Thesis Proposal: Degree-driven Geometric Algorithm Design

David L. Millman

University of North Carolina at Chapel Hill

April 25, 2011

A Motivational Problem

IsSegInter: Given two segments, defined by their 2D endpoints, with no three endpoints collinear, do the segments intersect?

How much precision is needed to determine this?

Thesis Statement: Degree-driven analysis supports the development of new, robust geometric algorithms, as I have demonstrated for computing Post-office query search structures, Nearest Neighbor Transforms, and Triangulations.

Input Representation

Input: Geometric configuration specified by numerical coords.

$$a = (0, 4)$$

$$b = (0, 3)$$

$$q = (\frac{1}{3}, \frac{8}{3})$$

$$d = (1, 2)$$

$$c = (1, 0)$$

E.g. IsSegInter problem: Numerical Coords: (0,4,0,3,1,0,1,2) Geometric interpretations:

$$a = (a_x, a_y) = (0, 4),$$

$$b = (b_x, b_y) = (0, 3),$$

$$c = (c_x, c_y) = (1, 0),$$

$$d = (d_x, d_y) = (1, 2),$$

$$\overline{ac} = (a, c), \text{ and}$$

$$\overline{bd} = (b, d).$$

IsSegInterByConstruction(a, c, b, d): Determine if \overline{ac} and \overline{bd} intersect; if so return INTERSECT, if not return NOINTERSECT

Require: no three points are collinear

- 1: if $\overrightarrow{ac} \parallel \overrightarrow{bd}$ then
- 2: return NOINTERSECT
- 3: end if
- 4: Point $q = \overleftarrow{ac} \cap \overrightarrow{bd}$
- 5: Real $t_1 = (q_x a_x)/(c_x a_x)$
- 6: Real $t_2 = (q_x b_x)/(d_x b_x)$
- 7: if $t_1, t_2 \in [0, 1]$ then
- 8: return Intersect

9: **else**

10: return NOINTERSECT

11: end if

IsSegInterByConstruction(a, c, b, d): Determine if \overline{ac} and \overline{bd} intersect; if so return INTERSECT, if not return NOINTERSECT

Require: no three points are collinear

- 1: if $\overleftarrow{ac} \parallel \overrightarrow{bd}$ then
- 2: return NOINTERSECT
- 3: end if
- 4: Point $q = \overleftarrow{ac} \cap \overrightarrow{bd}$

5: Real
$$t_1 = (q_x - a_x)/(c_x - a_x)$$

6: Real
$$t_2 = (q_x - b_x)/(d_x - b_x)$$

- 7: if $t_1, t_2 \in [0, 1]$ then
- 8: return INTERSECT

9: **else**

10: return NOINTERSECT

11: end if

Geometry \rightarrow Algebra $\rightarrow \mathbb{R}$ arithmetic \rightarrow IEEE-754

Line 4: Point $q = \overleftarrow{ac} \cap \overrightarrow{bd}$ a = (0, 4) b = (0, 3) $q = (\frac{1}{3}, \frac{8}{3})$ d = (1, 2)c = (1,0)

Geometry \rightarrow Algebra $\rightarrow \mathbb{R}$ arithmetic \rightarrow IEEE-754

The Intersect(*a*, *c*, *b*, *d*) construction:

Input: single-precision coordinates of *a*, *c*, *b* and *d* defining non-parallel lines \overleftarrow{ac} and \overrightarrow{bd} . **Construct**: the intersection *q* of \overleftarrow{ac} and \overrightarrow{bd} .

$$q_x = rac{ig| egin{smallmatrix} a_x c_y - c_x a_y & a_x - c_x \ b_x d_y - d_x b_y & b_x - d_x \ ig| \ b_x d_y - d_x b_y & b_x - d_x \ ig| \ b_x d_y - d_x b_y & b_y - d_y \ ig| \ ig| \ b_x d_y - d_x b_y & b_y - d_y \ ig| \ ig| \ b_x - d_x & b_y - d_y \ ig| \ b_x - d_x & b_y - d_y \ ig| \ b_x - d_x & b_y - d_y \ ig| \ b_x - d_x & b_y - d_y \ ig| \ b_x - d_x & b_y - d_y \ ig| \ b_x - d_x & b_y - d_y \ ig| \ b_x - d_x & b_y - d_y \ ig| \ b_x - d_x & b_y - d_y \ ig| \ b_x - d_x & b_y - d_y \ ig| \ b_x - d_x & b_y - d_y \ ig| \ b_x - d_x & b_y - d_y \ ig| \ b_x - d_x & b_y - d_y \ ig| \ b_x - d_x & b_y - d_y \ ig| \ b_x - d_x & b_y - d_y \ ig| \ b_x - d_x & b_y - d_y \ ig| \ b_x - d_x & b_y - d_y \ ig| \ b_x - d_x & b_y - d_y \ ig| \ b_x - d_x & b_y - d_y \ ig| \ b_x - d_y \ b_y - d_y \ ig| \ b_x - d_y \ b_y - d_y \ ig| \ b_x - d_y \ b_y - d_y \ ig| \ b_x - d_y \ b_y - d_y \ ig| \ b_x - d_y \ b_y \ b_y - d_y \ b_y - d_y \ b_y \ b_y - d_y \ b_y \ b_y$$

The Intersect(*a*, *c*, *b*, *d*) construction:

Input: single-precision coordinates of *a*, *c*, *b* and *d* defining non-parallel lines \overleftarrow{ac} and \overrightarrow{bd} . **Construct**: the intersection *q* of \overleftarrow{ac} and \overrightarrow{bd} .

$$q_x = .\overline{3}$$
$$q_y = 2.\overline{6}.$$

The Intersect(a, c, b, d) construction:

$$a = (0, 4)$$

$$b = (0, 3)$$

$$q = (\frac{1}{3}, \frac{8}{3})$$

$$d = (1, 2)$$

$$c = (1, 0)$$

Input: single-precision coordinates of a, c, b and d defining non-parallel lines \overleftarrow{ac} and \overrightarrow{bd} . **Construct**: the intersection a of \overleftarrow{ac} and bd

In Python with *numpy.float32* type:

 $fl(q_x) \approx 0.33333334$ $fl(q_v) \approx 2.6666667$

$$fl(q) \notin fl(\overline{ac})$$

$$fl(q) \notin fl(\overline{bd})$$

$$l(q)$$
 ∉ fl(\overline{bd})

Precision used by the Orientation operation:

Input: single-precision coordinates of o, v and q. **Return**: whether the straight line path from o to v to q forms a right turn, left turn or follows a straight line.

Precision used by the Orientation operation: $\mathbb{U} = \{1, \dots, U\}^2$ $o, v, q \in \mathbb{U}$ $o = (o_x, o_y)$ $v = (v_x, v_y)$ $q = (q_x, q_y)$

A *predicate* is a test of the sign of a multivariate polynomial with variables from the input coordinates.

$$P(o, v, q) = sign(\begin{vmatrix} v_x - o_x & v_y - o_y \\ q_x - o_x & q_y - o_y \end{vmatrix})$$

= sign($v_x q_y - v_x o_y - o_x q_y + o_x o_y - v_y q_x + v_y o_x + q_y q_x - q_y o_x$)

A *predicate* is a test of the sign of a multivariate polynomial with variables from the input coordinates.

$$P(o, v, q) = sign(\begin{vmatrix} v_x - o_x & v_y - o_y \\ q_x - o_x & q_y - o_y \end{vmatrix})$$

= sign(v_x q_y - v_x o_y - o_x q_y + o_x o_y - v_y q_x + v_y o_x + q_y q_x - q_y o_x)
= sign(2)

A *predicate* is a test of the sign of a multivariate polynomial with variables from the input coordinates.

$$P(o, v, q) = sign(\begin{vmatrix} v_x - o_x & v_y - o_y \\ q_x - o_x & q_y - o_y \end{vmatrix})$$

= sign(v_x q_y - v_x o_y - o_x q_y + o_x o_y - v_y q_x + v_y o_x + q_y q_x - q_y o_x)
= sign(2)

How the degree of a predicate relates to precision.

Consider multivariate polynomial Q(x) of degree *k* and *a* monomials. The coordinates of *x* are *b*-bit integers. Each monomial is in $\{-2^{bk}, \dots, 2^{bk}\}$ (ignoring mult by a constant).

Each monomial is in $\{-2^{bk}, \dots, 2^{bk}\}$ (ignoring mult by a constant) The value of Q(x) is in $\{-a2^{bk}, \dots, a2^{bk}\}$.

 \implies Values of Q(x) are represented with $kb + \log(a) + O(1)$ bits.

How the degree of a predicate relates to precision.

Consider multivariate polynomial Q(x) of degree k and a monomials. The coordinates of x are b-bit integers.

Each monomial is in $\{-2^{bk}, \ldots, 2^{bk}\}$ (ignoring mult by a constant). The value of Q(x) is in $\{-a2^{bk}, \ldots, a2^{bk}\}$.

 \implies Values of Q(x) are represented with $kb + \log(a) + O(1)$ bits.

Note that *kb* bits is enough to evaluate the sign.

Precision used by the Orientation operation:

$$\mathbb{U} = \{1, \dots, U\}$$

$$o, v, q \in \mathbb{U}$$

$$o = (o_x, o_y)$$

$$v = (v_x, v_y)$$

$$q = (q_x, q_y)$$

P(o, v, q) is degree 2

Precision used by the Orientation operation: $II - \int 1 \frac{1}{10^2}$

$$\mathbb{U} = \{1, \dots, U\}$$

 $o, v, q \in \mathbb{U}$
 $o = (o_x, o_y)$
 $v = (v_x, v_y)$
 $q = (q_x, q_y)$

P(o, v, q) is degree 2

Operation:

Orientation(0, V, q):

- 1: Sign eval = P(o, v, q)
- 2: if *eval* > 0 then
- 3: return LEFT
- 4: else if *eval* < 0 then
- 5: return RIGHT
- 6: **else**
- 7: return STRAIGHT
- 8: end if

Precision used by the Orientation operation:

Operation:

Orientation(0, V, q):

- 1: Sign eval = P(o, v, q)
- 2: if *eval* > 0 then
- 3: return LEFT
- 4: else if eval < 0 then
- 5: return RIGHT
- 6: **else**
- 7: return STRAIGHT
- 8: end if

$$\mathbb{U} = \{1, \dots, U\}^2$$

$$o, v, q \in \mathbb{U}$$

$$o = (o_x, o_y)$$

$$v = (v_x, v_y)$$

$$q = (q_x, q_y)$$

P(o, v, q) is degree 2 Orientation is degree 2 Illustration of an Alg. that solves IsSegInter w/o construction

IsSegInterByOrientation(a, c, b, d): Determine if \overline{ac} and \overline{bd} intersect; if so return INTERSECT, if not return NOINTERSECT

Require: no three points are collinear

- 1: **if** Orientation(a, c, b) \neq Orientation(a, c, d) and Orientation(b, d, a) \neq Orientation(b, d, c) **then**
- 2: return INTERSECT
- 3: **else**
- 4: return NOINTERSECT
- 5: end if

Illustration of an Alg. that solves IsSegInter w/o construction

IsSegInterByOrientation(a, c, b, d): Determine if \overline{ac} and \overline{bd} intersect; if so return INTERSECT, if not return NOINTERSECT

Require: no three points are collinear

- 1: **if** Orientation $(a, c, b) \neq$ Orientation(a, c, d) and Orientation $(b, d, a) \neq$ Orientation(b, d, c) **then**
- 2: return INTERSECT
- 3: **else**

Approaches for implementing geometric algorithms with finite precision computer arithmetic:

- Rely on machine precision (+e) [NAT90,LTH86,KMP*08]
- Exact Geometric Computation [Y97,C92,ABO*97,BEP*97]
- Arithmetic Filters [FW93,FW96,BBP01,DP98,DP99]
- Adaptive Predicates [P92,S97,BF09]
- Topological Consistency [S99,S01,SI90,SI92,SII*00]
- Degree-driven algorithm design [LPT99,BP00,BS00,C00,MS01,MS09,CMS09,MS10]

Goal: Descriptions, precision analysis and book-quality code for all predicates, operations and constructions, discussed in the thesis. This chapter conclude with results on lower bounds on degree and irreducibility.

Simple Examples:

Goal: Compute a PO Query search structure with degree 2. I propose to provide:

- degree 2 algorithm
- analysis and implementation
- book-quality code
- experimental results

Given A grid of size U and sites $S = \{s_1, \ldots, s_n\} \subset \mathbb{U}$

Compute

A data structure capable of returning the closet $s_i \in S$ to a query point $q \in \mathbb{U}$ in $O(\log n)$ time

Voronoi diagram

- region
- edge
- vertex rational degree 3/2

Trapezoid graph for proximity queries

- x-node() degree 3
- y-node() degree 6

Voronoi diagram

- region
- edge
- vertex rational degree 3/2

Trapezoid graph for proximity queries

- x-node() degree 3
- y-node() degree 6

Voronoi diagram

- region
- edge
- vertex rational degree 3/2

Trapezoid graph for proximity queries [LPT99]

- x-node() degree 1
- y-node() degree 2

Voronoi diagram

- region
- edge
- vertex rational degree 3/2

Trapezoid graph for proximity queries [LPT99]

- x-node() degree 1
- y-node() degree 2

This is a degree 2 trapezoid graph.

Precision of Constructing the Voronoi Diagram

Three well-known Voronoi diagram constructions.

Sweepline[F87] - degree 6

Divide and Conquer[GS86] - degree 4

Tracing[SI92] - degree 4

Precision of Constructing the Voronoi Diagram

Three well-known Voronoi diagram constructions.

	epline[F87] degree 6
How do we build a degree 2 trapezoid graph for proximity queries when we can't even construct a Voronoi vertex?	de and Conquer[GS86] degree 4
	ing[SI92] degree 4
	-

Implicit Voronoi diagram [LPT99]

Implicit Voronoi diagram is disconnected.

RP-Voronoi [MS09]

Given *n* sites in \mathbb{U} .

RP-Voronoi

Rand inc construction of the RP-Voronoi of n sites in \mathbb{U} .

- Time: $O(n \log(Un))$ expected
- Space: O(n) expected
- Precision: degree 3

Implicit Voronoi

Construct LPT's implicit Voronoi from RP-Voronoi.

- Time: *O*(*n*)
- Space: O(n) expected
- Precision: degree 3

RP-Voronoi [MS09]

Given *n* sites in \mathbb{U} .

Voronoi Polygon Set

 Voronoi polygon is the convex hull of the grid points in a Voronoi cell.

Voronoi Polygon Set

- Voronoi polygon is the convex hull of the grid points in a Voronoi cell.
- Gaps
Voronoi Polygon Set

- Voronoi polygon is the convex hull of the grid points in a Voronoi cell.
- Gaps
- Total size $\Theta(n \log U)$.

 Proxy segment represent Voronoi polygons.

20/37

 Proxy segment represent Voronoi polygons.

- Proxy segment represent Voronoi polygons.
- Proxy trapezoidation trapezoidation of the proxies.

- Proxy segment represent Voronoi polygons.
- Proxy trapezoidation trapezoidation of the proxies.
- Voronoi Trapezoidation split the trapezoids of the Proxy trapezoidation with bisectors.

- Proxy segment represent Voronoi polygons.
- Proxy trapezoidation trapezoidation of the proxies.
- Voronoi Trapezoidation split the trapezoids of the Proxy trapezoidation with bisectors.

Proxy Trapezoidation is a degree 2 trapezoid graph.

Proxy Trapezoidation [MS10]

Given *n* sites in \mathbb{U} .

Proxy Trapezoidation construction

- Time: O(n log n log U) expected*
- Space: O(n) expected
- Precision: degree 2

Queries on Proxy Trapezoidation

- Time: O(log n)
- Precision: degree 2
- * Analysis of [MS10] is incomplete.

Completing the analysis of [MS10]

Proxy trapezoidation is built with a randomized incremental construction (RIC).

Analysis of [MS10] used the RIC construction framework from the dutch book.

Define: For a grid point g, a set of sites R certifies that g is the right end point for the proxy of s if all grid points right g are closer to a site in R than s.

To complete Analysis of [MS10], I need to prove:

Lemma

The maximum number of sites of S required to certify that a grid point is a right end point of a proxy segment is constant.

Should I be unable to complete the analysis, I will explore whether a divide-and-conquer algorithm can yield a sub-quadratic time degree 2 construction.

Should that be unsuccessful, I will implement our RIC degree 2 algorithm and observe the experimental running time, implement the degree 3 solution, and provide book-quality code and experimental results for both.

Should I be unable to complete the analysis, I will explore whether a divide-and-conquer algorithm can yield a sub-quadratic time degree 2 construction.

Should that be unsuccessful, I will implement our RIC degree 2 algorithm and observe the experimental running time, implement the degree 3 solution, and provide book-quality code and experimental results for both.

Should I be unable to complete the analysis, I will explore whether a divide-and-conquer algorithm can yield a sub-quadratic time degree 2 construction.

Should that be unsuccessful, I will implement our RIC degree 2 algorithm and observe the experimental running time, implement the degree 3 solution, and provide book-quality code and experimental results for both.

Should I be unable to complete the analysis, I will explore whether a divide-and-conquer algorithm can yield a sub-quadratic time degree 2 construction.

Should that be unsuccessful, I will implement our RIC degree 2 algorithm and observe the experimental running time, implement the degree 3 solution, and provide book-quality code and experimental results for both.

Ch. 4: Nearest Neighbor Transform

Goal: Compute Nearest Neighbor Transform with degree 2. I propose to provide:

- degree 2 algorithm
- analysis and implementation
- book-quality code
- experimental results

Nearest Neighbor Transform

Given A grid of size U and Sites $S = \{s_1, \ldots, s_n\} \subset \mathbb{U}$

Label

Each grid point of $\mathbb U$ with the closest site of S

Nearest Neighbor Transform

Given A grid of size U and Sites $S = \{s_1, \ldots, s_n\} \subset \mathbb{U}$

Label

Each grid point of $\mathbb U$ with the closest site of S

	Alg	Time
Brute Force	deg 2	$O(nU^2)$
Query the Voronoi diagram	deg 4	$O(U^2 \log n)$
Nearest Neighbor Trans. [B90]	deg 4	$O(U^2)$
Dim. Reduction [C06,MQR03]	deg 3	$O(U^2)$
GPU Cone Rendering [H99]	-	$\Theta(nU^2)$
GPU Dim Reduction [CTM*10]	deg 3	$O(U^2)$

Example of processing one row

Example of processing one row

Example of processing one row

Example of processing one row

Two steps:

- (1) Reduce to at most 2U sites.
- (2) Compute the intersection of the Voronoi diagram of the reduced set of sites with a line though the row.

Example of processing one row

Two steps:

- (1) Reduce to at most 2U sites.
- (2) Compute the intersection of the Voronoi diagram of the reduced set of sites with a line though the row.

Example of processing one row

Two steps:

- Reduce to at most 2*U* sites.
 Compute the intersection of the Voronoi diagram of the
 - reduced set of sites with a line though the row.

Example of processing one row

Two steps:

(1) Reduce to at most 2U sites.

(2) Compute the intersection of the Voronoi diagram of the reduced set of sites with a line though the row.

Example of processing one row

Two steps:

(1) Reduce to at most 2U sites.

(2) Compute the intersection of the Voronoi diagram of the reduced set of sites with a line though the row.

Nearest Neighbor Transform [CMS09]

Compute 2D Nearest Neighbor Transform

- Time: $O(U^2)$ expected time.
- Space: *O*(*n* + *U*)
- Precision: degree 2

Assuming $O(n \log n) < O(U^2)$

Compute Voronoi Polygon Set

- Time: $O(U^2)$ expected time
- Space: $O(n \log U)$ and O(n) for proxies only
- Precision: degree 2

Query Post Office Structure

- Time: O(log n) expected
- Precision: degree 2

Goal: Our solution, written up in [CMS09], only contains a sketch of the construction, without analysis. In this chapter I propose to provide the details of the construction, analysis, book-quality code, and experimental results for our implementation.

28/37

Goal: Our solution, written up in [CMS09], only contains a sketch of the construction, without analysis. In this chapter I propose to provide the details of the construction, analysis, book-quality code, and experimental results for our implementation.

Ch. 5: Triangulations

Goals: Compute Triangulation with degree 2 or degree 3. I propose to provide:

- deg 2 or deg 3 algorithm
- analysis and implementation
- book-quality code
- experimental results

Triangulations

Given

A grid of size U and sites $S = \{s_1, \ldots, s_n\} \subset \mathbb{U}$

Compute

A planar subdivision with vertices in *S* and edges such that no more edges can be added without causing the subdivision to become non-planar

Delaunay Triangulation

InCircle

Delaunay Triangulation

InCircle

degree 4

How can we compute a triangulation with less than degree 4, and what are some properties of this triangulation?

Ideas for Computing a Triangulation

Use low degree algorithms to compute a subset of known Delaunay edges.

Then, complete add edges to complete a triangulation.

Ideas for Computing a Triangulation

Convex Hull w/ h hull vertices: Melkman[M87], $O(n \log n)$, deg 2 Chan [C96], $O(n \log h)$, deg 2

Orientation deg 2

Gabriel Graph

Defn: An edge \overline{pq} is in the Gabriel graph of *S* if the closed disk centered at the midpoint of \overline{pq} with diameter $|\overline{pq}|$ contains no points other than *p* and *q*.

Gabriel Graph

Defn: An edge \overline{pq} is in the Gabriel graph of *S* if the closed disk centered at the midpoint of \overline{pq} with diameter $|\overline{pq}|$ contains no points other than *p* and *q*.

Gabriel Graph

Defn: An edge \overline{pq} is in the Gabriel graph of *S* if the closed disk centered at the midpoint of \overline{pq} with diameter $|\overline{pq}|$ contains no points other than *p* and *q*.

Proposed by: Gabriel and Sokal [GS69]

Compute Gabriel from Delaunay: [MS80] O(n) time, degree 6 [L96] O(n) time, degree 2

Directly compute Gabriel graph: Brute force, $O(n^3)$ time, degree 2

Defn: Replace connected subtrees of Voronoi edges inside a cell with their convex hulls

Captures any Voronoi edge longer that $\sqrt{2}$.

34/37

Defn: Replace connected subtrees of Voronoi edges inside a cell with their convex hulls

Defn: Replace connected subtrees of Voronoi edges inside a cell with their convex hulls

Defn: Replace connected subtrees of Voronoi edges inside a cell with their convex hulls

Defn: Replace connected subtrees of Voronoi edges inside a cell with their convex hulls

Defn: Replace connected subtrees of Voronoi edges inside a cell with their convex hulls

Timeline

• June 1, 2011 Draft chapters of:

- Ch. 2: Geometric Primitives
- Ch. 4: Nearest Neighbor Transform
- Sept 1, 2011 Implementation of:
 - degree 2 and/or degree 3 Voronoi construction.
 - a degree 2 or degree 3 triangulation.

Teach in the Fall:

- Jan 1, 2012 Drafts of:
 - Ch. 3: PO Queries
 - (status) Ch. 5: Triangulations
- March 1, 2012 Draft of:
 - Ch. 5: Triangulations
- ~April 1, 2012 Defense.

Teach in the Spring:

- Oct 15, 2012 Draft of:
 - Ch. 3: PO Queries
- Dec 15, 2012 Draft of:
 - Ch. 5: Triangulations
- ~March 1, 2012 Defense

Thesis Statement: Degree-driven analysis supports the development of new, robust geometric algorithms, as I have demonstrated for computing Post-office query search structures, Nearest Neighbor Transforms, and Triangulations.