
Cybershield: Secure Boot for Obfuscated Instruction
Codes

Garrett R. Perkins∗, Tristan Running Crane†, Hezekiah A. Austin†, Benjamin Macht†, Chris Major ¶,
Ann Marie Reinhold∗‡, Clemente Izurieta∗‡§, and Brock LaMeres†¶

∗Gianforte School of Computing, Montana State University, Bozeman, MT, USA
†Electrical & Computer Engineering Department, Montana State University, Bozeman, MT, USA

‡Idaho National Laboratory, Idaho Falls, ID, USA
§Pacific Northwest National Laboratory, Richland, WA, USA

¶Resilient Computing, Bozeman, MT, USA

Abstract—The increasing reliance on Field Programmable
Gate Arrays (FPGAs) in security-critical applications under-
scores the need for robust protection mechanisms against cyber
threats such as buffer overflow and injection attacks. This paper
presents Cybershield, a novel integration of a Trusted Execution
Environment (TEE) within RadPC, a radiation-tolerant soft-
core processor featuring Quad Modular Redundancy (QMR).
Leveraging RadPC’s four-core architecture, Cybershield’s TEE
employs secure boot from non-volatile memory to initialize
RadPC’s cores with obfuscated instruction codes. The opcode
obfuscation and a hardware-based anti-voter mechanism prevent
the execution of unauthorized code and detect Indicators of
Compromise (IoCs). By implementing secure boot and opcode
obfuscation, Cybershield mitigates common attack vectors while
maintaining software redundancy and recoverability. Experimen-
tal validation demonstrates the system’s ability to detect buffer
overflow attacks and prevent unauthorized code execution. While
the integration of a TEE introduces computational overhead and
development constraints due to RadPC’s bare-metal environment,
this work lays the foundation for combining hardware and soft-
ware redundancy to enhance the security of embedded systems.

Index Terms—Trusted Execution Environment (TEE), Obfus-
cation, Quad Modular Redundancy (QMR), Field Programmable
Gate Array (FPGA), RISC-V

I. INTRODUCTION

The rapid growth of the Internet of Things (IoT) and edge
computing has fundamentally transformed the way data is pro-
cessed and analyzed. Unlike traditional cloud computing, edge
computing shifts data processing closer to the source, enabling
real-time insights, reduced latency, and minimized bandwidth
usage. This paradigm shift has fueled advancements in a wide
range of industries, from healthcare and automotive systems
to industrial automation and telecommunications. However, as
these edge devices become increasingly interconnected and
intelligent, their attack surfaces expand, exposing them to a
myriad of cybersecurity threats.

At the heart of many edge devices are Field Programmable
Gate Arrays (FPGAs), which offer unparalleled flexibility,
reconfigurability, and performance [1]. FPGAs combine pro-
grammable logic with embedded processors, and have become
particularly attractive for edge computing due to their ability

to handle complex workloads such as artificial intelligence
(AI), signal processing, and real-time control. Despite their
advantages, FPGAs were not originally designed with robust
security in mind. As they transition from specialized applica-
tions to widespread use in critical industries including but not
limited to radar, Unmanned Aerial Vehicles (UAVs), Industrial
Control Systems (ICS), data centers, neural networks, and
space avionics, the potential for malicious attacks targeting
both their hardware and software components has grown
significantly [2], [3].

This increasing reliance on FPGAs in security-critical ap-
plications highlights the urgent need to address their vulnera-
bilities. From intellectual property theft to fault injection and
side-channel attacks, FPGAs face a diverse array of threats [4],
[5]. To ensure the reliability and security of edge computing
systems, new mechanisms must be developed to protect the
hardware, software, and communication protocols of FPGAs.

Trusted Execution Environments (TEEs) offer a promising
solution to enhance the security of FPGAs. TEEs come in
many forms with many features. Most major CPU vendors
have introduced their own chip-specific TEEs. These TEEs,
i.e. ARM TrustZone1,2, Intel SGX3, and AMD SEV4 leverage
hardware-based security features to protect against vulnerabil-
ities that traditional process isolation methods cannot address
[6]. By isolating sensitive operations and providing secure boot
mechanisms, TEEs can protect edge devices from tampering
and unauthorized access. This paper presents the novel design
and integration of a TEE with a radiation-tolerant softcore pro-
cessor, RadPC, implemented on a commercial FPGA platform.
This integration is known as CyberShield.

II. RELATED WORKS

Trust Execution Environments specific to FPGAs come in
many different forms. Some TEEs host a myriad of features

1https://www.arm.com/technologies/trustzone-for-cortex-a
2https://www.arm.com/technologies/trustzone-for-cortex-m
3https://www.intel.com/content/www/us/en/developer/tools/software-

guard-extensions/overview.html
4https://www.amd.com/en/developer/sev.html



and have more general applications, whereas others are use-
specific and intended for a single purpose [7].

Feature-rich TEEs aim to provide comprehensive security
solutions by integrating elements such as memory encryption,
secure boot, attestation, and root of trust, making them suitable
for multi-tenant environments and dynamic workloads [7].
Conversely, application-specific TEEs are tailored to address
distinct security challenges, such as mitigating side-channel
attacks or securing intellectual property within FPGA deploy-
ments [7].

Secure boot is a fundamental security feature in TEEs,
ensuring that the system initializes in a trusted state by
verifying the authenticity and integrity of critical components.
Several works have explored different aspects of secure boot
in TEEs within FPGAs.

Recent advancements in secure boot architectures have ex-
plored the integration of hardware-based security measures to
improve the efficiency and robustness of firmware verification.
Loo et al. [8] propose a secure boot implementation for RISC-
V using an FPGA-based approach. Their method introduces a
hardware security block at the Register Transfer Level (RTL)
to generate a SHA-512 digest, significantly reducing the com-
putational burden on software-based secure boot mechanisms.
The study highlights that while secure firmware incurs a
35% increase in boot time and a 3.3 MB increase in binary
size, the FPGA implementation offsets performance costs by
accelerating cryptographic computations, achieving an 1132%
improvement in execution time over software-based hashing.

Another advancement in secure boot architectures is CARE,
a lightweight attack-resilient secure boot framework designed
for RISC-V-based SoCs [9]. Unlike traditional secure boot
mechanisms that focus solely on detecting malware presence,
CARE introduces an onboard recovery mechanism that ensures
compromised devices can autonomously restore their firmware
to a trusted state. The framework integrates a Code Authen-
tication and Resilience Engine (CARE) that verifies firmware
integrity using a hardware-accelerated HMAC-SHA256 cryp-
tographic core. In the event of a detected compromise, CARE
employs a dedicated recovery engine to re-flash only the
corrupted memory regions from a secure backup ROM, pre-
venting unauthorized modifications and minimizing system
downtime. By leveraging Physical Memory Protection (PMP)
and secureIbex features of the RISC-V processor, CARE
mitigates fault injection and side-channel attacks while main-
taining a minimal 8% performance overhead.

One of the most notable RISC-v-based TEEs, Keystone, in-
corporates secure boot as a critical security primitive, ensuring
that only authenticated and unmodified software is executed
within its TEE [10]. The secure boot process in Keystone be-
gins with a hardware-based root of trust, where a tamper-proof
bootloader or cryptographic engine measures the integrity
of the Security Monitor (SM) at system reset. This process
generates a fresh attestation key, which is securely stored in
the SM’s isolated memory and signed using a hardware-visible
secret. During boot, Keystone verifies the integrity of enclave
code and runtime components before execution, preventing

unauthorized modifications or tampering. By leveraging RISC-
V’s Physical Memory Protection (PMP) and a minimal trusted
computing base (TCB), Keystone ensures strong memory
isolation and attestation capabilities, making it adaptable for
various deployment scenarios, from cloud environments to
embedded systems.

Another notable approach by Streit et al. focuses on se-
curely booting from non-volatile memory (NVM) in insecure
environments by leveraging the reconfigurable logic of an
FPGA as a secure anchor point. The proposed methodology
integrates a Trusted Memory-Interface Unit within the FPGA’s
reconfigurable logic region, enabling integrity and authenticity
verification of NVM data before executing any user appli-
cations. The boot image is decrypted using the dynamically
generated encryption key, and its integrity is verified by
comparing the calculated hash against the stored token [11].

III. BACKGROUND

A. RadPC

Fig. 1: Block diagram of the QMR architecture of the RadPC
FPGA system [12].

The softcore processor RadPC was chosen for integration
with a TEE. RadPC is a custom radiation-tolerant space com-
puter designed for small satellites with a reduced instruction
set (RISC-V 32I). The radiation tolerance of RadPC specifi-
cally relates to Single Event Effects (SEEs), which are strikes
that cause inadvertent switching in logic circuits. To mitigate
single-event effects RadPC uses an architectural approach in



which the detection and recovery of SEEs is abstracted from
software developers. RadPC is developed in VHSIC Hardware
Description Language (VHDL) and implemented as a logic
design. RadPC expands upon the traditionally used Triple
Modular Redundancy (TMR) to Quad Modular Redundancy
(QMR) to withstand two SEEs simultaneously (Figure 1).
RadPC is a QMR microcontroller implemented on an FPGA
with a RISC-V instruction set [13], [14]. When a fault is
detected in one of RadPC’s CPUs its respective registers are
reloaded with the correct values, using a majority voter. In
the event of an unrecoverable fault using the voting approach,
a full CPU can be partially reconfigured (PR’d) and registers
to be reloaded to recover the system fully [15], [16]. These
two recovery methods, complemented by memory scrubbers,
provide resilience from SEEs [12], [13], [15], [16].

B. Cybershield

The architectural approach taken with RadPC to resist
and recover from radiation-induced faults was extended into
Cybershield, enhancing its resilience against malware attacks,
particularly buffer overflow exploits. Cybershield employs in-
struction code obfuscation by assigning unique opcode offsets
to each core and updating the software binaries accordingly,
preventing uniform opcode execution and adding resistance to
injection attacks [17]. This approach leverages the flexibility
of FPGA-based implementations and RISC-V architecture
to ensure that, even if a vulnerability is exploited, opcode
discrepancies among cores trigger immediate detection and
recovery mechanisms. The Cybershield microcontroller runs
multiple obfuscated cores in parallel, with an anti-voter mod-
ule monitoring instruction registers to detect any anomaly
caused by malware injection [18]. Malware that is injected
into CyberShield will be replicated across each core and upon
execution each core will see the same Opcode. This by design
is impossible and will be flagged as an anomaly. This architec-
tural innovation not only increases security through hardware-
level diversity but also provides an additional defense layer
by making unauthorized code execution significantly more
difficult. By integrating RadPC’s proven reconfiguration ca-
pabilities with advanced obfuscation techniques, Cybershield
offers a robust solution for securing embedded systems in
critical applications.

In the original proof of concept of CyberShield, the ob-
fuscated instruction decoders and associated software binaries
were embedded in the VHDL description of the system before
implementation. This posed a problem because the system
could not be bootloaded like a traditional microcontroller.
Instead, changing the software required a new bitstream to
be generated. This paper proposes a TEE that provides secure
boot with obfuscated opcodes for CyberShield, bootloading it
like a traditional microcontroller. These architectural changes
to the original version of CyberShield enhance both security
and reliability by addressing the bootloading challenges of the
original version.

Fig. 2: System block diagram of RadPC + TEE i.e. Cy-
bershield. Illustrates the software development flow, FPGA
architecture, and the single-board computer.

IV. DESIGN

The first modification to the CyberShield proof-of-concept
was to modify the system so that it could have software
binaries loaded into its instruction memory (e.g., bootloading)
over a UART serial port. This allows the system to accept
executables in real time. Based on this work, a TEE that boot-
loaded CyberShield was developed that could be implemented
on the same FPGA. The TEE needed four key functionalities.
First, to be able to accept an encrypted executable via a UART
between CyberShield and an external computer. Second, to
read and write the encrypted executable to the onboard NVM
serial flash chip. Third, to be able to bootload CyberShield
over an internal UART on the FPGA between the TEE
and CyberShield’s four cores. Last, the TEE needed to be
able to obfuscate the software binaries before bootloading
CyberShield.

The TEE was integrated into the CyberShield architecture
as a separate softcore processor and deployed on a Nexys
A7-100T development board. This board utilizes an Artix-
7 Xilinx FPGA. The TEE and CyberShield are “wrapped”
at the top level but are separate entities within the VHDL
hierarchy. The architecture of the TEE is similar to the cores of
CyberShield but with limited functionality and only necessary
peripherals, i.e., SPI, UART, and GPIO. The other signals
are tied to 0, (others => ’0’), or open for security.
Both the TEE and CyberShield have been modified to include
five UART peripherals. These UARTs are used by the TEE
to bootload each individual CyberShield core instead of each
core receiving the same executable.

The executable for the TEE is compiled using GCC on
the developer’s computer then the TEE is bootloaded over
a UART. Once the TEE has been bootloaded it is ready
to receive the encrypted executable for CyberShield. The



Fig. 3: Diagram of CyberShield and NVM coupled with their respective ILA outputs. The left block diagram shows CyberShield
being bootloaded via one UART with no obfuscation. The respective ILA shows the four cores with the program counter running
through a dummy function and the vulnerable overflow function and then falling victim to a buffer overflow attack. The right
block diagram shows each individual CyberShield core being bootloaded via four UARTs with no obfuscation. The respective
ILA shows the four cores with the program counter running through a dummy function and the vulnerable overflow function
and then falling victim to a buffer overflow attack.

executable for CyberShield is first compiled using GCC and
then encrypted using a one-time pad. The executable is then
ready to be sent in one-byte blocks over UART to the TEE.

A. Writing the executable to Non-volatile Memory
In order for the TEE to accept the executable for Cy-

berShield a circular buffer was implemented. The circular
buffer was implemented due to memory constraints. The TEE
and CyberShield share IMEM and DMEM which are both
12.288 kB. The test executable for CyberShield was 24.308
kB, making it too large for the TEE to accept in one block.
Using a terminal, the developer can send blocks of up to 11520
bytes to the TEE to then be written over SPI to the NVM. The
user specifies the size of the incoming block to the TEE, and
then using a Python script sends the specified number of bytes
over UART to the TEE at a Baudrate of 115200 with a one
millisecond delay between bytes. The TEE stores the block of
the executable in a byte array. Once the block of the executable
has been accepted into the TEE it is ready to write to NVM.

The TEE communicates with the NVM via a Serial Periph-
eral Interface (SPI). The SPI peripheral on the TEE operates in
3-pin mode at 50 kHz, with the Chip Select (CS) line being
manually toggled. Once a block of the executable is in the
buffer, the developer can use the terminal to tell the TEE
to write that block to the NVM. The TEE software keeps
track of the number of bytes written along with the addresses
to which that data was written. The data is written in 256-
byte pages, and after each page, the TEE must toggle CS and
reestablish communication with the NVM. Once the program
is done writing to NVM, the circular buffer is reset and ready

to receive another block of the executable. This process is
repeated until the entire encrypted executable has been stored.
Once this process is complete, the executable will remain in
memory until it is cleared. The TEE is now ready to read from
NVM and bootload CyberShield.

B. Booting CyberShield with an Encrypted Executable
1) Booting CyberShield Over One UART Without Offset

(Figure 3: left): The first step in testing the system was to ver-
ify that the TEE could bootload the CyberShield QMR system
without any instruction code obfuscation. To bootload Cyber-
Shield from NVM, the TEE requires two key components: the
one-time pad decryption key and the instruction code offsets
specific to CyberShield. Both of these have been manually
programmed into the TEE software. The CyberShield cores’
bitstreams are generated with their respective offsets when the
executable is compiled.

To successfully bootload CyberShield the TEE must com-
municate using two different communication protocols: SPI
and UART. When the executable was generated each 32-
bit (four bytes) instruction was broken into four, single-byte
pieces. The TEE reads the encrypted executable one byte at a
time from the NVM and decrypts it in real-time. Initially, this
test was performed using a single UART interface to transmit
instructions to the CyberShield system without any instruction
offsets.

2) Booting CyberShield Over Four UART Without Offset
(Figure 3: right): After verifying that CyberShield could be
bootloaded using a single UART, the next step was to test
bootloading over four separate UART channels, one for each



Fig. 4: Diagram of the CyberShield architecture with CyberShield and TEE integration, accompanied by ILA outputs. The
diagram illustrates how the TEE securely bootloads each CyberShield core with its assigned opcode offset: Core 1 executes
standard RISC-V opcodes, while Cores 2–4 operate with unique, offset opcodes. The ILA shows the cores running offset
opcodes during normal operation. When a buffer overflow attack occurs, all four cores are forced to execute identical opcodes.
The anti-voter in CyberShield detects that all four cores are running the same opcode and freezes the program counter to
prevent the cores from executing the malicious code.

core. The process remained similar, but instead of using a
single UART for all cores, the TEE distributed the executable
to each core over their respective UART channel. At this
stage, no offsets were applied to the instructions, meaning
all four cores received identical instruction data. This setup
more closely resembled the intended operational configuration
of the system and allowed for independent verification of
each core’s ability to execute the received instructions. The
successful execution of this setup demonstrated that the TEE
could correctly handle multi-channel UART communication
while maintaining synchronization.

3) Booting CyberShield Over Four UARTs (Figure 4): The
final test introduced instruction code obfuscation to assess
its impact on the bootloading process. Figure 4 presents the
results of bootloading CyberShield with obfuscated instruc-

tions. In this stage, the TEE applied predefined offsets to
the instruction sequences before transmission. Three of the
four cores received obfuscated instruction data, while one
core continued to run standard RISC-V 32I instructions. The
obfuscation process altered only the last byte of each 32-
bit instruction, ensuring that execution remained functionally
equivalent but obscured from direct analysis.

Additionally, the TEE had to determine when to stop
applying offsets to avoid corrupting non-executable sections
of memory. The ret instruction sequence (67 80 00 00)
served as a marker for the end of the executable section. Once
the final occurrence of this sequence was detected, the TEE
ceased applying offsets, leaving the following DMEM data
unaffected.

Once all four cores were bootloaded with their respective



Fig. 5: Two Nexys A7 boards demonstrating CyberShield’s runtime behavior. Left board: The green LED on the left indicates
that CyberShield has booted successfully and no indicator of compromise (IoC) has been detected. The green LED on the right
functions as a PC active flag, signifying that the cores are currently executing instructions normally. Right board: In contrast,
the left red LED indicates that an IoC has been detected, signaling that the system has identified an attack. The right red
LED, which normally serves as the PC active flag, now indicates that all cores have been halted to prevent further execution
of potentially malicious instructions.

obfuscated instructions, CyberShield executed the program
successfully, confirming that the obfuscation mechanism did
not interfere with normal execution while increasing security.

C. Hardware Error Handing, e.g Anti-Voter

While the software for the TEE plays a crucial role in
providing security and redundancy to CyberShield there are
also critical hardware components. RadPC contains a voting
system for each of its four cores in order to provide hardware
redundancy in the case of a SEE. This voter compares all
the instructions to ensure agreement and then passes the
confirmed instructions. The anti-voter, inspired by RadPC’s
voting system, does the exact opposite. The anti-voter checks
that no two instructions are the same as they are executed. If
any of the cores share an instruction, this is an Indicator of
Compromise (IoC), and an error flag is raised. When the error
flag is raised, two actions occur: (1) the PC is halted to prevent
CyberShield from executing any malicious instructions, and
(2) both the PC active LED and the IoC LED turn red (Figures
4 and 5). In the future, this flag will be used by the TEE to
reboot CyberShield after an attack.

V. RESULTS

Cybershield was deployed on a Nexys A7 FPGA Devel-
opment Board featuring the Artix-7 100T FPGA for testing.
Cybershield was loaded onto the FPGA using Vivado Design
Suite. Bootloading the TEE and loading the executable into
the TEE for NVM were done over the serial terminal. A
demo counting program was created to simulate CyberShield’s
software.

A. Buffer Overflow Attack

To test the resiliency of the obfuscated opcodes for Cyber-
Shield a buffer overflow attack was designed to overwrite the
stack and have the Program Counter (PC) return to a location
outside of Instruction Memory. The payload for the buffer
overflow attack was delivered over UART 04 on CyberShield
from a serial terminal. A switch was used to change the serial
terminal windows connection between UART TEE 00 and
CyberShield UART 04 so that CyberShield could be attacked.

The attack to be delivered over the serial terminal was on a
modified version of the test counting program. This program
contained a “Dummy” function that had a printf statement
with unregulated input length. This function would continue
to write to memory beyond the length of the buffer as long as
data was being supplied. The disassembly for the test counting
C program was used to determine where outside of Instruction
Memory the program would return to when attacked. The
stack and surrounding data were repeatedly overwritten with
the address 10001250 which is a location in Data Memory
(Figure 3 & 4.

The attack was tested on three different subsets of Cyber-
Shield. First, the attack was tested on CyberShield in which all
four cores had been bootloaded with a single UART (Figure
3: left) and didn’t have instruction obfuscation. Second, the
attack was tested on CyberShield in which all four cores were
bootloaded using separate UARTs without obfuscation (Figure
3: right). Last, the attack was tested on the full Cybershield
system (Figure 4). When Cybershield is attacked the PC
jumps to the address in Data Memory and attempts to execute
the “instruction” at that location. As a result, the opcodes



of all four CyberShield cores become identical, indicating
compromise.

This attack demonstrated how the obfuscation of the cores
can defend against buffer overflows and other types of injec-
tion attacks. In the absence of a stack guard or address space
layout randomization (ASLR), the redundancy of a quad-core
system with obfuscated opcodes can defend against overflow
and injection attacks. The ability to securely boot and reboot
in the event of an attack ensures the continued operation of
Cybershield even in the event of compromise.

VI. CONCLUSION

The principal results of this work demonstrate a proof-
of-concept design for integrating a Trusted Execution En-
vironment (TEE) within the RadPC architecture to create
CyberShield. Once integrated, the TEE provided secure boot of
obfuscated instructions to detect and defeat injected malware.
This implementation also enhances the security of CyberShield
by enabling secure boot using an encrypted executable. The
TEE also provides a mechanism for software recovery in the
event of an IoC. These enhancements collectively strengthen
the resilience of CyberShield against a range of cyber threats,
especially command injection and buffer overflow attacks.

A. Applications & Advantages

The addition of a TEE into CyberShield offers signifi-
cant advantages over the baseline RadPC architecture. As an
embedded system, RadPC lacks many security features that
are standard in general-purpose computing platforms, such
as Address Space Layout Randomization (ASLR) and Stack-
Guard, which serve as defenses against injection and buffer
overflow attacks [19]. By incorporating a TEE, CyberShield
gains secure boot, in conjunction with opcode obfuscation,
which provides real-time protection against such attacks [20].
This, in conjunction with, the capability to securely boot and
reboot from NVM with an encrypted executable ensures robust
software redundancy. Secure boot and encryption are partic-
ularly valuable for embedded systems that rely on persistent
storage and may lack frequent software updates.

B. Limitations

Despite the security enhancements introduced by the TEE,
certain limitations remain. This proof-of-concept implementa-
tion has not been extensively tested under adversarial condi-
tions, leaving open questions about its resilience to advanced
side-channel attacks and hardware-level exploits. The buffer
overflow attack was detected, but further testing is needed
to ensure it can detect other IoCs. While opcode obfuscation
enhances security, it introduces compatibility challenges when
integrating with existing software toolchains or debugging
frameworks. Additionally, the integration of a TEE imposes
additional computational overhead, which may affect perfor-
mance, particularly in resource-constrained embedded environ-
ments. This system runs on a 100T FPGA, and smaller chips
may not be conducive to Cybershield.

C. Future Work

Future research will focus on refining the security and per-
formance of the CyberShield TEE implementation. Detecting
other types of attacks outside of buffer overflows with ensure
a more robust security framework. Moreover, adapting this
TEE framework to other embedded architectures and security-
critical applications, such as aerospace, medical devices, and
industrial control systems, could broaden its impact. Finally,
improving software recovery mechanisms through runtime
integrity verification and anomaly detection techniques will
further strengthen CyberShield’s resilience against software
compromises. Addressing these areas will ensure that Cyber-
Shield remains a secure and adaptable embedded computing
platform capable of countering modern cyber threats.

VII. ACKNOWLEDGMENTS

This research was supported in part by NASA under award
number 80NSSC23CA147 and by Resilient Computing, LLC
under subcontract number 4W9082. Any opinions contained
herein are those of the authors and do not necessarily reflect
those of NASA or Resilient Computing, LLC.

REFERENCES

[1] C. Xu, S. Jiang, G. Luo, G. Sun, N. An, G. Huang, and X. Liu, “The
case for fpga-based edge computing,” IEEE Transactions on Mobile
Computing, vol. 21, no. 7, pp. 2610–2619, 2022.

[2] A. Ltd., “What is fpga?” [Online]. Available:
https://www.arm.com/glossary/fpga

[3] J. Schneider and I. Smalley, “What is a field pro-
grammable gate array (fpga)?” May 2024. [Online]. Available:
https://www.ibm.com/think/topics/field-programmable-gate-arrays

[4] S. Sunkavilli, Z. Zhang, and Q. Yu, “New security threats on fpgas:
From fpga design tools perspective,” in 2021 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI). IEEE, 2021, pp. 278–283.

[5] J. Zhang and G. Qu, “Recent attacks and defenses on fpga-based
systems,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 12, no. 3, pp. 1–24, 2019.

[6] P. Jauernig, A.-R. Sadeghi, and E. Stapf, “Trusted execution environ-
ments: Properties, applications, and challenges,” IEEE Security Privacy,
vol. 18, no. 2, pp. 56–60, 2020.

[7] G. Perkins, B. Macht, L. Ritzdorf, T. R. Crane, B. LaMeres, C. Izurieta,
and A. M. Reinhold, “Sok: Trusted execution in soc-fpgas,” 2025.
[Online]. Available: https://arxiv.org/abs/2503.16612

[8] T. L. Loo, M. K. Ishak, and K. Ammar, “Design and implementation
of secure boot architecture on risc-v using fpga,” Microprocessors
and Microsystems, vol. 101, p. 104889, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0141933123001321

[9] A. Dave, N. Banerjee, and C. Patel, “Care: Lightweight attack resilient
secure boot architecture with onboard recovery for risc-v based soc,”
in 2021 22nd International Symposium on Quality Electronic Design
(ISQED), 2021, pp. 516–521.

[10] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song,
“Keystone: an open framework for architecting trusted execution
environments,” in Proceedings of the Fifteenth European Conference
on Computer Systems, ser. EuroSys ’20. New York, NY, USA:
Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3342195.3387532

[11] F.-J. Streit, F. Fritz, A. Becher, S. Wildermann, S. Werner, M. Schmidt-
Korth, M. Pschyklenk, and J. Teich, “Secure boot from non-volatile
memory for programmable soc architectures,” in 2020 IEEE Interna-
tional Symposium on Hardware Oriented Security and Trust (HOST).
IEEE, 2020, pp. 102–110.

[12] H. A. Austin, “Fault injection system for fpga-based space computers,”
Ph.D. dissertation, Montana State University-Bozeman, College of En-
gineering, 2023.



[13] C. M. Major, A. Bachman, C. Barney, S. Tamke, and B. J.
LaMeres, “Radpc: A novel single-event upset mitigation strategy for
field programmable gate array–based space computing,” Journal of
Aerospace Information Systems, vol. 18, no. 5, pp. 280–288, 2021.
[Online]. Available: https://doi.org/10.2514/1.I010859

[14] J. Williams, C. Barney, Z. Becker, J. Davis, C. Major, B. J. LaMeres,
and B. Whitaker, “Radpc@scale: A novel approach to radpc single event
upset mitigation strategy,” 2022 IEEE Aerospace Conference, 2022.

[15] B. J. LaMeres and C. Gauer, “Dynamic reconfigurable computing archi-
tecture for aerospace applications,” 2009 IEEE Aerospace Conference,
2009.

[16] C. Gauer, B. J. LaMeres, and D. Racek, “Spatial avoidance of hardware
faults using fpga partial reconfiguration of tile-based soft processors,”
2010 IEEE Aerospace Conference, 2010.

[17] L. L. Ritzdorf, C. Barney, C. M. Major, T. R. Crane, H. Austin, B. Macht,

C. Izurieta, and B. J. LaMeres, “Evaluating the effectiveness of obfus-
cated instruction codes for malware resistance,” in 2023 Intermountain
Engineering, Technology and Computing (IETC), 2023, pp. 67–72.

[18] T. T. Running Crane, “Using instruction code obfuscation to defeat mal-
ware attacks,” Ph.D. dissertation, Montana State University-Bozeman,
College of Engineering, 2023.

[19] M. A. Butt, Z. Ajmal, Z. I. Khan, M. Idrees, and Y. Javed, “An
in-depth survey of bypassing buffer overflow mitigation techniques,”
Applied Sciences, vol. 12, no. 13, 2022. [Online]. Available:
https://www.mdpi.com/2076-3417/12/13/6702

[20] Z. Shao, Q. Zhuge, Y. He, and E.-M. Sha, “Defending embedded
systems against buffer overflow via hardware/software,” in 19th Annual
Computer Security Applications Conference, 2003. Proceedings., 2003,
pp. 352–361.


