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Abstract

Software designs decay over time. While most stufiieus on
decay at the system level, this research studisgm@ecay on
well understood micro architectures, design pasterRormal
definitions of design patterns provide a homogesedoundation
that can be used to measure deviations as patealizations
evolve. Empirical studies have shown modular gritoebe a
significant contributor to design pattern decay.ddlar grime is
observed when increases in the coupling of desigem classes
occur in ways unintended by the original design€urther
research is necessary to formally categorize distforms of
modular grime. We identify three properties of dng
relationships that are used to classify subsetsarfular grime. A
taxonomy is presented which uses these propertiegroup
modular grime into six disjoint categories. lllugtve examples of
grime build-up are provided to demonstrate theiaxay. A pilot
study is used to validate the taxonomy and providigal
empirical evidence of the proposed classification.

Categories and Subject Descriptors

D.2.10 [Boftware Engineerind: Design —Design Concepts,
Object-oriented  design  methods. D.2.11Software
Engineering]: Software Architectures —Patterns. D.2.7
[Software Engineering: Distribution, Maintenance, and
Enhancement — Enhancement, Extensibility, Maintailitg,
Maintenance measurement.

General Terms
Measurement, Design, Experimentation.
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1. Introduction

Software systems evolve over time and studies (iggsst that
decay of designs occurs as a result of changes farictionality
and structure. A consequence of decay is an iner@astest
requirements and an increase in adaptability anishtaiaability
efforts [11]. Studies in software decay focus om dlverall design
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of a system [14]. Measuring decay is thus a diffiqaroblem
because surrogate measures [2] must be used ttifgieternal
quality attributes. Attempts to measure decay tmeen proposed
[6]; however indices used by prior studies makalifficult to
compare the relative decay of system designs td edber.
Izurieta and Bieman [9] however; suggest usinggiepatterns as
the underlyingmicro-architectures to study. Design patterns
have a well understood form that can be descritsgdguformal
pattern languages (e.g. RBML [7], PADL [8]), thupwding an
agreed upon structure that can be used to meagaiasa As
design patterns evolve, changes to the patterrbeaneasured to
see if the pattern is evolving in the manner in alhit was
intended. Deviations indicate decay. Empirical Esdy lzurieta
and Bieman demonstrate a form of decggme. Their studies
suggest that “design patterns do not structuratyakdown, but as
designs evolve, design pattern realizations termetobscured as
new associations develop between classes.”

Whilst empirical evidence of design pattern decayl grime
buildup is available [10], taxonomy is a naturabgnession and is
essential. A taxonomy promotes the classificatibrgrime into
ordered groups that are disjoint and complete whikeserving
natural relationships between categories. The ifilzetson,
description and naming of various forms of grimeapplicable to
each individual design pattern is proposed. Thiseaech goes
beyond the initial definitions of decay and grime froposing a
taxonomy of design pattern grime.

The paper is organized as follows. Section 2 disesishe details
of the taxonomy. Section 3 provides illustrativeamples of
couplings that contribute to each taxonomical aatggSections 4
and 5 present and discuss data from an initiat ptiedy focused
on validating the taxonomy. Section 6 examines ttireats to
validity. Conclusions and direction for further easch are
provided in section 7.

2. Taxonomy of grime

Izurieta and Bieman [9] define three levels of grjalass grime

is defined as changes to software classes thahfpatoa design
pattern, but whose functional value is not derifiexin the way

the pattern was meant to be extended. For exampls, code

added to design pattern classes (e.g. methodgibugegs) that are
not necessary for pattern function will increasassl grime.

Modular grime is defined as increases in the irsteamd external

coupling of classes that belong to a pattern. Asigihs evolve

pattern classes can develop new relationshipsatieainnecessary
for pattern operation. Organizational grime refeerghe physical

distribution of pattern classes throughout softwaaekages and
namespaces. Empirical studies suggest that modtilae tends

to increase as software designs evolve [9]. Evidesfcclass and
organizational grime is inconclusive [9]. This rex#h proposes a



preliminary taxonomy of modular grime that goes dray the
original definitions by providing examples in preeal categories.

Modular grime builds when the classes of designtepat
realizations grow new relationships not describgdhle pattern’s
RBML. A pattern's RBML is a precise description dtfie

classifiers and associations that belong to sdigima RBML was
chosen to describe design patterns because itdm@n intuitive
UML-like format that can be used to detect and Bpeany

pattern. We define criteria that determine whenew roupling
involving a pattern class contributes to modulamgr Section 2.1
describes the criteria that define these couplings.

2.1 Coupling between classes

There exist many metrics and measures that dis§hduetween
various dimensions of coupling between classes g use
strength, scopeanddirection to classify modular grime.

2.1.1 Srength of coupling

Coupling can be classified on an ordinal scale m@ling to

strength [13]. Strength is determined by the ditfiz of removing

the coupling relationship. We use persistent anchptrary

coupling because they are the most common formsbiect

oriented systems [13]. For example, two classend\ B have a
persistent (strong) association when class A costan attribute
of type B. The classes have a temporary (weak)cagm when
class A contains a method with a parameter, ametalue, or a
local variable of type B. The relative strengthtb& coupling
relationship is approximated by the amount of eéffequired to
refactor the relationship. Persistent relationstdps considered
strong because they are likely to persist throughoutifegme of

the design pattern realization, while temporanatiehships are

consideredweak because of their provisional nature. The sets

Persistent =  {class_attribute}
{method_local_variable,
method_formal_parameter} define ordinal sets fanmment and
temporary coupling types respectively. Each settaina (in
increasing level of refactoring complexity) the égpof coupling
considered. Currently, we do not have enough ofdiategories
to justify using a five point Likert scale, howevas new members
of the Persistent or Temporary sets are identifiedcan easily
accommodate such changes. These sets can be aagmetit
other less common forms of coupling in object aeendesigns
(i.e., sharing of global variables, data flow cangs$, etc.).
Extensive research in identifying different couplitypes has
been performed by [4].

and Temporary =

2.1.2 Scope of coupling

Scope demarcates the boundary of a coupling rakttip and can
be internal or external. A class belonging to aigtegattern
develops a relationship with external scope if haotlass (not in
the design pattern) is coupled with the former.efationship has
internal scope if the coupling involves two clasbesonging to
the same realization of a design pattern.

Formally, letP be a specialization of RBML that describes a

design pattern. The set of classes that descRhissdenoted by
C(P) and the set of relationships is denoted?(). Theorder of

a pattern is defined as the total number of clagsd® and is
denoted by|C(P)|, and thesize of a pattern is defined as the total
number of relationships iR, and is denoted bjR(P)|. A valid
classifier is defined as a clasor relationshipr allowed by the
RBML of the pattern. Valid classifiers in a desigre seminal or

method_return_value,

evolve as permitted by the extensibility rules bé tpattern’s
RBML. Thus, a relationship;rg

is internal iff Vi, j:ci,cjeCP)

is external iff 3i,j:cECP)ACECP)AI#]

2.1.3 Direction of coupling

We use afferent@a) and efferent @e) coupling to refer to the
direction of a coupling relationship [12]. The aéfat coupling
count (humber of in-bound relationships) of a sétclasses
increases when an external classreferences a member of the
setC(P). A reference can be a new attribute, method paeme
return value, or local variable. Similarly, the exffnt coupling
count (number of out-bound relationships) of a skfclasses
increases when any classe C(P) references an external class
Cext.

2.2 Grime categories

The strength, scope, and direction of couplingti@iships are
used as the primary coupling factors that influente
construction of a modular grime taxonomy. As redlins of
design patterns evolve, not all new relationshipsetbped by
classes that belong to the design pattern are cenmesl grime. In
section 2.2.1 we discuss relationships that do aoaottribute to
grime build-up of design patterns. Section 2.2.2rabterizes
relationships that contribute to grime build-up apdbvides
definitions of modular grime classifications.

2.2.1 Non-grime coupling

As design pattern realizations evolve, extei@alcounts due to
usage relationships grow (as expected). Additignalthe
appearance of new internal coupling relationships aesult of
allowed RBML extensions are expected if the desigttern
evolves as intended by the designer. New relatipeghat evolve
as a result of such circumstances are not categbag grime. For
example, design patterns are extended through a@eration and
specialization of pattern classes. Classes thagnextpatterns
through conformant RBML inheritance relationshipee anot
considered grime. In addition to allowed inheritamelationships,
unidirectional internal coupling increases are agpected if a
pattern evolves via intended extensibility mechasis For
example, the Visitor pattern creates such a relatip between
the client side hierarchyisitor methods and the server side
hierarchyaccept methods.

2.2.2 Grime

Coupling relationships that violate the patternBNR. contribute

to grime build-up. Violations depend on the desigattern

realization and the RBML that characterizes sucizations. If

the RBML of a design pattern is strict, then thenber of initial

realizations found in a design will be smaller &he evolution of
the pattern will be constrained. Alternatively,tiife RBML of a

design pattern is too lenient, then any set of Emliplasses can
be made to match the pattern’s description, yigidomo many
false positives. The evolution of the pattern woublel largely

unrestricted.

Couplings that cause modular grime are classifiecbaing to
our definitions of strength, scope and directiohe Ttrength of
coupling is an important dimension in the taxonobgcause it
helps determine the difficulty of grime removalgviefactoring)
by developers. Grime resulting from the accumutatid strong
coupling relationships requires additional effast refactor. For



example, persistent coupling relationships are nuiffcult to
remove than temporary coupling relationshipeupling directior
indicates the source of the grin#n increase in nc-conformant
Ce counts of a pattern implies that pattern classestrbe
refactored to remove grime build-ufin increase in externCa
counts to pattern classes also indicates possibtee duilc-up if
the relationships are made to concrete clagssege relationshiy
are intended to be made with the abstract cladsa pattern.

Using these criteriaye classify modular grime into six disjoi
groups listed in sections 2.2.2.1 through 2.2 Figure 1 displays
the taxonomy.

2.2.2.1 Persistent internal grime (PIG)

This is the set of all invalid relationships thabagly coujle two
pattern classe€ C(P). The persistence of these relationst
makes grime removal (refactoring) more difficultevhcompare:
to temporary relationship®IG is observed wher € Persistent
and the size of the pattejR(P)| increases whenis invalid.

2.2.2.2 Temporary internal grime (TIG)

This set contains invalid temporary relationshipgoiving two
pattern classess C(P). Relationships are similar to thc
described by the PIG set except they are easiefaotor due t
weaker coupling strength. TIG observed wher € Temporary
and R(P)| increases whenis invalid.

Figure 1. A Taxonomy of Object Oriented Design Paérn
Grime

2.2.2.3 Persistent external efferent grime (PEEG)

This is the set of invalid persistent relationshijgsween patter
classes and external pattern classes. The pexsisteh the
relationshipanakes refactoring difficult, yet direction of coing

simplifies refactoring because dependencies onrreadteclasses
can be easily removed from the originatintgrnal classe PEEG
is observed whem € Persistent and Ce increases wherr is

invalid.

2.2.2.4 Temporary external efferent grime (TEEG)
This is the set of invalid temporary relationshipEtween patter
classesand external pattern classes. Refactoring is siieplby
the weaker coupling strength and, similar to PEE®, externa
relationships are comparatively easier to refa TEEG is
observed wherr € Temporary and Ce increases wherr is
invalid.

2.2.25 Persistent external afferent grime (PEAG)
This is the set of all invalid relationships betweepattern ana
nonattern class where grime originates in a c¢ C(P). These

relationships are similar to those in the PEEGgmtgexcept the
the externatoupling is afferent, thus increasing the respalitsik
of the pattern realization and making the refaommsignificantly
more difficult. PEAG is observed wher € Persistentand Ca
increases whenis invalid.

2.2.2.6 Temporary external afferent grime (TEAG)
This is the set of invalid temporary relationshiptween patter
classes and external pattern classbsre grime originates in
class¢ C(P). TEAG is observed wher € Temporary and Ca
increases whenis invalid.

3. Taxonomy examples

In this section we providdlustrative examples of how grime
build-up on creational, structural and behavioural degigtterns

is classified using the proposed taxonomy. Exampédtern

realizations are depicted with representative idvabuplings

Invalid couplings areabelled as “violations” that develop o\

time. Classification of invalid relationships is drivery kihe

criteria defined in section 2.1.

3.1 PIG and TIG of the Observerbehavioral

pattern

PIG occurs when an invalid persistent associati@velbps
between internal pattern classesC(P). Figure 2 depicts an
example where the relationsr‘"[rConcreteobservable,Concreteobserver
violates the pattern’s RBMLWWnder governance of valid RBM
the correte classes are indirectly coupled via inhergaticougt
the parent class relationshipnd b ConcreteObserver classes
with unidirectional references to ConcreteObsewaidsse The
association I' ConcreteObservable, ConcreteObse is an example of a
violation and how the pattern is noeant to be extende

Pattern
Observable
+registerObserver(ob:0Observer) > Observer
+unregisterobserver(ob:Observer +notify()
+notifyobservers()
ConcreteObservable Viulatiun\ ConcreteObserver
+observers: Observer[] -~ =
+concrete: ConcreteObserve #notify()

Figure 2. Observer Pattern Realizatiol

Sim”aﬂy, if rConcreteobservable,Concreteobse € Temporary (i.e., a use
dependency) and is an invalid relationship, tr belongs to the
TIG set.

3.2 PEEG and TEEG of the Singletor

creational pattern

Modular grime builddp in the Singleton pattern is only possi
by means of external relationships. The RBML dedion allows
one class or one inheritance hierarchy as valitizegens, thus
eliminating the possibility of internal relationships. Figu&
depicts an occurrence of PEEG. The Singleton dasslops n
invalid external, persistent relationshir singieton,other class The



UML diagram shows that is invalid because it violates i
RBML. TheCe of the pattern increases with the additiorr. We
classifyr as a member of the PEEG set.

Pattern

Singleton

-singleton: Singleton
+other_class: Other_Clasg

+getInstance(): Singleto

Singleton_User

+singleton: Singleton

N

Violation

Other Class

Figure 3. Singleton Pattern Realizatio

Similarly, if r singieton,other_clas§ T€MpOrary (i.e. a use dependen
and is an invalid relationship, therbelorgs to the TEEG set. Tt
relationshipr shares the same characteristicf it belonged to
the PEEG set with one major distinction; the sttierad coupling.

3.3 PEAG and TEAG of the Adapter

structural pattern

Figure 4 depictsan example of PEAG. The relationsl
I client,ConcreteAdaptein the realization of the Adapter patteis an
invalid external relationshipnot supported t the pattern’s
RBML. The figure indicates thate Persistent, and causes Ca
of the pattern to increase. Thug PEAG.

Similarly, a change in coupling strength differentiates PEA®f
TEAG. If gilient,concreteadaptelS Modified so thar e Temporary,
thenr € TEAG if it is also invalid.

Pattern

Client
+adapter: Adapter

Adapter | _-
FrunMethod (7]

¢

Violation |

ConcreteAdapter
+adaptee: Adaptee > Adapteel
+runMethod()

Figure 4. Adapter Pattern Realizatior

4. Pilot study

The purpose of the pilot study is to validate asfihe each grime
category in the proposed taxonomycase study was conduct
on one open source software system to exathe evolution of
modular grime involving design pattertiasse. We test the
following hypotheses to determine if grines determined by tt
proposed taxonomyloes occur in software des patterns.

H, o There is inconsequential PEEG buildaer the evolution ¢
a software design pattern.

H, o There is inconsequential TEEG buipdaver the evolution ¢
a software design pattern.

Hs o There is inconsequenti®EAG buildup over the evolutic
of a software design pattern.

H,o There is inconsequentidlEAG buildup over the evolutio
of a software design pattern.

In section 4.1 we descriltbe case study methodolo Section
4.2 displays observed raw resuliResults are analyzed and
discussed in section 5.

4.1 Methodology

4.1.1 Software studied

Vuze (formally Azuereus) [21F a pee-to-peer file sharing client
that uses the bittorrent protocol [1&Juze is written in Java, ar
is distributed under the Open Source lice The most recent
release has more thamdllion download: and it is considered a
successful projectWe study eightversions of the software
spanning thirty eight monshof developmel. Table 1 displays the
basic statistics of each release.

Table 1Vuze versions and release dat

Version Date LOC # of Classes
25.04 01/2007 339,73t 3,451
3.0.1.6 06/2007 349,94t 3,518
3.05.2 05/2008 396,75¢ 3,809
4.0.0.0 10/2008 484,96 4,354
4.1.0.0 01/2009 507,05( 4,511
4.2.0.0 03/2009 519,39t 4,608
4.2.0.8 09/2009 540,61t 4,771
43.1.2 02/2010 547,20: 4,682

4.1.2 Toolsused

The software was analyzed undiye Eclipse 19] Integrated
Development Environment (IDEusing the Browse-by-Query
(BBQ) [17] plug-in.BBQ creates an object oriented databas
Java constructs from bytsde and allows users to query
resulting databaséor various metric. All grime metrics are
gathered with these tools.

We used three basic BBQuery statements gather data about
class attributes (persistent effereoupling, class method return
types,and method parameter types (tempoiefferent coupling).
In BBQ, executable queries are specified with Efgliike
sentences that allow foa more user friendly and accessi
method for specifying arbitrarily complex expressic To obtain
all unique types of attributes in any cleC, we use the query
“unique types of attributes in cla€¥’. All method return types
are obtained using the quehynique types of methods in cla
C". All method parameter pes are obtained with the qu
“unique types of arguments of methods in cIC". We use the
union operation with the lastvo queries to obtain the tof
temporary efferent coupling count a class The queries used to
obtain afferent coupling counts are slightly diéfet. To obtain al
of the classes with an attribute of tyC we use the query,
“unique classes containing fields with type of sIC”. All classes
with a method parameterf type C are olained with the query
“unique classes containing methods of argumentshirag class



C”. The set of classes with a method return typeclagés C i¢
obtained with the queryjunique classes containing methc
matching clas€”. We use the uniomperation withthe last two
queriesto obtain the total temporary afferent couplingaflass

To gather data about a set of pattern classesim@ysunion the
corresponding query type for each class in theepattFor
example, to find PEEG for the classed and C2, we use the
query: “count((unique types of attributes in ¢ C1) union
(unique types of attributes in clagg))".

4.1.3 Data collection

Data was gathered from 8 versions of Vuze span8&gionhs
of development. All design patterns weoaind with the aid of
various tools and were manually validat¥de use PatternFind
[18] to provideinitial guidance for the location of potential dgs
patterns. We then manually examipegttern structure and nami
semantics to find patterns that were cleamkgnded by softwar
designers. We check foRBML conformance toverify each
pattern realization.There are currently no automated tc
available that check for structul@BML conformanc. Efforts to
automate RBML conformance are still being develof5]. The
Java programming language provides several-in constructs
that allow a class to beonsidered part of a design pat. For
example, you can decorate a class to be obsenWhile these
can be considered dgsipatterns, they are out of the scope of
research.

We collected all coupling count metrickor each pattel
realization under studyrhe taxonomy definitions from sectior
provide the bas information necessary to construct the B
queries.We count all couplings that appear during the et
of each realization of evergattern. BBQ did not allow us

differentiate between internal and external scope nefv
couplings. Therefore, any changes in PIG are reftean PEAGC
and PEEG, while changes in TIG will be reflectedTlBAG and
TEEG. We have identified more powerful tool20] to help with
the generation of refined queries beyond #aminalpilot study.
For each patterR, we used the following surrogate definitions
generate the data collection:

PEEG: Count of unique types of attributes of cliC whereC €
C(P).

TEEG: Count of unique types of return values and parameters
of methods in class C where C € C(P).

PEAG: Count of unique classes that have an attributeymé C
whereC € C(P).

TEAG: Count of unique classes that have a method return
value or method parameter of type C where C € C(P).

We gathered data from 9 design pattern realizatioashipatterr
realization exists in each of the 8 releases stijdiad is RBML
compliant in every version of the system. We st@dgingleton, {
Observer, and 3 Factory pattern realizations.

4.2 Results

Themodular grime counts of the Singleton patteializations are
shown in Figure 5We observe an abated, yet steady increa
all grime counts with the exception of PEAG. Th#dr begins ti
decrease after the Janua@® release and continues to dese
until the January '10 releasgéhere a slight increase is observA

refactoring event can cause this decrease, andiseeiss this

further in section 5.2No other categories experience a sirr
decline.

Count

—gmTEEG 44 44 a7 48 48 43 49 50

Figure 5. Singleton result:

Results of the Facty pattern are shown inigure 6. The metric
counts for each grime categondicate sligh increases over the
three years of revisioné. notable exception is the marked groy
observed in TEAG counts betwethe June ‘07 and January '09
releases. Gme counts for PEAG do not display similar trend:
those observed in the Singleton pattern realiza:
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Figure 6. Factory results

Results for all 3 realizations tifie Observer pattern ashown in
Figure 7. Results for each grime category are analogous tee
observed inthe Singleton pattern. Theis a steady increase in
coupling counts for thregrime categorieswith the exception of
PEAG counts. PEAGegins to decrease after the Jan ‘09
release andtontinues to decrease until the January '10 rel
before a slight increase is observed.



Count:

Figure 7. Observer results

In Figure 8 we display the aggregate totalsadhgrime category
for all design pattern realization&s reflected in the earlie
results for each individual patternEAG shows the greate

change from the first to last release witmetincrease of 137.

TEEG increases by 26,ERAG increases by 16, and PEI
increases by 15. Together these results suppdigrefindings by
Izurieta and Bieman [3hat modular grime does occ
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=gmTEEG 191 199 206 208 208 208 211 217

Figure 8. Results for all patterns

5. Analysis and discussion

In section 5.1 we do a ngmarametric statistical analysis

determine thesignificance of grime buildup for eacategory of
the proposed taxonomy. Section 5.2 discussagls reflected i
the study results and their impact on the taxon

5.1 Statistical analysis

We use Wilcoxon's Signed-Rank test [1%) evaluate our
hypotheses. The Signed-Rank test is a parametric test th:
determines whether theifigrences between measurements
sequential releases are significantly positiViee limited sampli
size of the data renders alternative parametris tess reliable

However, while the SingeBank test canhelp determine if
changes between revisions atatistically significant, it has r
power to determine the magnitudes of these chi. All
measured differences are converted to ranks abé¢lgening of
the test and analysis is th@erformed on the ranks.ny large
differences in grime countsill only be reflectecin the test as a
difference in, at most, several ranRsvalues in the Signed-Rank
test represent the probability that changes betwebrases ar
zero. A low p-value impliedt is very unlikely that increases
grime counts areuk to random chanciTo determine if grime
buildup is statistically significanthe f-values for all of the tests
are displayed in Table 2.

The pvalues for PEEG are not significecat the 0.05 level except
in the general case, whea# results are agegated regardless of
pattern type There are several cases in the data where thge
in PEEG between releases is zekozero cannot be used in t
Signed-Rankest because the data (difference between releias
separated into groups by sign. Statedtanalysis is done on tl
ranks of the values in each group and zeros mustidmardec
because they belong to neither grolihis decreases the sample
size and lesserthe effectiveness of the test for each pattern.
significance (p < .05) obtained the general case for all pattel
can be explainedy the fact that PEEG rarely decreases
usually increases regardless of patteThe significant p-value
suggests there is sufficient evidertoerejectH, o in the general
case, but not in the caséindividual design patterr

TEEG tests reveal low palues for the Singleton pattern
realizations as well as fothe combination of all patte
realizations. The significance level the [-value for the general
case of all patterngs well as the low-values (p < .1) for all
individual pattern realizationssuggests there is sulfficie
evidence to rejedtl, o

P-values for PEAG are naignifican. Large decreases in grime
counts for theSingleton and Observer pattern realizatibetween
March and September of 2009 cause the results t
insignificant. These resultsuggest that there is no evidence
rejectHs o

Table 2. P-values for the SignedRank test, significant values

(<.05) in bold
PEEG TEEG PEAG TEAG
Singleton .186 .044 .306 .018
Factory .186 .074 .200 .290
Observer .091 .087 .335 .011
All .029 .030 .250 .039

Test results for TEAG reveal thithis type of grime is not
significant in the Factory pattern realizations only. 1
significance of the SingletonObserver, and All -values also
suggests we have sufficient evideteeejectH, o

Correlation analysis was performed the resultshown in Figure
8 to confirm an apparent relationshobserved between PEEG
and TEEG. Thevalue calculated for theSpearman rank
correlation coefficient is 1.The value of the coefficient
attributed to the grime counts footh PEEG and TEE; which
are both monotonically increasingvel the release history. A



parametric alternative, the Pearson correlationfficgent, is

calculated at 0.989. These coefficients providedewte of a
positive correlation between the two categorieslthdugh this
does not imply causality, the result confirms tthegtse two types
of grimemove together.

5.2 Discussion

The purpose of the proposed modular grime taxondsnyo
suggest a possible organization of couplings tletehnegative
effects on the evolution of design pattern realiwest. The
purpose of the pilot study is to empirically shome textent to
which each grime classification contributes to ttiecay of
software pattern realizations. The results presente interesting
trends.

PEEG and TEEG show similar trends in every dataBeth
categories show very little variation. These firgdirindicate that
PEEG and TEEG may not be independent and have itivpos
correlation as reported in 5.1. This would sugdbat coupling
strength as defined in the taxonomy plays a mirwe as a
modular grime classifier when applied to externdferent
coupling. This conclusion is different for externafferent
coupling; where PEAG and TEAG appear to be distilBth
show varying degrees of variability and there amstances
(September 2009) in the Singleton and Observerenpatt
realizations where TEAG increases while PEAG shawsarked
decrease. This supports the notion that PEAG andGl&re

independent. TEAG/PEAG and TEEG/PEEG differ only by

coupling strength, yet the data suggests the forpar is
independent while the latter is not. Pattern usiaga possible
explanation for this result. Changes in usage moll be reflected

The statistical results reveal that, in generalEBETEEG, and
TEAG tend to increase throughout the evolution afsign
patterns while PEAG does not. The division betwegime
categories supports the use of coupling directientree most
relevant criteria for classification. Pattern usagay have an
effect on the results for TEAG, but PEEG and TEE®not
increase as the result of usage. It is also appdnan different
design patterns may experience changes in grimerelitly.
Further research is necessary to determine iighisie.

6. Threats to validity
We assess construct, content, internal and extgatidlity of the
case study.

Construct validity refers to the use of meaningfuttrics and
measures. The measures used for releases and gpimpéing

counts must actually quantify the notion of relsasend the
various grime categories. We use BBQ to build aqsethat when
executed, collect grime counts. The queries sasvaurrogates to
capture the metrics whose formal definitions aregiin section
2. BBQ does not have the ability to differentiattvieen internal
and external grime counts, and this limitation ésfcus to

combine the two. This threatens construct validitgcause
changes in TIG will have an effect on measuresTBEG and

TEAG, while changes in PIG will affect PEAG and REE
Though this may cause concern over the validitthefresults, it
should be noted that we were unable to manually dim example
of internal grime during the data gathering phaisthe research.
Additionally, the lack of automated RBML tools litmiour ability

to differentiate between some types of compliatati@nships

and grime buildup. Increases in usage of the depigtterns

in grime counts for TEEG and PEEG because usaget mus studied can inflate some modular grime results.

originate in non-pattern classes, thus affectirfgraft coupling
only. However, a refactoring event to reduce stiterod coupling
between patterns and classes using said pattenid explain the
difference between TEAG and PEAG. Developers avedirthe
dangers of strong coupling might refactor clasbkes tise patterns
to reduce persistent couplings to temporary cogpliThe result
would be a simultaneous increase in TEAG and dseréan
PEAG. Excluding the Factory pattern realizations thossibility
is best reflected in the changes observed in TEAG REAG
between March and September of 2009.

Results observed in the Singleton and Observerenpattare
similar. Metrics for each grime category show samtrends over
the evolution of the software in both patterns. Tpassible
refactoring event discussed earlier is reflectedath. A possible
explanation is that some of the pattern realizatiare coupled
[4]. Coupled patterns share common classes. Chatogskared
classes are reflected in individual grime countsdach pattern
realization involved in the coupling. Further intigation of the
Singleton and Observer pattern realizations usedeirpilot study
shows that there is one example of pattern coupline of the
Singleton pattern realizations is embedded within Gbserver
pattern realization.

Factory pattern grime counts show little similarity those
observed in other patterns. In general, the resuitsride no
evidence to suggest that different types of pastgareational,
observational, or behavioral) develop grime inféedént manner.
There appears to be no discernible relationshipvdet pattern
type and grime buildup.

To have content validity, the measures must coralyleepresent
the notions of grime coupling counts. The deforis proposed in
this case study could be subdivided further intectfit coupling
counts that could capture grime definitions at ffigeanularity
levels; however these definitions would also faltlar our higher
level definitions and not threaten the contentwfepresentation.

Internal validity refers to the causal connectiotween

dependent and independent variables. In this stasly there are
4 independent variables —TEEG, PEEG, TEAG, and PE&X@

one dependent variable, grime count. There is Brae to

consider design pattern types (creational, strattor behavioral)
or Open Source software versus commercial softwasea

possible dependency, where the type of pattern ystes

accumulates different types of grime at differaates. However,
we did not have enough data to support a causalaeship.

External validity indicates that the study resuliéé generalize to
other systems. Clearly, the size limitations of piilet study have
an effect on external validity. Only one Open Seusgstem was
studied and the number of distinct pattern typesraalizations of
those types were small. It is not possible to gaime from these
preliminary results and thus we cannot assert vengtatterns in
other systems decay and buildup grime in a simit@mner.

Additional data needs to be gathered from commieacid Open

Source systems to increase external validity.

7. Conclusion and further research

A modular grime taxonomy is presented that usesethyasic
underlying criteria as classification factors: strth, scope, and
direction. Strength helps us identify the relatigigficulty of



refactoring invalid coupling relationships. Scopeelgs us
determine if the source of grime build-up comesmfravithin

pattern classes or from changes made to the sulirmymesign.
Finally, direction defines the source of the grim@&rime

originating from external classes is harder to reenbecause of
the heightened responsibility of the pattern. Griorginating

from within the pattern causes the testability loé fpattern to
increase because the dependencies of said patéehigher.

The pilot study confirms earlier research that madgrime does
occur. The results observed in the evolution of\thee software
system confirm that TEEG, TEAG, and PEEG show iases in
grime counts. Analysis of the data shows no appasdationship
between design pattern type and modular grimepagh a more
formal study is needed to confirm this conclusion.

This pilot study is another data point in genegtan body of
evidence to continue our understanding of how degigtterns
decay. Further studies will explore the prevaleateach grime
category in Open Source software and serve as afi@id of
proposed categories.

Additional research is also planned to compare grbuild up

against the total coupling of objects in a softwaystem. This
ratio will help us determine if grime grows at &elient rate than
the coupling of all objects, including objects rssociated with
design pattern realizations. Future studies wdbahvestigate the
appearance of grime in coupled design patterns.hdyotigh

statistical trend analysis is also necessary iaréustudies to help
predict the build up of grime over time. A signdi@ number of
coupling measures have been proposed that havieeeot taken
into consideration in this seminal work. This theses the

construct validity of the taxonomy; however we exp® expand
the taxonomy to accommodate a higher order space.
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