arithmetic \rightarrow IEEE-754

The Intersect (a, c, b, d) construction:

Input: single-precision coordinates of a, c, b and d defining non-parallel lines $\overleftrightarrow{a c}$ and $\overleftrightarrow{b d}$.
Construct: the intersection q of $\overleftrightarrow{a c}$ and $\overrightarrow{b d}$.

$$
\begin{array}{r}
q_{x}=\overline{3} \\
q_{y}=2 . \overline{6} .
\end{array}
$$

Geometry \rightarrow Algebra $\rightarrow \mathbb{R}$ arithmetic \rightarrow IEEE-754

The Intersect (a, c, b, d) construction:
Input: single-precision coordinates
$\left\{\begin{array}{l}a=(0,4) \\ b=(0,3) \\ q=\left(\frac{1}{3}, \frac{8}{3}\right)\end{array}\right.$ of a, c, b and d defining non-parallel lines $\overleftrightarrow{a c}$ and $\overleftrightarrow{b d}$
Construct: the intersection q of $\overleftrightarrow{a c}$ and $\overrightarrow{b d}$.
In Python with numpy.float32 type:

$$
\begin{aligned}
\mathrm{fl}\left(q_{x}\right) & \approx 0.33333334 \\
\mathrm{fl}\left(q_{y}\right) & \approx 2.6666667 \\
\mathrm{fl}(q) & \notin \mathrm{fl}(\overline{a c}) \\
\mathrm{fl}(q) & \notin \mathrm{fl}(\overline{b d})
\end{aligned}
$$

Predicates and Operations; Analyzing Precision [LPT99]

Precision used by the Orientation operation:

Input: single-precision coordinates of o, v and q. Return: whether the straight line path from o to v to q forms a right turn, left turn or follows a straight line.

Predicates and Operations; Analyzing Precision [LPT99]

Precision used by the Orientation operation:

$$
\begin{aligned}
& \mathbb{U}=\{1, \ldots, U\}^{2} \\
& o, v, q \in \mathbb{U} \\
& o=\left(o_{x}, o_{y}\right) \\
& v=\left(v_{x}, v_{y}\right) \\
& q=\left(q_{x}, q_{y}\right)
\end{aligned}
$$

Predicates and Operations; Analyzing Precision [LPT99]

Precision used by the Orientation operation:

$$
\begin{aligned}
& \mathbb{U}=\{1, \ldots, U\}^{2} \\
& o, v, q \in \mathbb{U} \\
& o=\left(o_{x}, o_{y}\right) \\
& v=\left(v_{x}, v_{y}\right) \\
& q=\left(q_{x}, q_{y}\right)
\end{aligned}
$$

A predicate is a test of the sign of a multivariate polynomial with variables from the input coordinates.

$$
\begin{aligned}
P(o, v, q) & =\operatorname{sign}\left(\left|\begin{array}{ll}
v_{x}-o_{x} & v_{y}-o_{y} \\
q_{x}-o_{x} & q_{y}-o_{y}
\end{array}\right|\right) \\
& =\operatorname{sign}\left(v_{x} q_{y}-v_{x} o_{y}-o_{x} q_{y}+o_{x} o_{y}-v_{y} q_{x}+v_{y} o_{x}+q_{y} q_{x}-q_{y} o_{x}\right)
\end{aligned}
$$

Predicates and Operations; Analyzing Precision [LPT99]

Precision used by the Orientation operation:

$$
\begin{aligned}
& \mathbb{U}=\{1, \ldots, U\}^{2} \\
& o, v, q \in \mathbb{U} \\
& o=\left(o_{x}, o_{y}\right) \\
& v=\left(v_{x}, v_{y}\right) \\
& q=\left(q_{x}, q_{y}\right)
\end{aligned}
$$

A predicate is a test of the sign of a multivariate polynomial with variables from the input coordinates.

$$
\begin{aligned}
P(o, v, q) & =\operatorname{sign}\left(\left|\begin{array}{ll}
v_{x}-o_{x} & v_{y}-o_{y} \\
q_{x}-o_{x} & q_{y}-o_{y}
\end{array}\right|\right) \\
& =\operatorname{sign}\left(v_{x} q_{y}-v_{x} o_{y}-o_{x} q_{y}+o_{x} o_{y}-v_{y} q_{x}+v_{y} o_{x}+q_{y} q_{x}-q_{y} o_{x}\right) \\
& =\operatorname{sign}((2))
\end{aligned}
$$

Predicates and Operations; Analyzing Precision [LPT99]

Precision used by the Orientation operation:

$$
\begin{aligned}
& \mathbb{U}=\{1, \ldots, U\}^{2} \\
& o, v, q \in \mathbb{U} \\
& o=\left(o_{x}, o_{y}\right) \\
& v=\left(v_{x}, v_{y}\right) \\
& q=\left(q_{x}, q_{y}\right)
\end{aligned}
$$

$P(o, v, q)$ is degree 2

A predicate is a test of the sign of a multivariate polynomial with variables from the input coordinates.

$$
\begin{aligned}
P(o, v, q) & =\operatorname{sign}\left(\left|\begin{array}{ll}
v_{x}-o_{x} & v_{y}-o_{y} \\
q_{x}-o_{x} & q_{y}-o_{y}
\end{array}\right|\right) \\
& =\operatorname{sign}\left(v_{x} q_{y}-v_{x} o_{y}-o_{x} q_{y}+o_{x} o_{y}-v_{y} q_{x}+v_{y} o_{x}+q_{y} q_{x}-q_{y} o_{x}\right) \\
& =\operatorname{sign}((2))
\end{aligned}
$$

Predicates and Operations; Analyzing Precision [LPT99]

How the degree of a predicate relates to precision.
Consider multivariate polynomial $Q(x)$ of degree k and a monomials. The coordinates of x are b-bit integers.
Each monomial is in $\left\{-2^{b k}, \ldots, 2^{b k}\right\}$ (ignoring mult by a constant).
The value of $Q(x)$ is in $\left\{-a 2^{b k}, \ldots, a 2^{b k}\right\}$.
\Longrightarrow Values of $Q(x)$ are represented with $k b+\log (a)+O(1)$ bits.

Predicates and Operations; Analyzing Precision [LPT99]

How the degree of a predicate relates to precision.
Consider multivariate polynomial $Q(x)$ of degree k and a monomials. The coordinates of x are b-bit integers.
Each monomial is in $\left\{-2^{b k}, \ldots, 2^{b k}\right\}$ (ignoring mult by a constant).
The value of $Q(x)$ is in $\left\{-a 2^{b k}, \ldots, a 2^{b k}\right\}$.
\Longrightarrow Values of $Q(x)$ are represented with $k b+\log (a)+O(1)$ bits.
Note that $k b$ bits is enough to evaluate the sign.

Predicates and Operations; Analyzing Precision [LPT99]

Precision used by the Orientation operation:

$$
\begin{aligned}
& \mathbb{U}=\{1, \ldots, U\}^{2} \\
& o, v, q \in \mathbb{U} \\
& o=\left(o_{x}, o_{y}\right) \\
& v=\left(v_{x}, v_{y}\right) \\
& q=\left(q_{x}, q_{y}\right)
\end{aligned}
$$

$P(o, v, q)$ is degree 2

Predicates and Operations; Analyzing Precision [LPT99]

Precision used by the Orientation operation:

$$
\begin{aligned}
& \mathbb{U}=\{1, \ldots, U\}^{2} \\
& o, v, q \in \mathbb{U} \\
& o=\left(o_{x}, o_{y}\right) \\
& v=\left(v_{x}, v_{y}\right) \\
& q=\left(q_{x}, q_{y}\right)
\end{aligned}
$$

$P(o, v, q)$ is degree 2
Operation:
Orientation (o, v, q) :
1: Sign eval $=P(o, v, q)$
2: if eval >0 then
3: return LEFT
4: else if eval <0 then
5: return RIGHT
6: else
7: return STRAIGHT
8: end if

Predicates and Operations; Analyzing Precision [LPT99]

Precision used by the Orientation operation:

$$
\begin{aligned}
& \mathbb{U}=\{1, \ldots, U\}^{2} \\
& o, v, q \in \mathbb{U} \\
& o=\left(o_{x}, o_{y}\right) \\
& v=\left(v_{x}, v_{y}\right) \\
& q=\left(q_{x}, q_{y}\right)
\end{aligned}
$$

$P(o, v, q)$ is degree 2
Orientation is degree 2
Operation:
Orientation (o, v, q) :
1: Sign eval $=P(o, v, q)$
2: if eval >0 then
3: return LEFT
4: else if eval <0 then
5: return RIGHT
6: else
7: return STRAIGHT
8: end if

Illustration of an Alg. that solves IsSegInter w/o construction

IsSegInterByOrientation (a, c, b, d) : Determine if $\overline{a c}$ and $\overline{b d}$ intersect; if so return INTERSECT, if not return Nolntersect
Require: no three points are collinear
1: if Orientation $(a, c, b) \neq$ Orientation (a, c, d) and Orientation $(b, d, a) \neq$ Orientation (b, d, c) then
2: return INTERSECT
3: else
4: return Nolntersect
5: end if

Illustration of an Alg. that solves IsSegInter w/o construction

IsSegInterByOrientation (a, c, b, d) : Determine if $\overline{a c}$ and $\overline{b d}$ intersect; if so return INTERSECT, if not return Nolntersect
Require: no three points are collinear
1: if Orientation $(a, c, b) \neq$ Orientation (a, c, d) and Orientation $(b, d, a) \neq$ Orientation (b, d, c) then
2: return INTERSECT
3: else

In summary:
P predicate is degree 2
Orientation Operation is degree 2
Intersect construction is degree $3 / 2$
IsSegInterByOrientation algorithm is degree 2
IsSegInterByConstruction algorithm is degree 3

Other precision approaches

Approaches for implementing geometric algorithms with finite precision computer arithmetic:

- Rely on machine precision (+ +) [NAT90,LTH86,KMP*08]
- Exact Geometric Computation [Y97,C92,ABO*97,BEP*97]
- Arithmetic Filters [FW93,FW96,BBP01,DP98,DP99]
- Adaptive Predicates [P92,S97,BF09]
- Topological Consistency [S99,S01,SI90,SI92,SII*00]
- Degree-driven algorithm design
[LPT99,BP00,BS00,C00,MS01,MS09,CMS09,MS10]

Ch. 2: Primitives

Goal: Descriptions, precision analysis and book-quality code for all predicates, operations and constructions, discussed in the thesis. This chapter conclude with results on lower bounds on degree and irreducibility.

Simple Examples:

Orientation degree 2

InCircle degree 4

OrderOnLine degree 3

SideOfBisector degree 2

Ch. 3: Post-office Queries for Some Pts. in the Plane

Goal: Compute a PO Query search structure with degree 2. I propose to provide:

- degree 2 algorithm
- analysis and implementation
- book-quality code
- experimental results

Post-office Query structure

Given
A grid of size U and sites $S=\left\{s_{1}, \ldots, s_{n}\right\} \subset \mathbb{U}$

Compute
A data structure capable of returning the closet $s_{i} \in S$ to a query point $q \in \mathbb{U}$ in $O(\log n)$ time

Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

- region
- edge
- vertex - rational degree $3 / 2$

Trapezoid graph for proximity queries

- x-node() - degree 3
- y-node() - degree 6

Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

- region
- edge
- vertex - rational degree $3 / 2$

Trapezoid graph for proximity queries

- x-node() - degree 3
- y-node() - degree 6

Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

- region
- edge
- vertex - rational degree $3 / 2$

Trapezoid graph for proximity queries [LPT99]

- x-node() - degree 1
- y-node() - degree 2

Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

- region
- edge
- vertex - rational degree $3 / 2$

Trapezoid graph for proximity queries [LPT99]

- x-node() - degree 1
- y-node() - degree 2

This is a degree 2 trapezoid graph.

Precision of Constructing the Voronoi Diagram

Three well-known Voronoi diagram constructions.

Sweepline[F87]
 - degree 6

Divide and Conquer[GS86]

- degree 4

Tracing[SI92]

- degree 4

Precision of Constructing the Voronoi Diagram

Three well-known Voronoi diagram constructions.

Implicit Voronoi diagram [LPT99]

Implicit Voronoi diagram is disconnected.

RP-Voronoi [MS09]

Given n sites in \mathbb{U}.

RP-Voronoi

Rand inc construction of the RP-Voronoi of n sites in \mathbb{U}.

- Time: $O(n \log (U n))$ expected
- Space: $O(n)$ expected
- Precision: degree 3

Implicit Voronoi

Construct LPT's implicit Voronoi from RP-Voronoi.

- Time: $O(n)$
- Space: $O(n)$ expected
- Precision: degree 3

RP-Voronoi [MS09]

Given n sites in \mathbb{U}.

Contract trees of Voronoi vertices that occur in the same grid cell into an rp-vertex.

- Precision: degree 3

Voronoi Polygon Set

- Voronoi polygon is the convex hull of the grid points in a Voronoi cell.

Voronoi Polygon Set

- Voronoi polygon is the convex hull of the grid points in a Voronoi cell.
- Gaps

Voronoi Polygon Set

- Voronoi polygon is the convex hull of the grid points in a Voronoi cell.
- Gaps
- Total size $\Theta(n \log U)$.

Proxy Segments

- Proxy segment represent Voronoi polygons.

Proxy Segments

- Proxy segment represent Voronoi polygons.

Proxy Segments

- Proxy segment represent Voronoi polygons.
- Proxy trapezoidation trapezoidation of the proxies.

Proxy Segments

- Proxy segment represent Voronoi polygons.
- Proxy trapezoidation trapezoidation of the proxies.
- Voronoi Trapezoidation split the trapezoids of the Proxy trapezoidation with bisectors.

Proxy Segments

- Proxy segment represent Voronoi polygons.
- Proxy trapezoidation trapezoidation of the proxies.
- Voronoi Trapezoidation split the trapezoids of the Proxy trapezoidation with bisectors.

Proxy Trapezoidation
is a degree 2 trapezoid graph.

Proxy Trapezoidation [MS10]

Given n sites in \mathbb{U}.

Proxy Trapezoidation construction

- Time: $O(n \log n \log U)$ expected*
- Space: $O(n)$ expected
- Precision: degree 2

Queries on Proxy Trapezoidation

- Time: $O(\log n)$
- Precision: degree 2
* Analysis of [MS10] is incomplete.

Completing the analysis of [MS10]

Proxy trapezoidation is built with a randomized incremental construction (RIC).

Analysis of [MS10] used the RIC construction framework from the dutch book.

Define: For a grid point g, a set of sites R certifies that g is the right end point for the proxy of s if all grid points right g are closer to a site in R than s.

To complete Analysis of [MS10], I need to prove:

Lemma

The maximum number of sites of S required to certify that a grid point is a right end point of a proxy segment is constant.

Ch. 3: Post-office Queries for Some Pts. in the Plane

Goals: Complete the analysis of [MS10], describe the algorithm, provide an implementation, book-quality code and experimental results.

Should I be unable to complete the analysis, I will explore whether a divide-and-conquer algorithm can yield a sub-quadratic time degree 2 construction.

Should that be unsuccessful, I will implement our RIC degree 2 algorithm and observe the experimental running time, implement the degree 3 solution, and provide book-quality code and experimental results for both.

Ch. 3: Post-office Queries for Some Pts. in the Plane

Goals: Complete the analysis of [MS10], describe the algorithm, provide an implementation, book-quality code and experimental results.

Should I be unable to complete the analysis, I will explore whether a divide-and-conquer algorithm can yield a sub-quadratic time degree 2 construction.

Should that be unsuccessful, I will implement our RIC degree 2 algorithm and observe the experimental running time, implement the degree 3 solution, and provide book-quality code and experimental results for both.

Ch. 3: Post-office Queries for Some Pts. in the Plane

Goals: Complete the analysis of [MS10], describe the algorithm, provide an implementation, book-quality code and experimental results.

Should I be unable to complete the analysis, I will explore whether a divide-and-conquer algorithm can yield a sub-quadratic time degree 2 construction.

Should that be unsuccessful, I will implement our RIC degree 2 algorithm and observe the experimental running time, implement the degree 3 solution, and provide book-quality code and experimental results for both.

Ch. 3: Post-office Queries for Some Pts. in the Plane

Goals: Complete the analysis of [MS10], describe the algorithm, provide an implementation, book-quality code and experimental results.

Should I be unable to complete the analysis, I will explore whether a divide-and-conquer algorithm can yield a sub-quadratic time degree 2 construction.

Should that be unsuccessful, I will implement our RIC degree 2 algorithm and observe the experimental running time, implement the degree 3 solution, and provide book-quality code and experimental results for both.

Ch. 4: Nearest Neighbor Transform

Goal: Compute Nearest Neighbor Transform with degree 2.
I propose to provide:

- degree 2 algorithm
- analysis and implementation
- book-quality code
- experimental results

Nearest Neighbor Transform

Given
 A grid of size U and
 Sites $S=\left\{s_{1}, \ldots, s_{n}\right\} \subset \mathbb{U}$

Label
Each grid point of \mathbb{U} with the closest site of S

Nearest Neighbor Transform

Given

A grid of size U and
Sites $S=\left\{s_{1}, \ldots, s_{n}\right\} \subset \mathbb{U}$

Label

Each grid point of \mathbb{U} with the closest site of S

	Alg	Time
Brute Force	$\operatorname{deg} 2$	$O\left(n U^{2}\right)$
Query the Voronoi diagram	$\operatorname{deg} 4$	$O\left(U^{2} \log n\right)$
Nearest Neighbor Trans. [B90]	deg 4	$O\left(U^{2}\right)$
Dim. Reduction [C06,MQR03]	deg 3	$O\left(U^{2}\right)$
GPU Cone Rendering [H99]	-	$\Theta\left(n U^{2}\right)$
GPU Dim Reduction [CTM*10]	deg 3	$O\left(U^{2}\right)$

Dimensional Reduction

Example of processing one row

Dimensional Reduction

Example of processing one row

Dimensional Reduction

Example of processing one row

Dimensional Reduction

Example of processing one row

Two steps:
(1) Reduce to at most $2 U$ sites.
(2) Compute the intersection of the Voronoi diagram of the reduced set of sites with a line though the row.

Dimensional Reduction

Example of processing one row

Two steps:
(1) Reduce to at most $2 U$ sites.
(2) Compute the intersection of the Voronoi diagram of the reduced set of sites with a line though the row.

Dimensional Reduction

Example of processing one row

Two steps:
(1) Reduce to at most $2 U$ sites.
(2) Compute the intersection of the Voronoi diagram of the reduced set of sites with a line though the row.

Dimensional Reduction

Example of processing one row

Two steps:
(1) Reduce to at most $2 U$ sites.
(2) Compute the intersection of the Voronoi diagram of the reduced set of sites with a line though the row.

Dimensional Reduction

Example of processing one row

Two steps:
(1) Reduce to at most $2 U$ sites.
(2) Compute the intersection of the Voronoi diagram of the reduced set of sites with a line though the row.

Dimensional Reduction

Predicates:

[MQR03, CTM*10]:
Above $\left(v_{123}, h\right)$ deg 3
OrderOnLine $\left(b_{12}, b_{13}, h\right)$ deg 3
[C06]:
$\sigma_{i}:=y=$ (1) $x+$ (2)
$\left.\sigma_{i}^{*}=(1),(2)\right)$
Orient_d1_d2 $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ deg 3

[CMS09]:

$$
\begin{aligned}
& \sigma_{i}=y=(1) x+(2) \\
& \text { OrderOnLine_d1_d2 }\left(\sigma_{1}, \sigma_{2}, \ell\right) \text { deg } 2
\end{aligned}
$$

Nearest Neighbor Transform [CMS09]

Compute 2D Nearest Neighbor Transform

- Time: $O\left(U^{2}\right)$ expected time.
- Space: $O(n+U)$
- Precision: degree 2

Assuming $O(n \log n)<O\left(U^{2}\right)$

Compute Voronoi Polygon Set

- Time: $O\left(U^{2}\right)$ expected time
- Space: $O(n \log U)$ and $O(n)$ for proxies only
- Precision: degree 2

Query Post Office Structure

- Time: $O(\log n)$ expected
- Precision: degree 2

Ch. 4: Nearest Neighbor Transform

Goal: Our solution, written up in [CMS09], only contains a sketch of the construction, without analysis. In this chapter I propose to provide the details of the construction, analysis, book-quality code, and experimental results for our implementation.

Ch. 4: Nearest Neighbor Transform

Goal: Our solution, written up in [CMS09], only contains a sketch of the construction, without analysis. In this chapter I propose to provide the details of the construction, analysis, book-quality code, and experimental results for our implementation.

Ch. 5: Triangulations

Goals: Compute Triangulation with degree 2 or degree 3. I propose to provide:

- deg 2 or deg 3 algorithm
- analysis and implementation
- book-quality code
- experimental results

Triangulations

Given
 A grid of size U and sites $S=\left\{s_{1}, \ldots, s_{n}\right\} \subset \mathbb{U}$

Compute
A planar subdivision with vertices in S and edges such that no more edges can be added without causing the subdivision to become non-planar

Delaunay Triangulation

InCircle

$Q()=\operatorname{sign}\left(\begin{array}{l}(1) \\ (1) \\ (1)\end{array}\right.$
(1)
(2)

Delaunay Triangulation

InCircle

$Q()=\operatorname{sign}($
(1)
(1)

degree 4
How can we compute a triangulation with less than degree 4, and what are some properties of this triangulation?

Ideas for Computing a Triangulation

Use low degree algorithms to compute a subset of known Delaunay edges.

Then, complete add edges to complete a triangulation.

Ideas for Computing a Triangulation

Convex Hull w/ h hull vertices: Melkman[M87], $O(n \log n)$, deg 2 Chan [C96], $O(n \log h)$, deg 2

Orientation deg 2

Gabriel Graph

Defn: An edge $\overline{p q}$ is in the Gabriel graph of S if the closed disk centered at the midpoint of $\overline{p q}$ with diameter $|\overline{p q}|$ contains no points other than p and q.

Gabriel Graph

Defn: An edge $\overline{p q}$ is in the Gabriel graph of S if the closed disk centered at the midpoint of $\overline{p q}$ with diameter $|\overline{p q}|$ contains no points other than p and q.

Gabriel Graph

Defn: An edge $\overline{p q}$ is in the Gabriel graph of S if the closed disk centered at the
 midpoint of $\overline{p q}$ with diameter $|\overline{p q}|$ contains no points other than p and q.

Proposed by:
Gabriel and Sokal [GS69]
Compute Gabriel from Delaunay:
[MS80] $O(n)$ time, degree 6 [L96] $O(n)$ time, degree 2

Directly compute Gabriel graph:
Brute force, $O\left(n^{3}\right)$ time, degree 2

rp-Voronoi [MS09]

Defn: Replace connected subtrees of Voronoi edges inside a cell with their convex hulls

Captures any Voronoi edge longer that $\sqrt{2}$.

rp-Voronoi [MS09]

Defn: Replace connected subtrees of Voronoi edges inside a cell with their convex hulls

Captures any Voronoi edge longer that $\sqrt{2}$.

rp-Voronoi [MS09]

Defn: Replace connected subtrees of Voronoi edges inside a cell with their convex hulls

Captures any Voronoi edge longer that $\sqrt{2}$.

rp-Voronoi [MS09]

Defn: Replace connected subtrees of Voronoi edges inside a cell with their convex hulls

Captures any Voronoi edge longer that $\sqrt{2}$.

rp-Voronoi [MS09]

Defn: Replace connected subtrees of Voronoi edges inside a cell with their convex hulls

Captures any Voronoi edge longer that $\sqrt{2}$.

rp-Voronoi [MS09]

Defn: Replace connected subtrees of Voronoi edges inside a cell with their convex hulls

Captures any Voronoi edge longer that $\sqrt{2}$.

Ch. 5: Triangulations

Goals: Describe a triangulation that can be computed sub-quadratic time with two- or three-fold precision, provide book-quality code and experiments for an implementation and some of the properties that the proposed triangulation possesses. Some properties may include angle bounds of the triangulation, or how far it is in the flip graph from the Delaunay.

Should these properties be too difficult to discover, experimental results may be supplied.

Ch. 5: Triangulations

Goals: Describe a triangulation that can be computed sub-quadratic time with two- or three-fold precision, provide book-quality code and experiments for an implementation and some of the properties that the proposed triangulation possesses. Some properties may include angle bounds of the triangulation, or how far it is in the flip graph from the Delaunay.

Should these properties be too difficult to discover, experimental results may be supplied.

Ch. 5: Triangulations

Goals: Describe a triangulation that can be computed sub-quadratic time with two- or three-fold precision, provide book-quality code and experiments for an implementation and some of the properties that the proposed triangulation possesses. Some properties may include angle bounds of the triangulation, or how far it is in the flip graph from the Delaunay.

Should these properties be too difficult to discover, experimental results may be supplied.

Ch. 5: Triangulations

Goals: Describe a triangulation that can be computed sub-quadratic time with two- or three-fold precision, provide book-quality code and experiments for an implementation and some of the properties that the proposed triangulation possesses. Some properties may include angle bounds of the triangulation, or how far it is in the flip graph from the Delaunay.

Should these properties be too difficult to discover, experimental results may be supplied.

Timeline

- June 1, 2011 Draft chapters of:
- Ch. 2: Geometric Primitives
- Ch. 4: Nearest Neighbor Transform
- Sept 1, 2011 Implementation of:
- degree 2 and/or degree 3 Voronoi construction.
- a degree 2 or degree 3 triangulation.

Teach in the Fall:

- Jan 1, 2012 Drafts of:
- Ch. 3: PO Queries
- (status) Ch. 5:

Triangulations

- March 1, 2012 Draft of:
- Ch. 5: Triangulations
- ~April 1, 2012 Defense.

Teach in the Spring:

- Oct 15, 2012 Draft of:
- Ch. 3: PO Queries
- Dec 15, 2012 Draft of:
- Ch. 5: Triangulations
- ~March 1, 2012 Defense

Conclusion

Thesis Statement: Degree-driven analysis supports the development of new, robust geometric algorithms, as I have demonstrated for computing Post-office query search structures, Nearest Neighbor Transforms, and Triangulations.

