
Actions and Impediments for Technical Debt Prevention: Results

from a Global Family of Industrial Surveys

Sávio Freire
Federal University of Bahia
Federal Institute of Ceará

Brazil
savio.freire@ifce.edu.br

Nicolli Rios
Federal University of Bahia

Brazil
nicollirioss@gmail.com

Manoel Mendonça
Federal University of Bahia

Brazil

manoel.mendonca@dcc.ufba.br

Davide Falessi
California Polytechnic State

University United States

dfalessi@calpoly.edu

 Carolyn Seaman
Univ. of Maryland Baltimore County

United States

cseaman@umbc.edu.org

Clemente Izurieta
Montana State University

United States

clemente.izurieta@montana.edu

Rodrigo O. Spínola
Salvador University

State University of Bahia

Brazil

rodrigo.spinola@unifacs.br

ABSTRACT1

Background: Preventing the occurrence of technical debt (TD) in

software projects can be cheaper than its payment. Prevention

practices also help in catching inexperienced developers’ ‘not-so-

good’ solutions. However, little is known on how to prevent the

occurrence of TD. Aims: To investigate, from the point of view of

software practitioners, preventive actions that can be used to curb

the occurrence of TD and the impediments that hamper the use of

those actions. Method: We use data from the InsighTD Project, a

family of industrial surveys specifically designed to study

software engineering TD. We use a corpus of answers from 207

practitioners across different geographic locations to identify and

analyze – both quantitatively and qualitatively – the TD

preventive actions most used in practice. Results: We found that

project planning, adoption of good practices, well-defined

requirements, creating tests, and training are the most cited

preventive actions that curb TD in software projects. We also

identified seven preventive action categories and defined

relationships among them and TD types. On the other hand, the

main impediments to prevent TD are related to inappropriate

project planning and lack of expertise of the team. Conclusions:

Our list of preventive actions and impediments can help

practitioners to implement policies for the sector and guide TD

researches in a problem-driven way.

CCS CONCEPTS

• General and reference → Empirical studies • Software and

its engineering → Maintaining software

© 2020 Association for Computing Machinery. ACM acknowledges that this

contribution was authored or co-authored by an employee, contractor or affiliate of a

national government. As such, the Government retains a nonexclusive, royalty-free

right to publish or reproduce this article, or to allow others to do so, for Government

purposes only.

SAC '20, March 30-April 3, 2020, Brno, Czech Republic

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6866-7/20/03…$15.00

DOI: https://doi.org/10.1145/3341105.3373912

KEYWORDS

Technical debt, technical debt management, technical debt

prevention, preventive actions, survey, InsighTD

ACM Reference format:

S. Freire, N. Rios, M. Mendonça, D. Falessi, C. Seaman, C. Izurieta, and

R. O. Spínola. 2020. In Proceedings of ACM SAC Conference, Brno,

Czech Republic, March 30- April 3, 2020 (SAC’20), 8 pages. DOI:

https://doi.org/10.1145/3341105.3373912

1 INTRODUCTION

Technical debt (TD) describes the effects of developing immature

artifacts during software projects, bringing benefits in the short

term, but risking high payment with interest later in the project life

cycle. The benefits can be observed as higher productivity and

lower costs, while "interest" is associated with unexpected delays

in system evolution and difficulty in achieving quality criteria

defined for the project [1, 2]. TD can be a good investment as long

as the project team knows about its presence and the increased

risks it imposes on the project [3]. If properly managed, TD can

help the project achieve its goals sooner or more cheaply. On the

other hand, if debt items are unmanaged, they can cause financial

and technical problems, increasing software maintenance and

evolution costs, leading to a situation where the whole future of the

software is jeopardized [4, 5].

Several research articles have addressed TD, seeking to identify

strategies, tools, and activities for its management [6, 7]. However,

little has been published about how to prevent the occurrence of

TD in software projects [6]. This issue deserves investigation

because it is fair to expect that TD prevention can sometimes be

“cheaper” than its repayment. Moreover, prevention may also help

other TD management activities. For example, setting up

prevention practices helps in catching inexperienced developers’

‘not-so-good’ solutions [8].

A preventive action is an intentional activity, aligned with the

project management plan, that ensures the future performance of

SAC’20, March 30 –April 3, 2020, Brno, Czech Republic S. Freire et al.

the project work [9]. When applied to TD, preventive actions can

support the development team in applying good practices that

minimize the occurrence of debt.

The goal of this work is to investigate, from the point of view of

software practitioners, the preventive actions that can be used to

avoid the occurrence of TD and the impediments that hamper the

application of these actions. This work uses data collected by the

InsighTD Project 2 , which is a globally distributed family of

industrial surveys on the causes and effects of TD [10]. A total of

207 professionals from the Brazilian and North American software

industry responded the first round of surveys. This work analyzes

this data through qualitative and quantitative strategies. First, it

characterizes the study participants. Then, it identifies the

participants that indicated that it was possible to prevent the

occurrence of debt, and qualitatively analyzes the preventive

actions cited by them. For those who indicated that it was not

possible to curb the occurrence of TD, it qualitatively analyzes the

possible impediments for TD prevention.

Results show that following project planning, adoption of good

practices, well-defined requirements, creating tests, and training

are the most cited preventive actions to minimize the occurrence

of TD in software projects. The results also point out seven

categories of preventive actions and the relationships among each

one and TD types. These relationships provide an indication on

how those actions are used to minimize the occurrence of a TD

type, giving hints on how to be prepared to and, when necessary,

fight against the presence of TD.

Alternatively, the main impediments to prevent TD are related to

inappropriate project planning and managing, inappropriate

software development process, and lack of expertise and maturity

of the team.

This paper has implications for practitioners and researchers. For

practitioners, it presents the main preventive actions and

impediments faced by software teams, which can be used to

support decision making regarding the definition of strategies to

minimize the occurrence of debt in projects. For researchers, the

results shed new light on how to prevent TD. The results,

originating from the software industry, provide a matter-of-fact

direction of demands that need to be better understood in the area.

This paper is organized in six other sections. Section 2 presents

background about the InsighTD project, and TD management and

its prevention. Section 3 discusses the research method. Then,

Section 4 presents and discusses the results of InsighTD

concerning TD prevention. The implications of the study for both

researchers and practitioners are presented in Section 5. Section 6

discusses the threats to validity. Lastly, Section 7 presents some

final remarks and the next steps of this work.

2 BACKGROUND

This section introduces the InsighTD Project and TD management

concepts related to this work.

2 http://td-survey.com/

2.1 The InsighTD Project

InsighTD is a globally distributed family of industrial surveys

initiated in 2017. Planned cooperatively among TD researchers

from around the world, the project aims to organize an open and

generalizable set of empirical data on the state of practice and

industry trends in the TD area. This data includes the causes that

lead to TD occurrence, the effects of its existence, how these

problems manifest themselves in the software development

process, and how software development teams react when they are

aware of the presence of debt items in their projects. Its design

establishes the foundations for the survey to be continuously

replicated in different countries. Up to date, researchers from 11

countries (Brazil, Colombia, Chile, Costa Rica, Finland, India,

Italy, Norway, Saudi Arabia, Serbia, and the United States) have

joined the project. At the moment, we have concluded data

collections of the InsighTD replications in Brazil and the United

States.

Rios et al. [10] discussed the basic survey design and the

preliminary results of the first round of InsighTD. In that paper, the

authors focus on the discussion on the top 10 causes and effects of

TD. Rios et al. [11] complemented the discussion of the previous

work, focusing specifically on the causes and effects of TD in agile

software projects. More recently, Rios et al. [12] proposed the use

of cross-company probabilistic cause-effect diagrams to represent

information about the TD causes and effects being analyzed.

Although significant analysis has already been conducted over the

available InsighTD data, much still remains to be studied. In

particular, the data has yet to be analyzed with regards to TD

prevention.

2.2 Technical Debt Management and its

Prevention

Technical debt management facilitates decision-making about the

need to eliminate a debt item and the most appropriate time to do

this [13]. If adequately managed, TD can help the project to

achieve its goals sooner or more cheaply. Thus, the management of

TD focuses on reducing its negative impact, being a decisive factor

for the success of software projects.

Li et al. [14] conducted a systematic mapping study of the

literature to understand the state of the art concerning TD

management. The authors list eight activities related to TD

management: identification, quantification, prioritization,

prevention, monitoring, payment, documentation, and

communication. From the results of a tertiary study of the area,

Rios et al. [6] added the following activities to the previous list:

TD visualization, time to market analysis, and scenario analysis.

Rios et al. [6] also analyze existing strategies and tools that support

the implementation of each of these activities. No tool or strategy

was identified to support TD prevention activities.

More recently, Rios et al. [15] investigated if TD can be prevented,

and if, in terms of effort, it is better to prevent debt or incur it and

pay it off later on. Through an interview-based case study with ten

practitioners, the authors indicate that debt can be prevented, and it

is better to work on prevention activities than to pay it off later on.

Actions and Impediments for Technical Debt Prevention SAC’20, March 30- April 3, 2020, Brno, Czech Republic

 3

Thus, although there are already research articles indicating the

importance of focusing on the prevention of TD items, little is

known about possible TD preventive actions, as well as

impediments that may hamper taking these actions in a software

organization. These issues are precisely the topic addressed in this

paper.

3 RESEARCH METHOD

3.1 Research Questions

In order to achieve our goal, we defined the following main

Research Question (RQ) “How do software development teams

prevent technical debt in their projects?”. The goal of this RQ is

to identify the main actions that software practitioners can use to

prevent the occurrence of TD. To investigate it, we broke down

this question into the following sub-questions:

RQ1: Can development teams prevent the occurrence of TD in

software projects? This question conveys our pre-conception that

TD can be prevented. Through it, we will explore practitioners’

responses to the InsighTD dataset and calculate how often TD

items could be prevented.

RQ2: What are the main preventive actions indicated by software

development teams to prevent TD? This question seeks to

investigate the possible kinds of preventive actions and the most

commonly cited actions used to minimize the occurrence of debt.

RQ3: What are the main preventive actions indicated by software

development teams to curb the occurrence of each TD type? This

question is aimed at identifying the preventive actions used to

prevent each TD type, such as, architecture, code, design, and test

debt.

RQ4: What are the impediments to preventing TD? The purpose of

this question is to investigate the possible impediments that

contribute to the non-application of TD preventive actions.

3.2 Data Collection

The data were collected in the context of the InsighTD project. The

InsighTD questionnaire consists of 28 questions. Table 1 presents

the subset of the survey’s questions related to the context of this

work. Q1 to Q8 capture the characterization questions, Q9 and Q10

identify participants’ knowledge level on TD, Q13 and Q15 ask

participants to provide an example of TD item that occurred in

their project (this example would then be used as the basis for

answering questions about prevention) and representativeness of

this example, respectively, and in Q22, Q23, and Q28, the

participants answer questions about TD prevention.

The questionnaire was only sent to practitioners, because the

objective of InsighTD is to investigate the state of the practice of

TD. Some keywords related to software development activities and

roles were used in LinkedIn to identify the participants. Also,

invitations were sent to industry-affiliated member groups, mailing

lists, and industry partners. The same strategy was applied both in

Brazil and in the United States.

3.3 Data Analysis

Because the questionnaire is composed of closed and open

questions, the work adopted several data analysis procedures. For

closed questions, we used descriptive statistics to get a better

understanding of the data. To verify the central tendency of the

ordinal and interval data, we used the mode and median statistics.

By calculating the share of participants choosing each option, we

could analyze the nominal data. This data analysis procedures

support responding to RQ1.

To analyze the open questions on preventive actions for TD, we

applied qualitative data analysis techniques [16, 17]. Based on the

answers given to Q23 and Q28, we followed an inductive logic

approach. We applied manual open coding to responses of Q23

and Q28. Initially, the first author coded the set of all answers for

three subsets. Two subsets represented the preventive actions, and

they were formed in two different ways: either by the answers to

Q23 when the participants’ responses were positive for Q22 or by

these answers and the answers for Q28. Both of the subsets support

responding to RQ2. The other subset was composed of the answers

to Q23 when the participants’ responses were negative for Q22,

revealing impediments to preventing TD (RQ4). The second

author’s role was to review all codes. Disagreements were resolved

by the last author. Next, we analyzed the extracted codes in both

subsets, identifying the codes that had the same meaning. This

process resulted in the final list of a set of standard codes. Finally,

we derived higher level categories using axial coding [17]. This

process was performed iteratively until reaching the state of

saturation, i.e., a point where no new codes or categories were

identified.

An example of this process is as follows: two participants cited the

following ways to prevent TD: “Better planning, better allocation

Table 1: Subset of the InsighTD survey’s questions related to

TD prevention (adapted from [10])

No. Question (Q) Type

Q1 What is the size of your company? Closed

Q2 In which country you are currently working? Closed

Q3 What is the size of the system being developed in that

project? (LOC)

Closed

Q4 What is the total number of people of this project? Closed

Q5 What is the age of this system up to now or to when your

involvement ended?

Closed

Q6 To which project role are you assigned in this project? Closed

Q7 How do you rate your experience in this role? Closed

Q8 Which of the following most closely describes the

development process model you follow on this project?

Closed

Q9 How familiar you are with the concept of Technical Debt? Closed

Q10 In your words, how would you define TD? Open

Q13 Give an example of TD that had a significant impact on

the project that you have chosen to tell us about:

Open

Q15 About this example, how representative it is? Closed

Q22 Do you think it would be possible to prevent the type of

debt you described in question 13?

Closed

Q23 If yes, how? If not, why? Open

Q28 Considering your personal experience with TD

management, what actions have you performed to prevent

its occurrence?

Open

SAC’20, March 30 –April 3, 2020, Brno, Czech Republic S. Freire et al.

of technical staff in the project,” and “Through better sprint

planning and/or time flexibility.” The extracted codes were better

planning, allocation of technical staff, better sprint planning, and

time flexibility. As better planning and better sprint planning are

different nomenclature for the same preventive action, we unified

them as well-defined planning. Immediately following the

extraction of codes, we identified the following final list of codes:

well-defined planning, allocation of technical staff, and time

flexibility. Finally, these codes were categorized as following a

well-defined project planning because all of them are related to

project planning issues.

To answer RQ3, we considered the example given for each

participant in Q13. By using a list of TD indicators [18], the second

author identified the TD type of each example (Q13). The last

author reviewed the obtained results. We then associated the

preventive actions coded in Q23 with TD types.

4 RESULTS AND DISCUSSION

The survey was applied in Brazil between December 2017 and

January 2018. The replication in the United States occurred

between February and April of 2019. In total, 207 professionals

from the software industry answered the survey questions (107

from Brazil and 100 from the United States). Only the responses of

professionals with previous knowledge on TD were considered in

the dataset. We did this filter by analyzing the answers for Q10 and

Q13, in which we identified if the understanding of the participant

was aligned with the concept of TD considered in the InsighTD

project [10]. Several participant roles were described (see Table 2),

however, the vast majority identified as developers. The roles of

project manager, software architect, tester, and requirements

analyst also stood out. With regards to the participant’s level of

experience, we considered the following rank of categories to

group the participants: novice, beginner, competent, proficient, and

expert. Most participants indicated they were proficient (~36%),

followed by expert (~29%), competent (~23%), beginners (~12%),

and novice (~1%).

Organizations of different sizes are represented in the dataset. Most

of them are medium-sized companies (39%, organizations with 51

to 1000 employees), followed by large (37%, more than 1000

employees) and small (24%, up to 50 employees). Regarding the

processes used in the projects, 49% were agile, 39% hybrids, and

12% traditional. Team sizes are varied; however, participants

mainly work in teams of 10-20 people (28%). Other team sizes

included teams with 5-9 people (26%), less than 5 people (20%),

more than 30 people (20%), and 21-30 people (6%). The most

common system age was between 2 to 5 years old (36%), followed

by 1 to 2 years old (23%), 5 to 10 years old (16%), less than 1-

year-old (15%) and more than ten years old (10%). The systems

were typically between 10 KLOC and 1 million LOC (55%) in

size, but we found systems with less than 10 KLOC (19%), from 1

to 10 million LOC (18%), and more than 10 million LOC (7%) in

size.

In summary, the dataset reflects the Brazilian and North American

software industry diversity, containing different roles of

practitioners and levels of experience, organizations with different

sizes, and projects with different age, size, team size, and process

models.

4.1 Can development teams prevent the

occurrence of TD in software projects? (RQ1)

Initially, we asked (Q22) whether it would be possible to prevent

the specific TD item described by the participant in question Q13.

Of the total, 184 (88%) of participants indicated that it would be

possible. This result is a relevant percentage since the majority of

participants (82%) indicated (in Q15) that their example was

relevant, and is a kind of situation that happens very often or

occurs from time to time in the project.

4.2 What are the main preventive actions

indicated by software development teams to

prevent TD? (RQ2)

Fig. 1 shows the top 10 most commonly cited preventive actions

for TD from a total of 136 identified actions, as informed by the

207 participants in Q23 and Q28. The complete list of preventive

actions is publicly available at the following URL:

http://bit.ly/35hyswB. We can observe that following the project

planning, adoption of good practices, well-defined requirement,

creating tests, and training are the most cited preventive actions

that are used to minimize the occurrence of TD. These actions

Figure 1: Top 10 cited preventive actions for TD

Table 2: Participant Roles

Role # %

Developer 100 48.1%

Project Leader / Project Manager 31 15%

Software Architect 27 13%

Test Manager / Tester 18 8.7%

Requirements Analyst 11 5.3%

Process Analyst 4 2.4%

Database Administrator 3 1.4%
Infrastructure Analyst 3 1.4%

Performs multiple functions 3 1.4%

Business Analyst 2 1%

Configuration Manager 2 1%

Quality Analyst 2 1%

Data Scientist 1 0.5%

Caption:

- Quantity of participant roles

% - Percentage of participant roles

Actions and Impediments for Technical Debt Prevention SAC’20, March 30- April 3, 2020, Brno, Czech Republic

 5

were cited by almost 26% of the participants. Code evaluation,

following well-defined project process, risk and impact analysis,

well-defined documentation, and refactoring are other well cited

preventive actions reported by at least 17% of the participants.

When we look at the top 10 preventive actions, three sets of actions

stand out. In the first one, adoption of good practices, well-defined

architecture, refactoring, code evaluation, well-defined

requirements, and creating tests are related to quality control and

software development. The actions following the project planning,

risk and impact analysis, and following well-defined project

process are associated with project planning and process. Lastly,

the improvement of the technical level of the team is also

commonly cited through the action training. The top 10 preventive

actions correspond to ~44% of the overall frequency of citations.

From the grouping of all 136 actions, we identified the following

seven categories of preventive actions:

• Following a well-defined project planning: is related to the

actions associated with project planning activities. Among

them, we highlight following the project planning, risk and

impact analysis, well-planned deadlines, effective monitoring,

and appropriate tasks allocation;

• Adopting of good practices for software development:

includes the actions related to software development

activities, such as adoption of good practices, well-defined

documentation, well-defined architecture, project design,

appropriate use of design patterns, and use the most

appropriate version of the technology;

• Having an effective team: encompasses the actions that

improve the technical knowledge and the motivation of the

team. Among them, we highlight training, good

communication on the team, good allocation of resources in

the team, readiness of team, and focus;

• Controlling and measuring the quality in the project:

groups actions associated to quality assurance, such as:

creating tests, code evaluation, refactoring, creating

automated tests, and code standardization;

• Controlling and negotiating the software requirements:

includes actions related to requirements engineering activities.

Among them, we highlight well-defined requirement, good

communication between stakeholders, well-defined scope

statement, requirements change tracking and customer

commitment;

• Following and improving a well-defined process: organizes

the actions associated to process and its management, such as:

following well-defined project process, iterative process,

flexibilization in the defined process, improving software

development process, and understanding the development

process followed by the team;

• Identifying, managing, and estimating TD: contains the

actions applied to the TD management. Among them, we

highlight implementation of a TD payment strategy, TD

monitoring, implementation of a TD identification strategy,

and prioritization of TD payment.

Table 3 shows the identified categories, reporting the number of

preventive actions cited without repetition (#PA) and the total

number (i.e., count) of actions (#CA) cited in each category.

Column %CA indicates the percentage of #CA in relation to the

total of all cited actions. We can observe that the three most cited

categories by survey participants represent 64% of the total

citations, indicating that those categories play a central role in TD

prevention initiatives. The categories having an effective team and

controlling and negotiating the software requirements were also

commonly remembered by the practitioners as being relevant when

preventing TD.

The category identifying, managing, and estimating TD,

corresponds to only 6%, indicating that few participants explicitly

think of the management of TD as a preventive action in it of itself.

This result is expected since most of the TD management activities

occur after the debt is already inserted in the project. Finally,

despite the fact that the category following and improving a well-

defined process has only been cited by 6% of the participants,

almost all citations in this category refer to the preventive action

following a well-defined project process.

4.3 What are the main preventive actions

indicated by software development teams to

curb the occurrence of each TD type? (RQ3)

To answer the RQ3, we analyzed two relationships: between TD

types and preventive actions, and between TD types and

preventive action categories. The first analysis reveals a list of

preventive actions by type of debt while a list of preventive action

categories by TD type is evidenced in the second analysis.

4.3.1 Preventive Action by TD Type. Table 4 shows the

identified preventive actions that have the highest number of

relationships with TD types. The complete data is available at

http://bit.ly/2LN9JbS. In this table, we report the number of

technical debt types (#TDT) that are related to each preventive

action. Higher #TDT indicates that a preventive action can have a

broad impact in terms of preventing several types of debt.

Through quantitative analysis, we can notice that the preventive

action following the project planning is related to nine TD types,

while the preventive actions following well-defined project

Table 3: Relationship between Categories and Preventive

Actions

Category #PA #CA %CA

Adopting of good practices for software

development

31 114 23%

Controlling and measuring the quality in the

project

28 107 21%

Following a well-defined project planning 21 99 20%

Having an effective team 26 72 14%

Controlling and negotiating the software
requirements

9 47 9%

Identifying, managing, and estimating TD 12 31 6%

Following and improving a well-defined

process

9 29 6%

Caption:

#PA - Number of preventive actions cited without repetition.

#CA - Count of actions cited in each category.

%CA - Percentage of #CA in relation to the total of all cited actions.

SAC’20, March 30 –April 3, 2020, Brno, Czech Republic S. Freire et al.

process and training are related to seven types. By looking at

Table 4, we can also observe that the first seven positions could

help the prevention of at least five different TD types. Comparing

the preventive actions presented in Table 4 to ones presented in

Fig.1, only the preventive actions creating tests and code

evaluation are not common in both. This is an indication that,

despite them being commonly considered by development teams,

they have limited impact in terms of the number of types of debt

that could be prevented by using them

Table 5 details the most commonly cited preventive actions and

their respective types of debt. The complete data is available at

http://bit.ly/2Eav0I8. The quantity of relationships among a TD

type and a preventive action is showed in parentheses. For

instance, we found the preventive action following well-defined

project process was related to architecture debt four times in our

analysis. We can observe that of the 15 types of TD evidenced by

Rios et al. [6], only people debt and build debt do not have any

associated preventive action. Except service debt and versioning

debt, TD types are associated with at least one preventive action

(highlighted in bold) contained in the Top 10 presented in Fig. 1.

4.3.2 Preventive Action Category by TD Type. Table 6 presents

the relationship between preventive action categories and TD

types. To create this relationship, we considered that if a preventive

action of a category was related to a type of debt, then this category

would also be related to that type. We can observe that each

category of preventive action is related to at least seven types of

TD. Therefore, combining preventive actions from different

categories can be a good strategy for curbing the presence of

different TD items at the same time.

Table 7 details the relation of each TD type to each category,

reporting the number of times (#) that a TD type was found in

each category. We used acronyms to identify each preventive

action category, such as AD for the category adopting of good

practices for software development, CP for the category

controlling and measuring the quality in the project, FP for the

Table 4: Relationship between Preventive Actions and TD

Types

Preventive Action #TDT

Following the project planning* 9

Following well-defined project process 7

Training 7

Good communication between stakeholders 6

Adoption of good practices 5
Risk and impact analysis 5

Well-defined requirement 5

Implementation of a TD payment strategy 4

Project design 4

Quality control 4

Readiness of team 4

Refactoring 4

TD monitoring 4
Well planned deadlines 4

Well-defined architecture 4

Well-defined documentation 4

Caption:

#TDT - Number of TD types associated with the preventive action.

* Preventive actions in common with Fig. 1 are highlighted in bold.

Table 5: Most cited Preventive Action for TD Type

TD Type Preventive Action

Architecture

Debt

- Following well-defined project process (4)*

- Following the project planning (3)

- Well-defined architecture (3)

- Training (2)
- Use the most appropriate version of the technology (2)

Code Debt - Well-defined requirement (4)

- Code evaluation (3)

- Code standardization (3)

- Adoption of good practices (2)

- Following the project planning (2)

Debt Automation

Test

- Creating automated tests (1)
- Following the project planning (1)

- Implementation of a TD payment strategy (1)

- Task automatization (1)

Defect Debt - Training (1)

- Version control (1)

- Well-defined architecture (1)

Design Debt - Following the project planning (2)

- TD monitoring (2)
- Well-defined architecture (2)

- Well-defined requirement (1)

- Risk and impact analysis (1)

Documentation

Debt

- Well-defined documentation (5)

- Following the project planning (4)

- Appropriate tasks allocation (2)

- Training (2)
- Well-defined requirement (2)

Infrastructure

Debt

- Following the project planning (2)

- Adoption of good practices (1)

- Focus (1)

- Refactoring (1)

- Using Components (1)

Process Debt - Following the project planning (6)

- Following well-defined project process (3)
- Refactoring (3)

- Risk and impact analysis (3)

- Well-defined requirement (3)

Requirement

Debt

- Well-defined requirement (8)

- Following the project planning (5)

- Following well-defined project process (2)

- Good allocation of resources in the team (2)

- Scope statement (2)
Service Debt - Following architectural pattern (1)

- Framework update (1)

Test Debt - Creating tests (7)

- Following the project planning (4)

- Refactoring (3)

- Risk and impact analysis (3)

- Training (3)
Usability Debt - Adoption of good practices (1)

Versioning Debt - Organizing code repository (1)

- Using continuous integration (1)

* The number in parentheses represents the quantity of relationships among a TD

type and a preventive action.

Table 6: Relationship between Preventive Action Categories

and TD Types

Category #NT

Adopting of good practices for software development 12

Controlling and measuring the quality in the project 10

Following a well-defined project planning 9

Having an effective team 9

Identifying, managing, and estimating TD 8
Controlling and negotiating the software requirements 7

Following and improving a well-defined process 7

Caption:

#NTT - Number of TD types cited.

Actions and Impediments for Technical Debt Prevention SAC’20, March 30- April 3, 2020, Brno, Czech Republic

 7

category following a well-defined project planning, HT for the

category having an effective team, CR for the category controlling

and negotiating the software requirements, ID for the category

identifying, managing, and estimating TD, and FW for the

category following and improving a well-defined process. Thus,

for example, #AD represents the quantity of TD types found out

within the category adopting of good practices for software

development.

Based on the high number (highlighted in bold and underlined in

Table 7) of TD types contained in each category, we notice that

architecture debt, defect debt, design debt, infrastructure debt,

process debt, service debt, usability debt, and versioning debt items

could be mainly prevented by considering preventive actions from

the category adopting of good practices for software development.

In addition to using this category, code debt and design debt items

could be curbed by using preventive actions from the categories

having an effective team and identifying, managing, and estimating

TD, respectively. Preventive actions from the category following a

well-defined project planning could be employed for preventing test

debt, documentation debt, and debt automation test items. For

requirement debt items, preventive actions from the category

controlling and negotiating the software requirements seem to be a

good starting point.

4.4 What are the impediments to preventing TD?

(RQ4)

In the questionnaire (Q22), participants indicated whether it would

be possible to prevent the TD item reported in Q13. Only 24

(~11%) of them answered that prevention could not be achieved,

reporting eighteen situations that hinder the prevention of TD. The

most cited reasons were short deadlines (7) (with 7 citations), need

to reduce time to market (2), lack of concern about maintainability

(2), lack of technical knowledge (2), and lack of qualified

professionals (2). Despite the relatively small amount of response

data available for this question, the results suggest that the inability

to manage deadlines as well as issues involving the level of

knowledge of the team make it difficult to implement preventive

actions. The complete list of impediments is available at

http://bit.ly/2LQFH6P.

5 IMPLICATIONS FOR PRACTITIONERS

AND RESEARCHERS

Professionals who are initiating strategies to prevent the occurrence

of TD in their projects can use two criteria for choosing preventive

actions. The first criterion is to just consider the most commonly

used preventive actions as a starting point. In this sense, the results

reported in Fig. 1 and Table 3 would be useful since they provide a

ranking of the actions and categories that have most commonly

been considered in practice.

The second criterion is related to the combination of preventive

actions considering TD types. By this criterion, if team has

recurring problems with a specific TD type and is establishing a

strategy to support TD prevention from scratch, it can identify the

preventive actions that could be used together for a specific type

of debt. Professionals may use the information presented in Tables

4-7 to this end. If the team already has some prevention actions in

place and has recurring problems with a specified TD type, it

could observe the tables to identify other actions that are strongly

connected to the existing ones and consider including them in

their current prevention strategy. For example, if team has

problems with code debt items, according Table 7, preventive

actions arising from the category controlling and measuring the

quality in the project would be candidates for consideration.

Regarding the impediments to preventing TD, organizational

actions that lead to better technical qualifications of team and

negotiation of flexible deadlines with customers can also

potentially lead to a favorable scenario that minimizes the

occurrence of TD.

For researchers, the obtained results support the development of

new research on actions and impediments to TD prevention. The

presented top 10 list of preventive actions, the categories, the

relationship between preventive actions, categories, and TD types,

and the list of impediments can guide new investigations in a

problem-driven way.

6 THREATS TO VALIDITY

As in any empirical study, there are threats to validity in this work.

We attempted to remove them when possible and mitigate their

Table 7: Relationship between TD Types and Preventive

Action Categories

TD Type
Category of Preventive Action

#AD #CP #FP #HT #CR #ID #FW

Process Debt 14 7 12 2 5 1 4

Code Debt 8 11 8 10 6 2 2

Architecture

Debt

9 1 4 3 1 1 5

Design Debt 5 0 4 2 2 5 2

Infrastructure

Debt

2 1 2 1 0 2 0

Defect Debt 2 0 0 1 0 0 0

Service Debt 1 1 0 0 0 0 0

Versioning Debt 1 1 0 0 0 0 0

Usability Debt 1 0 0 0 0 0 0

Test Debt 4 15 14 5 3 3 2

Documentation

Debt

7 2 9 6 4 1 1

Debt

Automation Test

0 1 2 0 0 1 0

Requirement

Debt

3 1 8 5 12 0 4

Caption:

#AD - Quantity of TD types found out within the category adopting of good

practices for software development.

#CP - Quantity of TD types found out within the category controlling and

measuring the quality in the project.

#FP - Quantity of TD types found out within the category following a well-

defined project planning.

#HT - Quantity of TD types found out within the category having an effective

team.

#CR - Quantity of TD types found out within the category controlling and

negotiating the software requirements.

#ID - Quantity of TD types found out within the category identifying, managing,

and estimating TD.

#FW - Quantity of TD types found out within the category following and

improving a well-defined process.

SAC’20, March 30 –April 3, 2020, Brno, Czech Republic S. Freire et al.

effect when removal was not possible. In this work, the primary

threat to conclusion validity arises from the coding process as

coding is mainly a creative task. To mitigate this threat, the coding

process was performed individually by two researchers and

reviewed by one experienced researcher.

Concerning the internal validity, the questionnaire represents the

main threat that could affect this study. As indicated in [10], the

questionnaire only has direct questions, avoiding misunderstanding

that could lead to meaningless answers. Besides, the questionnaire

has passed through successive validation tasks (three internal and

one external) and a pilot study to detect any inconsistencies or

misunderstandings before executing the survey.

Finally, we reduced the external validity threats by targeting

industry professionals and seeking to achieve participant diversity

among the survey respondents. However, although the population

provides representative results on TD prevention, it came only

from Brazilian and North American practitioners. Also, the

population is mainly characterized by the presence of developers,

while a more balanced distribution on the number of developers

and projects managers could be interesting too. In search of more

generalizable results, the InsighTD is now being replicated in

Colombia, Costa Rica, Chile, and Finland.

7 CONCLUDING REMARKS

This work identifies actions being used in practice to prevent the

occurrence of TD in software projects. It also identifies the main

impediments that hamper the application of these actions. Further,

we group the actions into categories and identify relationships

among preventive actions and TD types, and among categories and

TD types, indicating in both relationships how they can be

combined to minimize the occurrence of TD types. Our

contributions are significant because they provide early exploratory

assessments of how industry practitioners deal with TD; which in

turn can help focus and direct the research performed by

academics.

The next steps of this research include: (i) to improve the external

validity of the obtained results by aggregating data from other

InsighTD replications, and (ii) to run deeper analyses to investigate

whether TD preventive actions and impediments are impacted by

variables such as used process model, participant experience and

role, and organization/project size.

ACKNOWLEDGMENTS

This study was financed in part by the Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES)

– Finance Code 001. This research was also supported in part by

funds received from the David A. Wilson Award for Excellence in

Teaching and Learning, which was created by the Laureate

International Universities network to support research focused on

teaching and learning. For more information on the award or

Laureate, please visit www.laureate.net.

REFERENCES
[1] R.O. Spínola, A. Vetrò, N. Zazworka, C. Seaman and F. Shull. 2013.

Investigating technical debt folklore: shedding some light on technical debt

opinion. In Proceeding of the 4th International Workshop on Managing

Technical Debt (MTD), San Francisco, CA, 1-7. DOI:

10.1109/MTD.2013.6608671.

[2] N. Zazworka, R.O. Spínola, A. Vetrò, F. Shull and C. Seaman. 2013. A case

study on effectively identifying technical debt. In Proceeding of the 17th Int.

Conf. on Evaluation and Assessment in Software Engineering (EASE). ACM,

New York, NY, USA, 42-47. DOI: http://dx.doi.org/10.1145/2460999.2461005

[3] P Kruchten, RL Nord, and I Ozkaya. 2012. Technical debt: from metaphor to

theory and practice. IEEE Software, Published by the IEEE Computer Society.

[4] A. Martini, J. Bosch, and M. Chaudron. 2014. Architecture technical debt:

understanding causes and a qualitative model. In Proceeding of 40th Euromicro

Conf. on Software Engineering and Advanced Applications (SEAA). IEEE

Computer Society, Washington, DC, USA, 85-92.

[5] R. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas. 2012. In search of a

Metric for Managing Architectural Technical Debt. In Proceeding of Joint

Working IEEE/IFIP Conference on Software Architecture and European

Conference on Software Architecture (WICSA/ECSA), Helsinki, 91-100. DOI:

10.1109/WICSA-ECSA.212.17.

[6] N. Rios, M. Mendonça Neto, and R.O. Spínola. 2018. A tertiary study on

technical debt: Types, management strategies, research trends, and base

information for practitioners. Information and Software Technology, v. 102, n.

June, 117–145.

[7] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A.

MacCoemack, R. Nord, I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan and N.

Zazworka. 2010. Managing technical debt in software-reliant systems. In

Proceeding of the FSE/SDP workshop on Future of software engineering

research (FoSER). ACM, New York, NY, USA, 47-52.

DOI=10.1145/1882362.1882373 http://doi.acm.org/10.1145/1882362.1882373

[8] J. Yli-Huumo, A. Maglyas, and K. Smolander. 2016. How do software

development teams manage technical debt? - An empirical study. Journal of

System and Software. 120, C (Oct. 2016), 195-218.

[9] Project Management Institute. 2017. A Guide to the Project Management Body

of Knowledge: PMBOK Guide (6th. ed.), 14 Campus Boulevard Newtown

Square, Pennsylvania, The United States.

[10] N. Rios, R.O. Spínola, M. Mendonça, and C. Seaman. 2018. The Most

Common Causes and Effects of Technical Debt: First Results from a Global

Family of Industrial Surveys. In Proceeding of the 12th Int. Symposium on

Empirical Software Engineering and Measurement (ESEM). ACM, New York,

NY, USA, Article 39, 10 pages. DOI: https://doi.org/10.1145/3239235.3268917

[11] N. Rios, M. Mendonça, C. Seaman, and R.O. Spínola. 2019. Causes and Effects

of the Presence of Technical Debt in Agile Software Projects. In Proceedings of

the 2019 Americas Conference on Information Systems (AMCIS), Cancun,

Article 3, 10 pages.

[12] N. Rios, R.O. Spínola, M. Mendonça, and C. Seaman. 2019. Supporting

Analysis of Technical Debt Causes and Effects with Cross-Company

Probabilistic Cause-Effect Diagrams. In Proceeding of the 2nd International

Conference on Technical Debt (TechDebt), Montreal, QC, Canada, 3-12. DOI:

10.1109/TechDebt.2019.00009

[13] Carolyn Seaman and Yuepu Guo. 2011. Measuring and monitoring technical

debt. 1. ed. [s.l.] Elsevier Inc., 2011. v. 82.

[14] Z Li, P Avgeriou, and P Liang. 2015. A systematic mapping study on technical

debt and its management. Journal of Systems and Software, v. 101, 193–220.

[15] N. Rios, R.O. Spínola, M. Mendonca, and C. Seaman. 2018. A Study of Factors

that Lead Development Teams to Incur Technical Debt in Software Projects. In

Proceeding of the 44th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA), Prague, 429-436. DOI:

10.1109/SEAA.2018.00076

[16] Carolyn Seaman. 1999. Qualitative methods in empirical studies of software

engineering. IEEE Trans. on Soft. Engineering, 25(4):557-572.

[17] Anselm Strauss and Juliet M. Corbin. 1998. Basics of Qualitative Research:

Techniques and Procedures for Developing Grounded Theory. Sage

Publications.

[18] N.S.R. Alves, T.S. Mendes, M.G. Mendonça, R.O. Spínola, F. Shull, C.

Seaman. 2016. Identification and management of technical debt: a systematic

mapping study. Information and Software Technology, v. 70, 100–121.

