
The Effectiveness of Software Development Instruction Through
the Software Factory Method for High School Students

A novel experiential based approach for introducing high school students to
technology

Clemente Izurieta, MacKenzie O’Bleness, Mike Trenk, Sharlyn Gunderson-

Izurieta

Abstract

 Teaching software development in environments that mimic industry practices is
essential for teaching applicable real-word development skills. In addition, these delivery-based
projects engage students in meaningful design work that encourages clear, sustainable code. The
Software Factory has provided such projects and environment to students at Montana State
University (MSU) since the 2014 academic year. This project aimed to explore the effectiveness
of such instruction for high school students with limited programming experience. Students from
Bozeman High School, Bozeman, Montana, were selected to work in a team with two MSU
undergraduate students with the goal of creating an Android application over the course of a
summer semester. In the process, these high school students were exposed to Java, sorting
algorithms, version control, and software development practices in an industry setting. This
experiential report describes the experiences of the team, the challenges and rewards of using
this teaching method – the Software Factory – and how the program provided a real-world
experience for high school students in the early stages of their computing education. In addition,
after concluding two projects, the latter of which is described in this manuscript, the Software
Factory staff plans to continue to reach out to high school students, and has been approached by
four private high tech companies, and two startup efforts. The Software Factory complements the
demand generation strategies program in the Computer Science Department by providing a
unique approach to outreach. The goal of demand generation strategies is to promote and
increase enrollment in computing-related career fields at higher education institutions in
Montana. Although this is a work in progress, the outcomes of the Software Factory approach as
it relates to K-12 students are demonstrable and have surpassed expectations. The high school
students were excited about programming in the context of a real world setting, presented and
were the subject of a Q&A session at a graduate level seminar, produced a working prototype of
an Android application, and one of the participating students is now enrolled in computer science
at Montana State University. The participating high school will select new students to
participate in the summer of 2016.

Introduction

 With the demand for skilled software developers rapidly growing, it is more important
than ever to ensure students are taught in authentic software development environments, in order
to provide them with skills that will directly transfer to a software engineering workplace, as well
as get them excited about professional workspaces. This kind of instruction helps to counteract
negative stereotypes that students might perceive about working in the software development
industry. These stereotypes can often include a perception that programming work is done alone
and in impersonal corporate environments, despite the team-based, modern environments in

which most software development now takes place. These stereotypes are especially harmful to
young students, who may feel disinclined to pursue a career that carries such a negative
connotation. We investigate a current and successful program –the Software Factory approach
with existing undergraduates, and apply it to K-12 students. The goals of this exploratory case
study were to counteract negative stereotypes by

1. Having K-12 students work in a team that resembled a small professional software

development group, and
2. Having students work in the Software Factory –an especially designed physical space

created to promote a realistic open and modern work environment.

This case study aimed to address both goals through a summer project that involved three
Bozeman high school students, two MSU undergraduate students, one professional staff, and one
computer science professor, in a group software development project. Although this is a small
number of students, it is representative of a small and realistic software engineering company’s
team size in a real world setting. Numerous studies have been conducted to characterize the
optimal team size 12, 13, in Agile environments 14 and the consensus seems to be that a size of three
to seven is an optimal number. This number is also an agreed upon measure in teams that focus
on the design prior to the coding phase of the lifecycle17. Further, as a work in progress project,
our goal was to devote as much attention to the K-12 students as possible.

This paper is organized as follows. We initially provide an overview of the Software
Factory approach that is used with selected K-12 students. We then provide an overview of the
case study, followed by descriptions of the case study phases –selection, instruction and
implementation. We then describe the outreach component and the legal considerations when
working with external partners. We conclude with outcomes, address threats to validity, and
address future improvements to include additional K-12 students.

The Software Factory

 The Software Factory is a pedagogical laboratory under the Software Engineering
Laboratory in the Computer Science (CS) Department at MSU, and is an educational facility for
undergraduate students designed for seeding entrepreneurship and researching technologies that
have direct impact on local communities in Montana by partnering with non-profit organizations,
as well as public and private high technology companies. It is a platform that provides the
necessary processes and environment to deliver real products. It is about learning, sharing and
growing entrepreneurial ideas that span the causal chain from inception to deployment, but not
commercialization. The Software Factory brings together students and experienced
professionals enabling unique cooperative projects that serve as incubation points for new ideas
and technology innovation.

The idea of a Software Factory approach for MSU was developed by working in close
collaboration with the University of Helsinki; however, methodology changes were required in
order to accommodate schedules of MSU and K-12 students, as well as to address the needs of
the local high tech communities.

The strategic goal of MSU’s Software Factory is to establish a self-sustaining center that

serves as an incubator for new technology that promotes:

1. Growth: Develop software prototypes that support new business ventures, or complement
existing software products from public, private and non-profit groups,

2. Learning: Development of computer science and business students in the context of a real
business environment, and

3. Sharing: Development of intensive, hands-on collaborations between companies and
students (through projects) to explore the deployment of new ideas, research, and
knowledge sharing.

These strategic goals are aligned with all other established and operational software

factories, and open up opportunities to address Growth by positioning the Software Factory as an
innovation hub in the state of Montana, where the interests of multiple parties can be achieved,
thus creating win-win scenarios for all stakeholders involved. For example, students learn first-
hand how to operate in a business setting with an agile/lean approach to delivering a product –
hands-on-entrepreneurship. A company benefits by creating a pipeline of ready-to-go potential
employees, as well as benefiting from proof-of-concept software prototypes that are ready for
commercialization. The Learning component empowers students to accumulate expertise and
entrepreneurial skills while companies can share their processes and techniques that force
students to use real and authentic practices beyond the classroom. Finally the Sharing
component facilitates an exchange of best practices and lessons learned that help refine future
skills and competencies. In Table 1 we list the non K-12 projects that have used the Software
Factory approach so far.

Table 1. Software Factory projects involving undergraduate students
Project Name Number of

Students
Partner Company Semesters

Zoot Event Monitor 4 Zoot Enterprises Fall ‘14 – Spring ‘15
Spectrum Analyzer 5 S2 Corporation Fall ’15 – Spring ‘16
Smart Gifting 5 Printing For Less Fall ’15 – Spring ‘16
Share a Ride 2 ShareLift LLC Fall ’15 – Spring ‘16

Project Description

 To address our goals of evaluating the Software Factory as a viable vehicle to instruct
and excite K-12 students about computer science, we devised a plan to recruit three high school
students with interest in programming, but not necessarily extensive technical experience, and
work with them as a team to develop an educational Android application describing and
animating simple sorting algorithms. An Android application was chosen as a deliverable due to
the prevalence of smartphones and the benefit of having an end-product that students could carry
with them everywhere and share with friends. The sorting theme was chosen over other ideas,
such as making a game, because it required an understanding of algorithms in addition to

Android development, and thus provided a good mixture of theoretical algorithm design and
practical programming.

Throughout the summer-long project, the students would be informally “taught” by two
senior computer science undergraduate students, but would also learn through implementation,
pair programming, and self-directed online research (e.g., reading articles from stackoverflow16).
This combination was intended to provide support for the students while maintaining a more
independent, industry-like environment than a traditional classroom style.

Project Location

 The project took place at MSU’s new Software Factory2. MSU’s Software Factory is
modeled after University of Helsinki’s laboratory of the same name3, and aims to collaborate and
deliver products to industry partners1. In turn, this creates a platform for students to experience
software development in an authentic industry environment with real-world projects, problems,
and deadlines. Previously, the Software Factory had only hosted teams of senior university level
students as an interdisciplinary capstone course. The physical environment of the Software
Factory made it an obvious choice to provide the students with a pleasant and realistic
environment for the project. Figure 1 shows students working with a customer (an industry
partner).

Figure 1. Software Factory Physical Space

Unlike traditional academic environments with rows of computers under bright florescent

lighting, the Software Factory has a modern design including individual workstations arranged to
facilitate collaboration, lounge areas, and artistic design. Not only did this create a more
enjoyable place to work and learn, it also helped to break down assumptions about computer
science workplaces being impersonal, overly corporate, or isolating.

Case Study

 The project was divided into three main phases: selection, instruction, and
implementation. The selection phase lasted from May until mid-June to facilitate the high school
academic year, as well as allow time for students to be contacted, invited to meet the MSU
undergraduate students and staff, and to tour the Software Factory. The instruction phase took
place during the second half of June, and continued informally into the implementation phase.
The implementation phase lasted from July until the end of August, concluding shortly before
the beginning of the academic school year.

Selection Phase

 When starting a project there is a competitive selection criterion for students wishing to
participate. This is necessary in order to match skills and interest to a project. Selection criteria
vary, and for this case study two undergraduate students, one of which had previously
participated in a Software Factory project with a local high technology company, participated in
the role of stakeholders (and mentors). Further, both undergraduate students in cooperation with
MSU’s Computer Science Department Outreach Coordinator and a Bozeman High School
teacher helped select three Bozeman high school participants.

 Once students were selected, clear project goals and general responsibilities needed to be
allocated; however, and since this is meant to emulate a startup environment, responsibilities
were not described in detail, with the expectation that team members would help define the roles
as the project matured. Initial roles were described only to avoid the potential for overlapping
areas, but in general all participating students wanted to be developers and contribute to the
engineering of the product. This was not entirely unexpected, as high school students were not
expected to be well versed in the varying roles of software projects.

The project’s student selection criteria prioritized students based on their interest in
computing, as opposed to their existing skill level. We believed that de-emphasizing existing
skill level in favor of motivation to learn and interest in the field would lower barriers to students
who may have developed an interest in computing later or were interested but unsure about
computing as a career. This is especially important for encouraging the participation of
underrepresented demographics that may be more affected by the negative stereotype of
computer scientists. Our initial pool of students was selected from the Bozeman High School’s
Joy and Beauty of Computing class. The class was initially held in conjunction with MSU’s
Computer Science department, and covers basic programming concepts, such as conditionals,
loops, and functions, using Python4 as a language. Project students were expected to have at
least some experience with these concepts.

The instructor of the Joy and Beauty of Computing class was asked to inform her students

about the Software Factory project, and pass on the names of interested students. She referred
one of her students, a graduating senior with previous Android development experience enrolled
to begin in the MSU Computer Science program in the fall of 2015, as well as a junior student
who had not taken the Joy and Beauty of Computing course but was interested in the project.

Despite originally only planning for two students, a third interested student –a sophomore with
experience in Python, JavaScript, and HTML was recruited from the Gallatin Girls Coding
Club5. While the other two students had already been selected, this student was also deemed a
good fit, and the team decided to expand the project to include three students. This was a good
decision because it helped with the distribution of tasks.

Ultimately, some of the decisions that were made in the recruitment and selection process
created a collection of challenges. A lack of common skill level between the students made
group instruction difficult, as students either felt bored or overwhelmed. Student travel
schedules further exacerbated this issue, as one student with the least technical experience
missed some group work sessions due to travel, causing the student to fall behind. Eventually
group instruction was modified to better fit a group of disparate experience, but this could not
fully bridge the skill gap between students.

In addition, the use of opt-in recruitment instead of direct contact of potentially well

fitted students may have limited the number of potential participants, as students with less
computing confidence may have felt discouraged from applying despite their interest or skill.
Our third student, despite being well qualified for the project, did not feel comfortable asking to
be considered; however, when directly asked if interested, the student was quite excited to
participate.

Instruction Phase

 In a traditional Software Factory setting, students are expected to have a knowledge base
commensurate with a strong computer science background at a senior university student level,
and thus, expected to be highly resourceful and self-directed. At the University of Helsinki
students undergo an interview process for selection into a Software Factory project, and at MSU,
only highly capable students undertaking the interdisciplinary option of their capstone projects
are eligible to participate and are selected in cooperation with the stakeholders of the project. In
our case study, we were aware of our constraints of working with high school students, and
introduced an instruction phase meant to help bridge a knowledge gap and to instill confidence in
their ability to tackle new and difficult concepts. Furthermore, the instruction phase served to
break the ice with the undergraduate students and staff.

The instruction phase took place over several weeks and was designed to provide a
common base of knowledge for the students in topics such as Java, Git and Github, sorting
algorithms, and basic object oriented design. While the student’s education in these topics
continued throughout the implementation phase, dedicated time for instruction and skill building
was required before app development could begin as most of these topics were not taught in high
school. In order to counteract the large gap in technical experience, group instruction was
modified from traditional group lectures to be a brief collective introduction to a topic, followed
by individual student work where the mentors provided additional instruction or assistance to
students as necessary. This allowed students familiar with the basic concepts to explore more
challenging aspects while giving the less experienced students a chance to work one on one with
the student mentors. In addition, students were also given tutorials to complete outside of group

work time to give the students common backgrounds for lessons and make group time more
productive.

Students were initially introduced to Java through a cursory discussion of its similarities

and differences to Python, the common language of the students. Next, the team began
discussing sorting algorithms and was asked how to sort a list of integers, initially a list of
numbers on paper. This procedure allowed students to familiarize themselves with the problem
using visual cues. Once they identified an algorithm, they individually worked on implementing
it in Java. The students were taught Bubble, Selection, and Insertion sort through this method,
and the code they wrote served as the core sorting code of the application.

Simultaneously, the students were also exposed to version control. After a brief

discussion of the importance of version control in software development teams, students were
given a list of general steps for using Git and Github to push and pull updates to code bases.
They then practiced these steps by sharing each sorting method implementation. This practice
became invaluable as development on the application began, and students worked on separate
features in sometimes colliding files.

Implementation Phase

 The implementation phase consisted of design cycles, technical research, and
implementation. During this phase, the team met three times a week for group sessions. There
were two, two-hour weekday sessions, followed by one three-hour weekend session. Together,
the students and mentors created an initial design at the beginning of the phase; which served as
a wireframe for the project. The basic framework of the application, consisting of a navigation
drawer and an example fragment, as well as example code from an existing Android application
was provided for the students as a reference. Periodically throughout the phase, the team would
evaluate progress, determine potential technical blockers, and adjust the design accordingly.

A Software Factory has no advisory board, and no organizational chart –they are small
and meant to emulate a startup environment. All students participating in a given project are
peers; however there is an experienced coach to help facilitate the lifecycle of a project. In our
case study the MSU undergraduate students played the role of mentors. The lifecycles to
develop successful prototypes use Agile methods such as Scrum, XP, Kanban6,7, or a hybrid.
Faculty from business and computer science can be involved in the selection of potential
projects. The preferred method used in the Software Factory for tracking progress continuously
while at the same time providing instant information to stakeholders, uses a method that borrows
from Scrum practices and the visual aspects of Kanban. This approach is called Scrumban10,11.
Kanban is a scheduling system that allows the tracking of multiple tasks as they move from one
stage of development to another. Software engineering teams have adopted this industrial
approach (originally used in the automotive production plants of Toyota) to track deliverables of
components. The Kanban board is the central component of the system because it allows all
interested parties to visualize progress. Various software products exist that have enhanced this
experience by tracking a number of project team metrics such as number of tasks, project speed,
tasks per developer, as well as with predictive capabilities.

The original approach for dividing work and tracking progress was to use the
Scrumban/Kanban method. It was intended that each team member would move through the
Kanban board, assigning himself or herself to a task, completing it, and taking a new task as they
progressed. However, it soon became apparent that the tasks were difficult to break into pieces
that were both meaningful and within the skill level of the students. Students often became stuck
on their task, slowing development significantly, creating concerns about meeting the project
deadline. Instead, the team complemented the original approach by adopting a pair
programming driven approach for the more difficult tasks. The students would pair with a
mentor when necessary, working together to solve problems as they occurred. In this way,
students were able to gain problem-solving experience and programming insight from the
mentors, avoid getting stuck for too long on any one task, and still be the primary force in
solving difficult problems. This was a key difference with traditional software factory projects
where participating students can pair up, but that process is left up to the students themselves.
For high school students, without knowledge maturity, adopting pair programming was a
differentiator in making the project succeed.

Mentors were present during the implementation phase of the project as equal members

of the team –not as instructors. This allowed the high school students to feel like they were part
of the team, also influencing direction, because the mentors were seen as colleagues. As a result,
there were times a mentor did not have a direct answer to a question. This lack of a “lesson
plan” both encouraged students to research their problems, either by themselves or in
conjunction with a mentor, and sometimes frustrated them when they encountered a stubborn
problem.

By departing from a traditional classroom structure, the learning environment became

much more variable. Problems often didn’t have a clear solution and required exploration from
the entire team. Some team members used a desktop provided by the Software Factory for the
project, making work outside of group sessions difficult and limiting the ability of the team to
have individual work sessions. Team members often used a different OS, emulator, or physical
Android device than their peers, making development environment issues frequent and difficult
to solve. The students found these issues, unfortunately part of the reality of developing across
different environments for different devices, particularly frustrating due to the difficulty of
determining their cause.

Outreach

 The Software Factory is a powerful outreach tool. After concluding two projects, the
later of which was described in this manuscript, the Software Factory staff has been approached
by four private high tech companies, and two startup efforts, which have led to an additional
three projects that are currently being executed. Further we have established collaborations with
third parties that have supported this effort by contributing licensing of software –Kanbanize8,
expertise for taking a software prototype to commercialization stages, further high school
outreach, and financial support –Zoot Enterprises9.

In response to the increasing demand for highly skilled computer science graduates, the
Computer Science Department at MSU committed to an outreach program, or demand

generation strategy. The goal is to promote and increase enrollment in computing related career
fields at higher education institutions in Montana to provide skilled graduates that are currently
in high demand. The outreach targets Montana K-12 schools through a robotics program,
teacher training, and educational tools such as the Software Factory provided to teachers.

The Software Factory complements the demand generation strategies by providing a

unique approach to outreach. As described above, the Software Factory provides a program that
not only provides outreach to high school students, but also provides the Computer Science
Department with a visible profile in the local high tech community. This visibility in the
community provides and aids students enrolled in Computer Science degree program with the
opportunity to develop the necessary skills to enter into the local high tech sector with highly
paid careers options.

Legal Considerations

 Working with many potential players implies the need to address how to handle certain
privacy rights. The Software Factory is a pedagogical tool and has no interests in intellectual
property associated with stakeholders. In general, rules are established to:

• Tag data, products and processes as private, confidential, or public
• Understand collection, handling and dissemination of data
• Obtain explicit written consent from all participants in the Software Factory (students and

stakeholders)
• Establish legal agreements with authors to transfer the rights to the university when

appropriate
• Create draft proposals for every project that include a research agreement, an agreement

on transfer of intellectual property, and data file descriptions
After completion of projects, and depending on the stakeholder, data and software
elements are either archived or destroyed.

Conclusions

 Although the Software Factory approach is a proven tool for senior students in a
computer science program, this pilot study has provided us with significant insights on how the
Software Factory can be improved and adapted to fit K-12 students. It is an effective tool that
deems further study. Our post assessment of the study indicated that in general, students learned
how to apply their limited computing knowledge in a real problem solving setting and in
conjunction with team members. This was a skill that was lacking prior to their participation,
and together with a realistic physical space, it served to allay the negative stereotyping of
computer science.

 The Software Factory approach is highly flexible and can be easily adapted or transferred
to other educational environments. This is important because different organizations have
different requirements with regards to the number of hours students can spend in a given project.
There are also differences in geography where some organizations may have better access to
stakeholders willing to participate. Further, differences in available resources can also be

significant. In fact, the original approach used by the University of Helsinki was modified to fit
within the constraints of Montana State University. Our Software Factory required us to adapt
by adding more flexibility in student schedules, required that we compromise to use a smaller
physical space, and forced us to be creative with a shoe-string budget to equip and decorate a
room to make it look as close as possible to a real work environment. As a work in progress, we
will continue to experiment to find a formula that fits K-12 students, and have already identified
changes for the next group of students that will participate in the summer semester of 2016. In
the summer of 2016 we will again engage two senior computer science undergraduates, two new
high school students, and two returning high school students. Bringing back two high school
students (at their request) is evidence of the success of this approach, but more importantly it
provides a bridge between computer science students and brand new participants because they
will also act as mentors. It is important to also note, that our goals also include the participation
of business students, and domain experts from other rubrics. The latter is clearly a limitation for
high school students, but with some creativeness, high school students could be given different
roles, thus directing them to a choice of different majors when considering their tertiary studies.
	
Specific Outcomes

 At the close of the project, all three high school students had made significant strides in
understanding version control, Android application development, Java, and software
development processes. The team successfully delivered a working application, and the students
reported that the overall experience was both educational, interesting and has contributed
towards their interest in continuing their education in computer science. Figure 2 depicts a
screen shot of the algorithm animation tool that was delivered as a final product.
	

	
Figure 2. Software Animation Mobile Application

	
Recommendations for Future Projects
	
 There were several important lessons learned about experiential projects for students
early in their computer science education.

First, great care should be taken when selecting students to ensure not only that the
students are a good fit for the given project, but also that they are a good fit for each other. The
skill level gap between our students limited some opportunities for group instruction, made
certain tasks in the project only feasible for a single student, and made true “peer” programming
difficult. Given a more homogeneous set of skills between the students, instruction would be
more easily structured to ensure that all students had ample time to grasp the concepts, the
deliverable could have been tailored to be within the grasp of all students without boring others,
and students would have been able to work together as similarly skilled individuals tackling a
challenge together. The ability to work more closely with their fellow students instead of just the
mentors was something the students felt could be improved in this project.

 Second, while the freeform nature of the projects was in many ways helpful, some
reintroduction of structure to the Software Factory may be helpful for certain groups.
Specifically, the amount of structure present in the instruction and implementation phases should
be based on the team’s programing knowledge at the beginning of the project. Students with a
better foundation can better handle a freeform system and independent work, but students
without that foundation may require more structure and group work sessions in order to feel
comfortable.

Finally, despite these challenges, we consider the project to be hugely successful in
meeting its educational and recruitment goals. With the knowledge of problems to avoid, we
believe that the next iteration of this kind of project will be even more valuable to students.

Threats to Validity

 The small number of high school students that participated in this project constitutes a
threat to the external validity of the study15. However, this is a work in progress, and the
Software Factory technique is a proven method with undergraduate students already. At
Montana State University we have had 15 undergraduate students participate in successful
projects through the second year of its running, and at the University of Helsinki (our original
collaborator), this program has been running since 2010 with numerous success stories3.

Acknowledgements

 The authors wish to thank the Bozeman High School students –Jessica Jorgenson, James
Jacobs, and Zach Hansen, as well as their high school teacher Kerri Cobb. The authors also
acknowledge the support of the Undergraduate Scholars Program (USP) at Montana State
University for providing financial support for this study and Dr. John Paxton, the Chair of the
Computer Science Department for his continued support.

References

[1] Fagerholm, F., Oza, N., and Munch, J. 2013. A Platform for Teaching Applied Distributed Software

Development. In Proceedings of the 3rd International Workshop on Collaborative Teaching of Globally
Distributed Software Development CTGDSD’13 (San Francisco, CA, USA, May 25, 2013).
DOI=http://doi.ieeecomputersociety.org/10.1109/CTGDSD.2013.6635237

[2] Montana State University Software Factory http://www.bobcatsoftwarefactory.com/
[3] The University of Helsinki Software Factory http://www.softwarefactory.cc/
[4] The Python Programming Language https://docs.python.org/2/reference/
[5] Gallatin Girls Coding Club http://www.theconnectory.org/program/gallatin-girls-coding-club
[6] Raymond, L. (2006). Custom Kanban: Designing the System to Meet the Needs of Your Environment.

University Park, IL: Productivity Press. ISBN 978-1-56327-345-2.
[7] Kanban http://www.toyota-global.com/company/vision_philosophy/toyota_production_system/just-in-time.html
[8] Kanbanize https://kanbanize.com/
[9] Zoot Enterprises http://www.zootweb.com/index.html
[10] Ikonen, M., Pirinen E., Fagerholm, F., Kettunen, P. and Abrahamsson, P., On the impact of Kanban on

Software Project Work: An Empirical Case Study Investigation, in the 16th IEEE International Conference of
Complex Computer Systems (ICECCS), 2011, pp. 305-314.

[11] Kniberg, H., Skarin, M., Kanban and Scrum: making the most of both. USA: C4Media Inc. 2010.
[12] Putnam D., 2015. Team Size Can Be the Key to a Successful Software Project. Quantitative Software

Management Inc. QSM. http://www.qsm.com/process_improvement_01.html
[13] Scrum. https://www.scrum.org/
[14] Agile. http://agilemanifesto.org/
[15] ClaesWohlin, Per Runeson, Martin Host, Magnus C Ohlsson, Bjorn Regnell, and Anders Wesslen.

Experimentation in software engineering. Pages 102–104. Springer Science & Business Media, 2012.
[16] Stackoverflow. http://www.stackoverflow.com
[17] Renger M., Kolfschoten G.L., Vreede G.J. Challenges in collaborative modeling: a literature review and

research agenda. International Journal of Simulation and Process Modelling (2008).

