
Surveying Software Practitioners on Technical Debt Payment 

Practices and Reasons for not Paying off Debt Items 

Sávio Freire 
 Federal University of Bahia 

 Federal Institute of Ceará 

 Brazil 
 savio.freire@ifce.edu.br 

Darío Torres 
 University of Los Andes 

 Colombia 

dcorreal@uniandes.edu.co 

Nicolli Rios 
 Federal University of Bahia 

 Brazil 
 nicollirioss@gmail.com 

 

Manoel Mendonça 
 Federal University of Bahia 

Brazil 

 manoel.mendonca@ufba.br 

Boris Gutierrez 
 University of Los Andes 

Francisco de Paula Stder. Univ. 

Colombia 
 borisperezg@ufps.edu.co 

Clemente Izurieta 
 Montana State University 

United States 
 clemente.izurieta@montana.edu 

Carolyn Seaman 
 University of Maryland Baltimore County 

United States 
 cseaman@umbc.edu 

Rodrigo O. Spínola 
 Salvador University and State University of Bahia 

Brazil 
 rodrigo.spinola@unifacs.br 

ABSTRACT 

Background: Little is known about the practices used for 

technical debt (TD) payment. The study of payment practices, as 

well as the reasons for not applying them, can help practitioners to 

control and manage TD items. Aims: To investigate, from the 

point of view of software practitioners, if TD items have been 

paid off in software projects, the practices that have been used to 

pay off TD and the reasons that hamper the implementation of 

these practices. Method: We analyzed - both quantitatively and 

qualitatively - a corpus of responses from a survey of 432 

practitioners, from four countries, about the possibility of TD 

payment. Results: We found that, for most of the cases, TD items 

have not been eliminated from software projects. The main 

reasons for not paying off TD are lack of organizational interest, 

low priority on the debt, focus on short-term goals, cost, and lack 

of time. On the other hand, we identified that code refactoring, 

design refactoring, and update system documentation are the most 

used practices for TD payment. Practitioners also cited practices 

related to the prevention, prioritization, and creation of a favorable 

setting as part of TD payment initiatives. Conclusion: This paper 

summarizes the identified practices and reasons for not paying off 

debt items in a map. Our map reveals that the majority of payment 

practices are of a technical nature while the majority of reasons 

for not paying off debts are associated with non-technical issues. 

CCS CONCEPTS 

• General and reference~Surveys and overviews • Software and its 

engineering 

KEYWORDS 

Technical debt, Technical debt payment, Technical debt 

management, InsighTD 

ACM Reference format: 

Sávio Freire, Nicolli Rios, Boris Gutierrez, Darío Torres, Manoel 

Mendonça, Clemente Izurieta, Carolyn Seaman, and Rodrigo O. Spínola. 

2020. Surveying Software Practitioners on Technical Debt Payment 

Practices and Reasons for not Paying off Debt Items. In Proceedings of 

Evaluation and Assessment in Software Engineering (EASE 2020). 

Trondheim, Norway, April 15-17, 2020, 10 pages. DOI: 

https://doi.org/10.1145/3383219.3383241 

1 Introduction 

Technical debt (TD) describes the effects faced during software 

development due to immature artifacts [1, 2]. These effects can be 

either beneficial (e.g., higher productivity) or harmful (e.g., 

hindering system evolution). Through TD management, project 

teams can handle these effects, decreasing risks imposed by the 

presence of debt [3]. TD management is comprised of activities 

that include the identification, monitoring and payment of debt 

items [4]. The last one refers to the activities undertaken with the 

goal of eliminating debt items [5]. 

We define TD payment practices as ways to eliminate identified 

TD items. Several research articles have sought to identify 

practices, tools, and activities for TD management [5, 6]. However, 

little is known about practices used for paying off TD items [5]. If 

© 2020 Association for Computing Machinery. ACM acknowledges that this 

contribution was authored or co-authored by an employee, contractor or affiliate of 

a national government. As such, the Government retains a nonexclusive, royalty-

free right to publish or reproduce this article, or to allow others to do so, for 

Government purposes only. 

EASE 2020, April 15–17, 2020, Trondheim, Norway 

© 2020 Association for Computing Machinery. 

ACM ISBN 978-1-4503-7731-7/20/04…$15.00 

https://doi.org/10.1145/3383219.3383241 



EASE’20, April, 2020, Trondheim, Norway S. Freire et al. 

 

 

 

known, these practices could support development teams in 

choosing the most suitable practices for paying off TD items [8].  

There is a lack of empirical evidence from the software industry 

in this area [7]. Although there is some discussion on TD payment 

in the technical literature, there is little evidence on whether TD 

items have been eliminated from software projects, what TD 

payment practices are currently applied by software practitioners, 

and what reasons exist to the non-application of these practices. 

These issues are precisely the topics addressed in this paper.  

The goal of this work is to investigate, from the point of view 

of software practitioners, if they have paid debt items off in their 

projects, the practices that have been used for payment, and the 

issues that hamper the implementation of these practices. 

The paper uses a subset of the data collected by the InsighTD 

Project, http://td-survey.com/, which is a globally distributed 

family of industrial surveys on TD causes and implications [9]. In 

total, 432 professionals from Brazil, Chile, Colombia, and the 

United States responded the survey up to now. We analyzed these 

responses through qualitative and quantitative procedures.  

The survey analysis was organized as follows. It initially 

characterizes the survey’s participants. Then, it identifies the 

answers that indicates that the payment of the TD items described 

by the participants was possible, and qualitatively analyzes the 

cited practices. For those who indicated that the payment of their 

described debt items was not possible, it qualitatively analyzes the 

possible reasons for not eliminating those TD items. 

Results show that debt items were not paid off in most cases. 

From a total of 28 identified reasons for not paying off a TD low 

priority of TD, lack of organizational interest, focusing on short-

term goals, costs, and lack of time are the most cited ones. By 

grouping the identified reasons for not paying off a debt, we 

identified that planning and management and organizational issues 

are the categories that most hamper the application of TD payment 

practices. Further, 13 of these reasons are related to decision 

factors, while the other 15 are impediments that do not allow debt 

payment even if the development team wanted to pay it off.  

On the other hand, from a total of eight identified payment 

practices, code refactoring, design refactoring, and update system 

documentation are the most common ones. In addition, we have 

also found that the use of practices for the prevention, 

prioritization and creation of a TD pay-setting is commonly cited 

in the context of TD payment. 

To support the practical use of the results of this work, we 

organize the set of practices and reasons into a TD Payment Map. 

Software practitioners can consult this map to guide their 

decisions about eliminating debt items from their projects. 

This work has implications for both practitioners and 

researchers. Practitioners can use the list of TD payment practices 

to decide which ones better fit their needs. The list of reasons that 

hamper the application of these practices can support practitioners 

to foresee difficulties and better plan for TD payment in their work 

environment. For researchers, the findings provide a grounded 

view of the software industry needs with respect to TD payment. 

Results can guide new research efforts aligned with the demands 

and current context of TD payment experienced by practitioners. 

This paper is organized in seven other sections. Section 2 

presents background about the InsighTD project, and TD 

management and its payment. Section 3 presents the research 

method. Then, Section 4 presents the results of the survey 

concerning TD payment. Section 5 discusses the main findings, 

presenting the map for supporting TD payment. Section 6 

discusses the implications of the study for researchers and 

practitioners. Section 7 discusses the threats to the study validity. 

And lastly, Section 8 presents our final remarks and discusses the 

next steps of this work. 

2 Background 

This section introduces the InsighTD project and TD payment 

concepts related to this work. 

2.1 The InsighTD Project 

InsighTD is a globally distributed family of industrial surveys on 

TD. The project aims at establishing an open and generalizable set 

of empirical data on practical problems of TD [9]. Its design 

supports replications of the survey in different countries. At the 

time of this writing, researchers from 11 countries – namely, 

Brazil, Chile, Colombia, Costa Rica, Finland, India, Italy, 

Norway, Saudi Arabia, Serbia, and the United States – have 

joined the project. At this point, the project has concluded data 

collections for the InsighTD replications in Brazil, Chile, 

Colombia, and the United States. 

Significant analyses of InsighTD data have already been 

conducted, regarding causes, effects, and preventive actions about 

TD. These include: preliminary results concerning TD causes and 

effects (along with the detailed design of the study) [9],  an 

analysis of TD causes and effects in agile projects [10],  the use of 

cross-company probabilistic cause-effort diagrams to support TD 

management initiatives [11], and TD prevention [12].  

Although the aforementioned analyses have supported 

conclusions about the state of the practice on TD, much still 

remains to be investigated. As previously discussed, this paper 

analyzes the InsighTD data with respect to TD payment from the 

point of view of the survey respondents. 

2.2 Technical Debt and its Payment 

Technical debt management is a decisive factor for increasing the 

success of software projects [14]. It is composed of activities 

supporting decisions about the need and the appropriate time to 

eliminate TD items from a software project [13]. These decisions 

can cause negative and positive impacts on a project. A positive 

impact can be achieving project goals sooner, while negative 

impacts can be increasing cost and technical problems.  

There are several activities associated with TD management: 

identification, measurement, prioritization, prevention, 

monitoring, payment, documentation, communication, 

visualization, time-to-market analysis, and scenario analysis [5, 

7]. A TD payment activity refers to practices for resolving TD 

items using approaches such as reengineering and refactoring [5]. 

Li et al. [5] conducted a systematic mapping study on the subject. 



Surveying Software Practitioners on Technical Debt Payment 

Practices and Reasons for not Paying off Debt Items   
EASE’20, April, 2020, Trondheim, Norway 

 

 

They identified seven categories of practices for paying off TD 

items, namely, refactoring, rewriting, automation, reengineering, 

bug fixing, repackaging, and fault tolerance. However, these 

categories have not been investigated in industrial settings [5]. 

More recently, Rios et al. [7] conducted a tertiary study about TD, 

evidencing that few practices for TD payment have been 

described from studies conducted in industry. 

Our study seeks to better understand (i) the practices that can 

be used to pay off TD items and (ii) the reasons that hamper the 

utilization of these practices in the software industry. 

3 Research Method 

This section presents the research questions posed in this work, 

and discusses its data collection and data analysis procedures. 

3.1 Research Questions 

Our main research question (RQ) is “How have software 

practitioners paid off technical debt in their projects?” The 

purpose of this RQ is to identify the main practices that software 

practitioners have used to eliminate debt items. We divide this 

question into the following sub-questions: 

RQ1: Have software practitioners paid off TD in their 

projects? Through this question, we will explore practitioners’ 

responses from the InsighTD dataset and calculate how often their 

TD items have been paid off. 

RQ2: What are the main practices used by software 

practitioners to pay off TD? This question aims to investigate the 

most cited practices used to pay TD items.  

RQ3: What are the main reasons cited by software 

practitioners for not paying off TD items? The purpose of this 

question is to investigate the possible reasons that hinder the 

implementation of TD payment practices. 

We also have a sub-question that aims at verifying whether the 

role of software practitioners influences in the perception of the 

reasons that curb the application of TD payment practices.  

RQ3.1: Does the role of practitioners influence in the 

perception of the reasons (decision factors and impediments) for 

not paying TD? This question aims to investigate if there is support 

for the idea that technical folks always want to pay off the debt (so 

they see the reasons for not paying it off as impediments) and 

management folks never want to pay it off (so they see the reasons 

for not paying it off as decision factors). Thus, to approach this 

question, we consider two main groups of practitioners: technical 

and non-technical. The first is related to roles involved in the 

technical development of a software project, including hands-on 

activities such as requirement analysis, design, coding, and testing. 

The second is related to non-technical roles, encompassing 

practitioners with managerial responsibilities in their projects.  

3.2 Data Collection 

As said, this work uses data collected by survey in the context of 

the InsighTD project. The survey is composed of 28 questions, as 

previously described in [9]. The work described here is concerned 

with a subset of these questions. This subset is shown in Table 1 

along with the question identifier number (No), description, and 

type. Q1 to Q8 characterize the survey participants and their work 

context. Q9 and Q10 identify the participants’ knowledge level of 

TD. Q13 and Q15 ask participants to describe an example of a TD 

item that occurred in their software project (this example is used 

as a basis for answering TD payment questions) and indicate the 

representativeness level of this example, respectively. Finally, 

questions Q26 and Q27 focus on the discussion of the 

participants’ experiences in TD payment. 

As the InsighTD project intends to investigate the state of the 

practice of TD, we sent e-mail invitations to answer the survey to 

software practitioners from Brazil, Chile, Colombia, and United 

States. In all cases, we followed the same strategy, using 

LinkedIn, industry-affiliated member groups, mailing lists, and 

industry partners, as invitation channels. 
 

Table 1: Subset of the InsighTD Survey’s Questions Related to 

TD Repayment (Adapted from [9]) 
No. Question (Q) Description Type 

Q1 What is the size of your company? Closed 

Q2 In which country you are currently working? Closed 

Q3 What is the size of the system being developed in that 

project? (LOC) 

Closed 

Q4 What is the total number of people of this project? Closed 

Q5 What is the age of this system up to now or to when your 

involvement ended? 

Closed 

Q6 To which project role are you assigned in this project? Closed 

Q7 How do you rate your experience in this role? Closed 

Q8 Which of the following most closely describes the 

development process model you follow on this project? 

Closed 

Q9 How familiar you are with the concept of Technical Debt?  Closed 

Q10 In your words, how would you define TD? Open 

Q13 Give an example of TD that had a significant impact on the 

project that you have chosen to tell us about: 

Open 

Q15 About this example, how representative it is? Closed 

Q26 Has the debt item been paid off (eliminated) from the 

project? 

Closed 

Q27 If yes, how? If not, why? Open 

3.3 Data Analysis 

As shown in Table 1, the questionnaire is composed of closed and 

open-ended questions. To analyze closed questions, we used 

descriptive statistics to verify the central tendency of the ordinal 

and interval data (mode and median statistics) and to calculate the 

share of participants choosing each option (nominal data). These 

data analysis procedures were applied for the characterization 

questions and also for Q26, supporting the response to RQ1.  

We applied qualitative data analysis techniques to the open-

ended questions [15, 16]. In answers given to Q27, we initially 

applied manual open coding resulting in a set of codes. We 

divided those codes in two subsets based on the answers to Q26. 

If the answer was positive, the code was related to the TD 

payment practices (RQ2). If the answer was negative the code was 

related to reasons for not paying off the TD (RQ3). The process 

was performed iteratively revising and unifying codes at each 

cycle of analysis until reaching the state of saturation, i.e., a point 



EASE’20, April, 2020, Trondheim, Norway S. Freire et al. 

 

 

 

where no new codes were identified. In the end of the analysis, we 

obtained a stable list of codes along with their citation frequency.  

At least three researchers conducted the coding in each of the 

four InsighTD replications. Each researcher could assume one of 

the following roles: (i) code identifier – the person responsible for 

extracting the existing codes in the answers, (ii) code reviewer –

responsible for reviewing all extracted codes, and (iii) referee –

responsible for resolving disagreements in codes identified by the 

code identifier and code reviewer. More specifically, we had the 

1st and 2nd authors performing the roles of code identifier and 

reviewer, respectively, in the Brazilian and North American 

datasets; and the 3rd and 4th authors performing the roles of code 

identifier and reviewer, respectively, in the Chilean and 

Colombian datasets. The 8th author acted as the referee in all 

replications, pursuing consistency among all analyses. 

Code unification was especially laborious. For example, 

participants cited the following practices to pay off TD: “by 

implementing required technology” and “(...) updating the 

solution to the latest technology changes”. The originally 

extracted codes were implementing required technology and 

technology/tool/platform change, respectively. Then, as these 

codes had different nomenclature but shared a common meaning, 

we unified them as solving technical issues. 

By perceiving that many of the codes in the same subset 

(practices or reasons for do not eliminate the debt) were related to 

each other, we followed a grouping process to organize them into 

categories reflecting the main concern of each subset. This 

process followed axial coding [16]. The 1st author analyzed each 

code comparing its meaning with that of the other codes. When 

the researcher identified a relation between them, he grouped 

them into a category. To name the categories, we used the list 

proposed by Rios et al. [11]. For example, we used the category 

internal quality issues to group TD payment practices like code 

refactoring and design refactoring. For consistency, once again, 

the entire process was reviewed by the last author of this paper. 

Lastly, to respond RQ3.1, we divided the dataset of reasons 

into two groups (role: technical or non-technical) along two 

dimensions (reasons: decision factors or impediments). This 

partitioning allows us to investigate if there are significant 

differences between the groups using the Pearson’s Chi-squared 

statistical test. This test is indicated when the variables are 

categorical and paired. The role and reason are defined as test’s 

variables. These variables (i) are non-numerical and describe data 

fitted into categories, and thus are categorical and (ii) are related 

to each other as long as each survey participant specifies their role 

and the reasons identified in their projects, in other words, they 

are paired.  

4 Results 

In total, we obtained 432 valid answers: 107 from Brazil, 92 from 

Chile, 133 from Colombia, and 100 from the United States. 

4.1 Characterization of the Participants 

Table 2 details the roles of the participants, reporting the role 

name (role), the frequency of occurrence of each role (#FR) and 

the percentage of FR in relation to the total of all cited roles 

(%FR). The column level of experience shows the number of 

participants by their level of experience in their role among the 

following options: Novice (Minimal or “textbook" knowledge 

without connecting it to practice), Beginner (Working knowledge 

of key aspects of practice), Competent (Good working and 

background knowledge of area of practice), Proficient (Depth of 

understanding of discipline and area of practice), and Expert 

(Authoritative knowledge of discipline and deep tacit 

understanding across area of practice). For each level of 

experience, we presented, in parentheses, its percentage in relation 

to the whole dataset.   

The majority of respondents identified themselves as 

developers (42.4%). The roles of project manager, software 

architect, tester, requirement analyst, and process analyst are also 

common. Most respondents identified themselves as proficient 

(33%), followed by competent (28%), expert (27%), beginners 

(11%), and novice (1%), indicating that, in general, the 

questionnaire was answered by professionals with experience in 

their functions.  

The respondents worked in organizations of different sizes. 

Most of them worked in medium-sized companies (39%, 

organizations with 51 to 1000 employees), followed by large 

(34%, more than 1000 employees) and small (27%, up to 50 

Table 2: Participant Roles 

Role #FR %FR 
Level of Experience 

Novice (1%)* Beginner (11%) Competent (28%) Proficient (33%) Expert (27%) 

Developer  183 42.4% 1 20 52 65 45 

Project Leader / Project Manager  84 19.4% 0 7 24 28 25 

Software Architect  73 16.9% 1 5 17 28 22 

Test Manager / Tester  36 8.3% 0 3 12 10 11 

Requirements Analyst  17 3.9% 0 4 6 5 2 

Process Analyst  12 2.8% 0 4 5 1 2 

Business Analyst  7 1.6% 0 2 4 0 1 

Database Administrator 7 1.6% 0 2 0 3 2 

Performs multiple functions  5 1.2% 0 1 2 1 1 

Infrastructure analyst  3 0.7% 1 0 1 0 1 

Configuration Manager  2 0.5% 0 0 0 0 2 

Quality Analyst 2 0.5% 0 0 0 0 2 

Data Scientist 1 0.2% 0 1 0 0 0 

* The number in parentheses represents the percentage of total participants with that level of experience. 

 



Surveying Software Practitioners on Technical Debt Payment 

Practices and Reasons for not Paying off Debt Items   
EASE’20, April, 2020, Trondheim, Norway 

 

 

employees). The most common team size that respondents worked 

in was 5-9 people (31%), followed by team sizes with 10-20 

people (25%), more than 30 people (19%), less than 5 people 

(17%), and 21-30 people (8%). 

The system age mentioned in TD examples was typically 

between 2 and 5 years old (35%), but we found systems with 1 to 

2 years of age (23%), 5 to 10 years old (16%), less than 1-year-old 

(16%) and more than ten years old (10%). The most common 

system size was between 10 KLOC and 1 million LOC (61%), 

followed systems with size between 1 to 10 million LOC (17%), 

less than 10 KLOC (14%), and more than 10 million LOC (7%). 

Finally, concerning the process used by respondents, 44% was 

hybrid (a combination of agile and traditional practices), 41% was 

agile, and 14% was traditional. 

Thus, in general, although it is not possible to guarantee that 

the participants represent all the professionals in the software 

industry of the surveyed countries, the sample set encompasses a 

broad and diverse set of professionals who perform different roles 

and have experience levels, including different sizes of 

organizations and projects of different ages, sizes, team sizes and 

process models. 

4.2 Have software practitioners paid off TD in 

their projects? (RQ1) 

To answer RQ1, we analyzed the survey’s responses for Q26. In 

this question, we verify whether the TD item described by the 

participant in Q13 was paid off or not. In total, 60% (258) of the 

participants indicated that the TD item mentioned was not paid 

off. This is a worrying scenario because 87% of the participants 

indicated in Q15 that their example represents a situation that 

occurs very often or happens time to time in the project.  

To better understand the reasons that lead development teams 

to not eliminate the debt from their projects, we go further into 

this RQ and investigate the reasons that hamper the payment of 

TD items in RQ3. The same is performed in RQ2 to understand 

the practices used for TD payment. 

4.3 What are the main TD payment practices 

used by software practitioners to pay off TD? 

(RQ2) 

In Q26, 174 participants indicated that the TD item was paid off 

and 165 of them explained how (in Q27). From Q27, we have 

identified 34 practices related to the payment of TD items. These 

are all listed in Figure 1 (Section 5.1). Table 3 summarizes the 10 

most common ones. The table reports the practice name, the total 

number citations for the practice (#CP), and the percentage of CP 

in relation to the total of cited practices (%CP). In total, the top 10 

practices related to the payment of TD items correspond to ~70% 

of the overall frequency of citations. 

4.3.1 Technical and non-Technical Practices.  One can 

classify the identified practices in technical and non-technical 

aspects of a software development. Technical aspects refer to 

activities performed during software development that involve 

technical issues. On the other side, non-technical aspects are 

related to managerial issues. The technical subset is composed of 

code refactoring, design refactoring, updating system 

documentation, adoption of good practices, and solving technical 

issues, representing 42.6% of all the identified practices. The non-

technical subset is composed of investing effort on TD payment 

activities, monitoring and controlling project activities, investing 

effort on testing activities, prioritizing TD items, and negotiating 

deadline extension, representing 26.9% of all the identified 

practices. This is an indication that technical aspects are decisive 

when eliminating debt items, but we still need to consider 

managerial issues. 

4.3.2 Types of TD Payment related Practices. By going further 

into the analysis of the whole set of identified practices related to 

the payment of TD items, we realize that some practices do not 

directly allow the elimination of TD items. For instance, the 

practice investing effort on TD payment activities contributes to 

create a favorable scenario for eliminating TD items, but does not 

eliminate the item by itself. As a result of this analysis, we 

identified four types of practices related to TD payment: 

• Payment practice: includes practices directly related to TD 

item removal, such as refactoring, design refactoring, and 

update system documentation; 

• Defining a favorable setting for TD payment: includes 

practices that improve the capacity of development teams to 

pay debt items off. Some examples are investing effort on td 

payment activities, negotiating deadline extension, and 

increasing the project budget; 

• TD prevention: refers to practices intended to curb potential 

TD from being incurred. Among them, we have monitoring 

and controlling project activities, investing effort on testing 

activities, and using short feedback iterations; 

• TD prioritization: is related to practices that support the 

ranking of TD items according to classification criteria. Only 

prioritization of TD items composes this category. 
 

Table 4 shows the identified types of practice, reporting the 

type’s name, the number of unique practices cited (#P) and the 

total number (i.e., count) of practices (#CP) cited in each type. 

Column %CP indicates the percentage of CP in relation to the 

total of all cited practices. We can observe that the most cited type 

by survey participants (payment practice) represent 45.5% of the 

total citations. The types defining a favorable setting for TD 

payment and TD prevention were also commonly cited by the 

practitioners, revealing their concerning about having a favorable 

scenario to improve the use of the payment practices and to 

minimize the occurrence of debt.  

Table 3:  Top 10 Cited Practices related to TD Payment 
Practice related to the TD payment #CP %CP 

Code refactoring 64 26.4% 

Investing effort on TD payment activities 21 8.7% 

Design refactoring 16 6.6% 

Investing effort on testing activities 12 5% 

Monitoring and controlling project activities 12 5% 

Prioritizing TD items 11 4.5% 

Updating system documentation 9 3.7% 

Negotiating deadline extension 9 3.7% 

Increasing the project budget 8 3.3% 

Using short feedback iterations 8 3.3% 

 



EASE’20, April, 2020, Trondheim, Norway S. Freire et al. 

 

 

 

4.3.3 Categories of TD Payment Related Practices. We also 

organized the set of practices related to the payment of TD items 

into eight categories: 

• Development issues: encompasses practices that are applied 

during the implementation of software, such as update 

system documentation, adoption of good practices, and 

solving technical issues; 

• External quality issues: groups practices that are related to 

software quality aspects that can be perceived by users. Only 

the practice bug fixing is part of this category; 

• Infrastructure: groups practices related to tools, technologies, 

and development environments. Among them, we have using 

external tools and organizing the project repository; 

• Internal quality issues: includes practices that can be 

employed to address limitations that compromise the internal 

quality of the software. In this category we have two 

practices: code refactoring and design refactoring; 

• Methodology: is related to the practices associated with 

processes followed by a software team. Among them, we 

highlight investing effort on TD payment activities, investing 

effort on testing activities, and using short feedback 

iterations; 

• Organizational: refers to practices associated with 

organizational decisions, such as hiring specialized 

professionals and changing the project management; 

• People: includes practices directly related to the members of 

software development teams, such as improving the 

communication among team members, improving the team 

collaboration, and communicating with the customer about 

TD items; 

• Planning and management: groups practices associated with 

management activities. Examples of practices in this 

category are monitoring and controlling project activities, 

prioritizing TD items, and negotiating deadline extension. 

 

Table 5 shows the identified categories of practices related to 

TD payment, reporting the category’s name, the number of unique 

practices cited (#P), and the total number of practices cited in each 

category (#CP). Column %CP indicates the percentage of CP in 

relation to the total of all cited practices. We can observe that the 

most cited category by survey participants (internal quality issues) 

represents 33.1% of the total citations, indicating that this 

category plays a central role in practices related to the payment of 

TD items. The categories methodology, development issues, and 

planning and management were also commonly remembered as 

relevant when paying off TD. 

The categories people and organizational, each corresponding 

to 2%, indicate that few participants have the improvement of the 

technical knowledge of the team and organizational environment 

as part of their TD payment initiatives. Finally, practices from the 

categories infrastructure and external quality issues are cited by 

only 1.7%. This result is not surprising due to the fact that TD is 

mostly related to internal quality issues in software products [18].   
 

Table 5: Categories of Practices related to TD Repayment 
Category of Practices related to TD Repayment #P #CP %CP 

Internal quality issues 2 80 33.1% 

Methodology 13 70 28.9% 

Planning and management 5 42 17.4% 

Development issues 6 32 13.2% 

People 3 5 2% 

Organizational 2 5 2% 

Infrastructure 2 4 1.7% 

External quality issues 1 4 1.7% 

4.4 What are the main reasons cited by software 

practitioners for not paying off TD items? 

(RQ3 and RQ3.1) 

In Q26, 258 participants indicated that the TD item was not paid 

off and 213 of them explained how in Q27. Table 6 shows the 10 

most commonly cited reasons for not paying off TD (out of a total 

of 28) identified in Q27. The complete list of reasons is presented 

in Figure 1 (Section 5.1). Table 6 reports the reason name, the total 

number (i.e., count) of reasons (#CR), and the percentage of CR in 

relation to the total of all cited reasons (%CR). In total, the top 10 

reasons correspond to ~83% of the overall frequency of citations. 
 

Table 6: Top 10 cited Reasons for TD Non-Payment 
Reason for TD Non-Payment #CR %CR 

Low priority 45 19.7% 

Lack of organizational interest 37 16.2% 

Focusing on short term goals 35 15.3% 

Cost 28 12.2% 

Lack of time 18 7.9% 

Customer decision 10 4.4% 

Lack of resources 8 3.5% 

Complexity of the TD item 5 2.2% 

Insufficient management view about TD repayment 5 2.2% 

The project was discontinued 5 2.2% 

 

4.4.1 Technical and non-Technical Reasons. The reasons low 

priority, lack of organizational interest, focusing on short term 

goals, cost, lack of time, lack of resources, customer decision, the 

project was discontinued, and insufficient management view about 

TD repayment are related to non-technical aspects of the software 

development, and represent almost 81.2% of the all identified 

reasons. On the other side, the reason complexity of the TD item is 

related to technical aspects, representing only 2.2% of all the 

identified reasons. This result clearly suggests that dealing with 

managerial issues is quite decisive if we are interested in 

improving the use of TD payment practices. 

4.4.2 Types of Reasons for not Paying off TD. By going further 

into the analysis of the whole set of identified reasons for not 

paying TD items, we organized them into the following types: 

• Decision factor: refers to reasons for deciding not to pay off 

the TD. Among them, we have low priority, lack of 

organizational interest, and focusing on short-term goals; 

• Impediment: points to situations in which the development 

team wanted to pay off the TD, but they couldn’t pay it off 

Table 4: Types of Practices related to TD Payment 
Type of Practices related to TD Payment #P #CP %CP 

Payment practice 8 110 45.5% 

Defining a favorable setting for TD payment 12 67 27.7% 

TD prevention 13 54 22.3% 

TD prioritization 1 11 4.5% 

 



Surveying Software Practitioners on Technical Debt Payment 

Practices and Reasons for not Paying off Debt Items   
EASE’20, April, 2020, Trondheim, Norway 

 

 

for some reason. Examples are cost, lack of time, and 

customer decision.  
 

Table 7 presents the types of reason, reporting the type’s name, 

the number of unique reasons cited (#R), and the total number (i.e., 

count) of reasons (#CR) cited in each type. As before, the column 

%CR indicates the percentage of CR in relation to the total of all 

cited reasons. Decision factors represent 59% of the total citations, 

while the type impediment is 41%. This result indicates that 

impediments are common, but most of times, TD items are not 

eliminated from projects due to decisions of the team.  
 

Table 7: Types of Reason for TD Non-Payment 

Type of Reason for TD Non-Payment #R #CR %CR 

Decision factor 13 135 59% 

Impediment 15 94 41% 
 

4.4.3 Categories of Reasons for not Paying off TD Items. 

Regardless of their types (decision factor or impediment), we also 

classified the identified reasons into eight categories: 

• Development issues: groups reasons related to software 

development activities. Among them, we have complexity of 

the project and decision to not change the framework; 

• External factors: organizes reasons related to factors that are 

out of control of the development team, such as customer 

decision, the project was discontinued, and TD items do not 

affect the user;  

• Internal quality issues: encompasses reasons related to 

characteristics of system code and structure, such as 

complexity of the TD item and number of TD items; 

• Lack of knowledge: groups reasons associated with the need 

for technical knowledge, such as lack of knowledge about TD 

and lack of technical knowledge; 

• Methodology: groups reasons associated with process 

activities. Among them, we highlight lack of adoption of 

lessons learned, lack of testing, and non-application of 

mitigation actions on TD causes; 

• Organizational: includes reasons associated with 

organizational decisions. Examples are lack of organizational 

interest, lack of resources, and high team turnover; 

• People: includes reasons related to team characteristics, such 

as insufficient management view about TD payment, lack of 

committed team, and team overload; 

• Planning and management: encompass reasons related to 

management activities, such as low priority, focusing on 

short term goals, and cost. 

 

Table 8 presents the categories of reason, reporting the 

category’s name, the number of unique reasons cited (#R) and the 

total number (i.e., count) of reasons (#CR) cited in each category. 

Once again, the column %CR indicates the percentage of CR in 

relation to the total of all cited reasons. One can notice that the 

most cited category (planning and management) represents 59% 

of the total citations, indicating that this category plays a central 

role in reasons for not eliminating TD items. 

The category organizational was also commonly found 

(20.1%). The categories external factors and people correspond to 

only 7.4% and 3.9%, respectively, indicating that few participants 

have perceived those factors as decisive for not paying off debt 

items. The other categories are even less commonly cited. 
 

Table 8: Categories of Reason for TD Non-Payment 
Category of Reason for TD Non- Payment #R #CR %CR 

Planning and management 7 135 59% 

Organizational 3 46 20.1% 

External factors 4 17 7.4% 

People 3 9 3.9% 

Methodology 5 6 2.6% 

Internal quality issue 2 6 2.6% 

Development issues 2 5 2.2% 

Lack of knowledge 2 5 2.2% 
 

4.4.4 Relationship between Technical/non-Technical Role of 

Software Practitioners and Reasons that Curb the Application of 

TD Payment Practices (RQ3.1). For this analysis, we considered 

only the participants who cited at least one reason (decision factor 

or impediment) for not paying the TD, resulting in the selection of 

178 participants. After, we divided the participants into two 

subgroups. The non-technical subgroup (54 participants) is 

composed of the role project leader / manager while the technical 

subgroup (173) includes all other roles.  

Table 9 shows the relationship between role group and type of 

reason, reporting, for each group, the quantity of decision factors 

and impediments. Non-technical participants cited 32 (23.9%) and 

22 (23.6%) decision factors and impediments, respectively. On 

the other hand, technical participants cited 102 (76.4%) and 71 

(76.1%) decision factors and impediments, respectively. To verify 

whether this difference is significant between the groups, we 

performed the Pearson’s Chi-squared statistical test with 95% of 

confidential level. The resulting p-value was 0.9688, indicating 

that there is not significant difference between the groups. This 

result suggests that participant’s role (technical or non-technical) 

does not influence the type of reason considered by the participant 

for not paying the debt. 

Table 9: Relationship Between Role Type and Reason Type 
Role Group Type of Reason 

Decision Factor Impediment 

Non-Technical 32 22 

Technical 102 71 

5 Discussion 

This section presents a map that can be used by software 

development teams in TD payment activities. It then compares the 

categories of practices and reasons proposed in this article with 

the categories of TD payment strategies proposed by Li et al. [7]. 

Lastly, it summarizes the main findings of this work. 

5.1 Map for TD Payment 

Figure 1 shows our map for supporting development teams in TD 

payment activities. The map organizes practices and reasons 

grouped by category. The categories are represented by dashed-

line rectangles. Small rectangles indicate when a practice or 

reason is related to technical aspects. A black rectangle means that 

a practice or reason has a technical characteristic while a white 



EASE’20, April, 2020, Trondheim, Norway S. Freire et al. 

 

 

 

rectangle means it is non-technical. For example, in reasons, the 

category external factors has three non-technical reasons (the 

project was discontinued, customer decision, and TD items do not 

affect the user) and only one technical reason (lack of access on 

component code).  

Small circles represent the type of practice or reason. We used 

a specific color for each type. For instance, in practices, the 

category planning and management issues has three green 

practices (negotiating deadline extension, increasing the project 

budget, and conducting risk analysis) of the type defining a 

favorable setting for TD payment, one yellow practice 

(monitoring and controlling project activities) of the type TD 

prevention, and one orange practice (prioritizing TD items) of the 

type TD prioritization.  

 
Figure 1: Map for supporting TD payment. 



Surveying Software Practitioners on Technical Debt Payment 

Practices and Reasons for not Paying off Debt Items   
EASE’20, April, 2020, Trondheim, Norway 

 

 

As a conceptual guide, the map can be employed to inform 

practices in response to the need for TD payment, and to identify 

reasons that explain the non-application of these practices. The 

map facilitates the identification of practices related to TD 

payment and reasons by highlighting aspects of the software 

development process and the nature of the activity (technical or 

non-technical). Besides, the type of practice or reason can support 

the identification of practices that facilitate, eliminate, prevent or 

prioritize the TD payment and the main impediments or decisions 

that hamper the application of those practices. For example, when 

a software team decides to pay TD items off, it can use the 

practices of the type payment practice. Project managers can 

analyze the impediments and practices of the type defining a 

favorable setting for TD payment to understand the TD payment 

context and support their software teams in using payment 

practices. Even more specifically, the category planning and 

management issues existing in practices and reasons shed light 

about the main issues that can be improved by managers in the 

context of TD payment. 

By assisting in making the practices and the reasons visible, as 

a communication device, the map can be used to support 

development teams to more effectively communicate technical 

problems to management, and for managers to make better-

informed decisions concerning TD payment. We believe that the 

map can help to create a more favorable environment for 

eliminating debt items.  

5.2 Comparison to Related Work 

Table 10 shows the categories of TD payment practices we define 

in this work, their relationship with the categories reported by Li 

et al. [7], and the overlapping degree of this relation. The 

overlapping degree between the categories can be total, indicating 

that all practices from a category identified in our work are 

considered in the work from Li et al. [7] and vice-versa, and 

partial, indicating that our work has practices that are not 

considered in the related work. 
 

Table 10: Comparison to Related Work 
Our Categories Categories from 

Li et al. [7] 

Overlapping Degree 

Internal quality issues Refactoring Total 

Rewriting Total 

Methodology Automation  Partial 

Repackaging Partial 

Development issues Reengineering Partial 

Fault tolerance Partial 

External quality issues Bug fixing Total 

Planning and management - - 

People - - 

Organizational - - 

Infrastructure - - 

 

The comparison of the results reveals that the point of view of 

software practitioners (from InsighTD) confirms the results from 

the technical literature (from Li et al. [7]) that practices related to 

internal quality issues, methodology, development issues, and 

external quality issues can be employed to eliminate debt items 

from software projects. In addition, eliciting the opinions of 

software practitioners allowed us to find that aspects related to 

planning and management, people, organizational issues, and 

infrastructure are also necessary to support TD payment initiatives. 

In summary, our findings reveal new categories and practices 

related to TD payment and complement those defined by Li et al. 

[7]. Reasons for TD non-payment were not approached in the 

previous study. 
 

5.3 Summary of Findings 

The main takeaways of this paper can be summarized in the 

following points: 

• The payment of TD items seems not to be a common practice 

yet in software organizations; 

• Code refactoring, design refactoring, and update system 

documentation are the most cited TD payment practices; 

• Technical practices are more commonly used for TD 

payment than non-technical practices; 

• Besides payment practices, practitioners also have concerns 

about prevention, prioritization, and definition of a favorable 

setting for TD payment; 

• Low priority, lack of organizational interest, focusing on 

short term goals, and cost are the most cited reasons for TD 

non-payment; 

• The non-payment of TD occurs due to two main types of 

reasons (decision factors and impediments), regardless the 

participant’s roles (technical and non-technical); 

• Non-technical aspects are more commonly seen as reasons 

for not eliminating debt items. Therefore, resolving issues 

originated from managerial aspects should be the main 

concern in creating a favorable scenario to apply practices 

for the payment of TD items; 

• A map for supporting TD payment was defined by 

organizing all practices and reasons grouped in their 

respective types and categories. 

6 Implications for Practitioners and Researchers 

Software practitioners can use the identified practices and reasons 

for not paying TD off (Tables 3 and 5) considering their 

frequency of occurrence as TD management criteria. In addition 

to the frequency, software practitioners can identify the types and 

categories that group practices or reasons by using the map 

presented in Figure 1.  These types and categories help to 

recognize practices or reasons that are related to each other, 

shedding light in possible combinations of practices for paying off 

TD items, or drawing conclusions about reasons that hinder the 

application of TD payment in the workplace. 

The map can also help software practitioners to envision 

whether practices and reasons are technical or not. The map 

shows that most practices are technical, implying that improving 

technical knowledge can be a good way to help eliminate TD 

items. The map also indicates that most reasons are non-technical, 

indicating that the organization and its work force must 

understand the impact of TD items and teamwork in providing a 

good environment for paying off TD. 



EASE’20, April, 2020, Trondheim, Norway S. Freire et al. 

 

 

 

For researchers, our results help to support the development of 

new research agendas on practices for TD payment and reasons 

for TD non-payment. The presented top 10 list of practices, the 

types and categories of practices, the top 10 list of reasons, the 

types and categories of reasons, and the map for TD payment can 

guide new investigations in a problem-driven way. For example, 

the development of new approaches for TD payment could 

consider the combination of practices from different categories. 

7 Threats to Validity 

We identified some threats to validity in our work [19]. For each 

one, we sought to remove it when possible or mitigate its effect 

when removal was not possible.  

The coding process represents the main threat that could affect 

this study with respect to conclusion validity. Coding is subjective 

and subject to inconsistency. To mitigate this negative effect, the 

coding process was performed by three researchers playing 

different roles: code identifier, code reviewer, and referee. 

The main threat to internal validity arises from the InsighTD’s 

questionnaire because its questions are answered remotely, 

allowing misunderstanding that can lead to meaningless answers. 

To reduce this threat, Rios et al. [9] indicated that three internal 

and one external reviewer assessed the questionnaire, and a pilot 

study was performed before the execution of the questionnaire. 

Lastly, there is the threat to external validity. For this, we 

targeted industry practitioners and sought to achieve respondent 

diversity from several countries. 

8 Concluding Remarks 

This work identifies the point of view of practitioners on TD 

payment. We also report the most common practices related to TD 

payment and the most commonly cited reasons for not applying 

these practices in software projects. Those practices and reasons 

are organized into types and categories that summarize the main 

concerns of practitioners on TD payment. All this information was 

organized in a map that can be used to inform practices in 

response to the need to eliminate debt items and to identify 

reasons that could hamper the application of these practices in 

software organizations.  

The next steps of this research include: (i) to use data from 

future InsighTD replications to increase the external validity of 

our results, (ii) to run deeper analyses to investigate whether TD 

practices and impediments are impacted by TD type, used process 

model, participant experience, and organization/project size, and 

(iii) to assess the proposed map empirically with respect to its 

effectiveness for supporting TD payment. 

ACKNOWLEDGMENTS 

This study was financed in part by the Coordenação de 

Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - 

Finance Code 001. This research was also supported in part by 

funds received from the David A. Wilson Award for Excellence in 

Teaching and Learning, which was created by the Laureate 

International Universities network to support research focused on 

teaching and learning. For more information on the award or 

Laureate, please visit www.laureate.net. 

REFERENCES 
[1] Clemente Izurieta, Antonio Vetrò, Nico Zazworka, Yuanfang Cai, Carolyn 

Seaman, and Forrest Shull, 2012. Organizing the technical debt landscape. In 

Proceedings of Third International Workshop on Managing Technical Debt 

(MTD), Zurich, p. 23-26. DOI: 10.1109/MTD.2012.6225995 

[2] Rodrigo O. Spínola, Nico Zazworka, Antonio Vetrò, Forrest Shull, and Carolyn 

Seaman, 2019. Understanding Automated and Human Based Technical Debt 

Identification Approaches ? A Two-Phase Study. Journal of the Brazilian 

Society (Online), v. 1, p. 1. DOI: https://doi.org/10.1186/s13173-019-0087-5 

[3] Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya, 2012. Technical debt: 

from metaphor to theory and practice. IEEE Software, vol. 29, no. 6, pp. 18-21, 

Nov.-Dec. 2012. DOI: 10.1109/MS.2012.167 

[4] Isaac Griffith, Hanane Taffahi, Clemente Izurieta, and David Claudio, 2014. A 

simulation study of practical methods for technical debt management in agile 

software development. In Proceedings of the 2014 winter simulation 

conference, Savanah, GA, p. 1014-1025. DOI: 10.1109/WSC.2014.7019961  

[5] Nicolli Rios, Manoel Mendonça Neto, and Rodrigo O. Spínola, 2018. A tertiary 

study on technical debt: Types, management strategies, research trends, and 

base information for practitioners. Information and Software Technology, vol. 

102, June, p. 117-145, ISSN 0950-5849. DOI: 10.1016/j.infsof.2018.05.010 

[6] Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim, 

Philippe Kruchten, Erin Lim, Alan MacCoemack, Robert Nord, Ipek Ozkaya, 

Raghvinder Sangwan, Carolyn Seaman, Kevin Sullivan, and Nico Zazworka. 

2010. Managing technical debt in software-reliant systems. In Proc. of the 

FSE/SDP workshop on Future of software engineering research. ACM, New 

York, NY, USA, 47-52. DOI: http://doi.acm.org/10.1145/1882362.1882373 

[7] Zengyang Li, Paris Avgeriou, and Peng Liang. 2015. A systematic mapping 

study on technical debt and its management. Journal of Systems and Software, 

v. 101, p. 193–220. 

[8] Jesse Yli-Huumo, Andrey Maglyas, and Kari Smolander. 2016. How do 

software development teams manage technical debt? - An empirical study. 

Journal of System and Software, 120, 195-218, October. 

[9] Nicolli Rios, Rodrigo O. Spínola, Manoel Mendonça, and Carolyn Seaman. 

2018. The most common causes and effects of technical debt: first results from 

a global family of industrial surveys. In Proceedings of ACM/IEEE 12th 

International Symposium on Empirical Software Engineering and Measurement 

(ESEM), Oulu. ACM, New York, NY, USA, Article 39, 10 pages. DOI: 

10.1145/3239235.3268917 

[10] Nicolli Rios, Manoel Mendonça, Carolyn Seaman., and Rodrigo O. Spínola. 

2019. Causes and effects of the presence of technical debt in agile software 

projects. In Proceedings of the Americas Conference on Information Systems 

(AMCIS), Cancun, Article 3, 10 pages. 

[11] Nicolli Rios, Rodrigo O. Spínola, Manoel Mendonça, and Carolyn Seaman. 

2019. Supporting analysis of technical debt causes and effects with cross-

company probabilistic cause-effect diagrams. In Proceedings of the 2nd 

International Conference on Technical Debt (TechDebt). IEEE Press, 

Piscataway, NJ, USA, 3-12. DOI: 10.1109/TechDebt.2019.00009 

[12] Sávio Freire, Nicolli Rios, Manoel Mendonça, Davide Falessi, Carolyn Seaman, 

Clemente Izurieta, and Rodrigo O. Spínola. Actions and impediments for 

technical debt prevention: results from a global family of industrial surveys. To 

appear in Proceedings of The 35th ACM/SIGAPP Symposium On Applied 

Computing (ACM/SAC), Brno. ACM, New York, NY, USA, 8 pages. DOI: 

https://doi.org/10.1145/3341105.3373912 

[13] Yuepu Guo, Rodrigo O. Spínola, and Carolyn Seaman. 2014. Exploring the 

costs of technical debt management– a case study. Empirical Software 

Engineering, J. 1, p. 1–24. DOI: https://doi.org/10.1007/s10664-014-9351-7 

[14] Carolyn Seaman and Yuepu Guo. 2011. Measuring and monitoring technical 

debt. 1. ed. [s.l.] Elsevier Inc., v. 82. 

[15] Carolyn Seaman. 1999. Qualitative methods in empirical studies of software 

engineering. IEEE Transactions on Software Engineering, 25(4):557-572. 

[16] Anselm Strauss and Juliet M. Corbin. 1998. Basics of qualitative research: 

techniques and procedures for developing grounded theory. Sage Publications. 

[17] Stevem McConnell. 1007. Technical debt 10x Software Development Blog. 

Construx Conversations. URL= http://blogs.construx. 

com/blogs/stevemcc/archive/2007/11/01/technical-debt-2.aspx, 2007. 

[18] Paris Avgeriou, Philippe Kruchten, Ipek Ozkaya, and Carolyn Seaman. 2016. 

Managing Technical Debt in Software Engineering. Dagstuhl Seminar 16162. In 

Dagstuhl Reports. vol. 6, n. 4. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 

[19] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, 

and Anders Wesslén. 2012. Experimentation in Software Engineering: An 

Introduction. Springer. 

 


