
Behavioral Evolution of Design Patterns:
Understanding Software Reuse through the

Evolution of Pattern Behavior

Derek Reimanis1 and Clemente Izurieta1

Montana State University, Bozeman MT 59718, USA
{derek.reimanis,clemente.izurieta}@montana.edu

Abstract. Design patterns represent a means of communicating reusable
solutions to common problems, provided they are implemented and main-
tained correctly. However, many design pattern instances erode as they
age, sacrificing qualities they once provided. Identifying instances of pat-
tern decay, or pattern grime, is valuable because it allows for proactive
attempts to extend the longevity and reuse of pattern components. Apart
from structural decay, design patterns can exhibit symptoms of behav-
ioral decay. We constructed a taxonomy that characterizes these negative
behaviors and designed a case study wherein we measured structural and
behavioral grime, as well as pattern quality and size, across pattern evo-
lutions pertaining to four design pattern types. We evaluated the rela-
tionships between structural and behavioral grime and found statistically
significant cases of strong correlations between specific types of structural
and behavioral grime. We identified statistically significant relationships
between behavioral grime and quality metrics, as well between behavioral
grime and pattern size.

Keywords: Software Evolution · Software Quality Assurance · Design
Patterns · Software Reuse.

1 Introduction

Software products have evolved rapidly over the last several decades. Increas-
ingly complex software requirements from customers have prompted advances in
software reuse and automation across all disciplines. These circumstances have
helped create an ecosystem where the expectations of software products is signif-
icantly higher, and where once minor upgrades were sufficient, now fully-fledged,
highly specialized, and entirely automated products are expected. To cope with
higher expectations and complex requirements, software reuse is becoming a
mainstream approach to meet those needs.

The deployment of complex products with multiple components does not
come without its drawbacks, however. The expectation that multi-component
complex systems are delivered on time and within budget, require the adop-
tion of robust processes to accommodate all phases of the product’s software
life-cycle. One such process is software quality assurance (QA); which seeks to



2 Derek Reimanis and Clemente Izurieta

measure and monitor all aspects of software quality over the entire lifetime of
a software solution. Software design represents the vision of a software solution,
considering current and potential future requirements. Designs must be flexible
enough to accommodate change, facilitate extensibility, and promote the ease
of interchangeable and reusable software components, while still maintaining a
high level of quality. A common strategy employed to assist with this balance is
the use of design patterns, which can act as reusable design-level and knowledge-
share software components among developers [14].

Design patterns embody recurring and reusable solutions to common prob-
lems encountered in the software development process[7]. Design patterns cap-
ture experience reuse and represent decisions that are made in the design phase
of a software life-cycle. They have the properties of being reusable, maintainable,
and easy to extend in future versions. The choice to utilize design patterns in a
project comes with the understanding of an important assumption– specifically
that the initial implementation of a pattern instance may take longer than a
non-pattern implementation, but future revisions and maintenance efforts will
be faster and therefore cheaper if a pattern is present. This assumption holds
true in a theoretical sense, yet is controversial in a practical sense. Historically,
design pattern realizations have been found to deviate or drift from their initial
and pure intent, thus eliminating many of the beneficial qualities the pattern
offers in the first place. Such a deviation may occur if a new developer is un-
familiar with a code-base, or if pressure from management to ship a product
requires ’quick-and-dirty’ extensions of the pattern. The existence and extent of
such deviations are not fully explored; for example, it is not known whether the
presence of such a deviation within a design pattern provides more harm to a
software product than choosing not to utilize a design pattern in the first place.

1.1 Research Problem
With the understanding that design patterns offer reusable solutions to com-

mon problems in software development [7], the importance of verifying correct-
ness of design patterns is crucial. A design pattern instance that deviates from its
specification loses many of its reusable qualities, meaning the pattern instance
can no longer be applied as a reuse mechanism. Previous research efforts have
both explored the existence and measured the effects of design pattern devia-
tions only from a structural perspective. The structural perspective of a design
pattern refers to the class members of the pattern, including the operations and
attributes of the pattern’s classes, as well as the relationships between class
members. This research has found that such deviations do exist within a design
pattern’s evolution, and that these deviations have a negative effect on software
quality. However, the structural perspective is one of many perspectives into a
design pattern. Another perspective used to understand design patterns is the
behavioral perspective, or the events that occur as a design pattern instance is
operating at program run-time, which are not visible from a structural perspec-
tive. A behavioral perspective offers additional insights into a design pattern and
its evolution, thus refining existing scientific models and taxonomies[19] [8] that
capture design pattern evolution.



Behavioral Evolution of Design Patterns 3

1.2 Research Objective
The goal of this research is to expand the body of knowledge surrounding

software reuse, as it pertains to design pattern evolution, from a behavioral
perspective. Three specific activities aligned with our overarching goal are iden-
tified. First, the identification of design pattern deviations from a behavioral
perspective. Second, the characterization of behavioral deviations into a struc-
tured organizational scheme, a taxonomy. Third, the evaluation of the effects of
behavioral deviations on existing structural models as well as software quality.
Meeting these objectives will complement existing structural approaches, and
provide software stakeholders with more advanced techniques and tools to mon-
itor software quality, so that important decisions surrounding a software product,
specifically reuse of components, can be made with increased certainty.

1.3 Contributions
The contributions of this work are threefold:

– A taxonomy that captures behavioral grime in design pattern instances.

– Evaluation of the relationships between structural grime and behavioral
grime.

– Evaluation of the relationships between behavioral grime and pattern quality.

2 Background and Related Work

In the following section we discuss relevant background and research, which
can be broadly labeled as software quality assurance. We also provide defini-
tions for key terms, and follow by detailing the process we employed to identify
important research topics aligned with our goal.

2.1 Design Pattern Formalization
Design patterns can be formally specified using a combination of the the

Role-Based Meta-Modeling Language (RBML) [13] and the Object Constraint
Language (OCL) [21]. RBML specializes the Unified Modeling Language (UML)
[18] meta-model and captures key elements of a design pattern, based on specific
roles that participants in that design pattern may take. A design pattern spec-
ification consists of two sub-specifications, the Structural Pattern Specification
(SPS) and the Interaction Pattern Specification (IPS) [13]. An SPS character-
izes the structural elements of a pattern, including the class members, attributes,
operation signatures, and relationships. An IPS characterizes the behavioral el-
ements of a pattern, referring to the flow of information that occurs as a design
pattern is in operation, at program run-time. SPSes are analogous to UML class
diagrams, whereas IPSes are analogous to UML sequence diagrams. Both SPSes
and IPSes exist at a meta-level that describes design specifications, which is
referred to as the M2 level [6]. A given pattern instance, as implemented in a
software project, exists at the design level, which is referred to as the M1 level.
The process of checking conformance for a pattern instance entails mapping the
pattern’s members that exist at its M1 level implementation to its corresponding
pattern roles, captured with an SPS and IPS, at its respective M2 level pattern
definition.



4 Derek Reimanis and Clemente Izurieta

2.2 Design Pattern Decay
Software applications are used everyday, yet they do not ’wear out’ over

extended use periods in the classical sense, as physical objects would. Instead,
software is subject to a different type of wear, related to the maintenance of the
underlying design and code. Over time, many factors such as unforeseen changing
requirements, developer turnover, legacy code dependencies, and others, will
contribute to the degradation of software quality. This phenomenon is captured
by the terms software decay and code decay. Software and code are deemed
decayed if they are harder to change than they should be [3]. A specific form
of software decay is design pattern decay. Design pattern decay refers to the
addition of undesired elements or loss of desired elements in a design pattern
pattern instance, over the lifetime of the design pattern [10] [9]. Design pattern
decay is considered a sub-domain of design decay, which is analogous to code
decay with the exception that the decay occurs in the design level of a software
project instead of the code level. Design pattern decay consists of two categories;
design pattern grime and design pattern rot [9]. Design pattern grime, hereafter
referred to as grime, is defined as the build-up of unintended artifacts over the
lifetime of a design pattern instance. These artifacts do not contribute to the
pattern’s intended role in the overall software project, detracting away many of
the beneficial qualities the pattern would otherwise provide. Previous work has
shown that the presence of grime is associated with decreases in testability and
adaptability, as well as the presence of anti-patterns [11]. Additionally, recent
work has shown that the presence of grime is related to the depreciation of system
correctness, system performance, and system security [4]. Furthermore, Feitosa
et al. has found that grime has a tendency to accumulate linearly, suggesting the
quality of a pattern worsens as the grime of that pattern increases [5]. Design
pattern rot, hereafter referred to as rot, is defined as the removal of key elements
of the pattern such that the pattern no longer retains its core elements. A pattern
that has succumbed to rot no longer identifies as such; instances of rot in software
projects has eluded researchers because of the difficulty in identifying it.

3 Research Approach

In an effort to expand on software reuse, as it pertains to design pattern evo-
lution from a behavioral perspective, the strategy employed in this research has
three-steps; first, the identification or detection of unintended behavioral items,
as they appear in the code of design pattern instances. Second, the characteriza-
tion of unintended behavioral items into categories that simplify the remediation
effort. Third, the measurement of severity of unintended behavioral items so that
remediation efforts can be prioritized.

3.1 GQM
We use Basili’s Goal-Question-Metric (GQM) approach [1] as a guide for

this research. The GQM approach provides an outline of high-level research
goals (RG) supplemented with questions (RQ) and metrics (M) that guide the
research. The GQM for this research is listed below:



Behavioral Evolution of Design Patterns 5

RG1: Investigate design pattern instances for the purpose of identifying and
characterizing behavioral deviations with respect to proper pattern behaviors as
defined by the design pattern’s specification from the perspective of the software
system in the context of design patterns in open source software systems.

RQ1 How does the behavior of a design pattern instance deviate from the ex-
pected behavior of that pattern type?

RQ2 Is there evidence to suggest that behavioral grime is present in pattern
instances of a single pattern type?

RQ3 Is there evidence to suggest that behavioral grime is present in pattern
instances across different pattern types?

RQ4 To what extent can a pattern instance have both structural and behavioral
grime?

RQ5 What is the relationship between structural and behavioral grime?

RG2: Quantify the impact of behavioral grime for the purpose of capturing
the effect of behavioral grime on patterns with respect to proper pattern be-
havior as defined by the design pattern’s specification from the perspective of
the software system in the context of design patterns in open source software
systems.

RQ6 What is the relationship between behavioral grime and design pattern
quality, in terms of pattern integrity and pattern instability?

RQ7 Is the size of a design pattern instance related to the amount of behavioral
grime in that pattern instance?

Metrics: Several metrics are outlined that aid in answering the questions,
which are described in table 1. Formulations for each metric are given, with
respect to a pattern instance P.

3.2 Study Design
The study design for this research is depicted in figure 1. To begin, we selected

several software projects to study according to the selection process presented
in the paragraph below. From these software projects, we identified design pat-
tern instances using the design pattern detection tool developed by Tsantalis
et al. in [20]. We chose this tool because it is based on strong theory and pro-
vides evidence of little to no false positives in practice. Additionally, we used the
tool SrcML [2] to assist in the source code parsing process. We chose this tool
because it offers a translation from language-specific source code to standard
format XML, meaning this process becomes language-agnostic. Following XML
generation, we reverse-engineered the UML class and sequence diagrams of the
entire software project. Once we had reverse-engineered the UML class and se-
quence diagrams, we generated a UML representation of the design pattern by
combining the design pattern’s detection with the corresponding UML diagrams.
Next, we subjected each design pattern instance to a process of coalescence. The
process of pattern coalescence involves identifying members of the design pattern
not captured by the design pattern detection tool. Such members may be sub-
classes, super-classes, or pattern-methods within a pattern class that the design



6 Derek Reimanis and Clemente Izurieta

Table 1. Description of the metrics used in this study

Metric Name Description

Structural Conformance
(M1)

The percentage of structural roles in P that conform to at
least one structural role from P ’s SPS.

Behavioral Conformance
(M2)

The percentage of behavioral roles in P that conform to at
least one behavioral role from P ’s IPS.

Structural Grime Count
(M3)

A count of the number of unique instances of structural
pattern grime in P.

Behavioral Grime Count
(M4)

A count of the number of unique instances of behavioral
pattern grime in P.

Pattern Integrity (M5)

M1 +M2

2

Pattern Instability (M6) Adopted from Martin’s Instability metric (I )[16], the effer-
ent coupling of P divided by the sum of the efferent coupling
of P and the afferent coupling of P.

Ce(P)

Ce(P) + Ca(P)

Pattern Size (M7) Adopted from Li and Henry’s Size2 metric (size2 )[15], the
sum of attributes and methods across all classes in P.

pattern detection tool may have missed. Following coalescence, we extracted
the evolution of each pattern instance by tracking and connecting contribut-
ing roles of patterns across software versions. Once pattern instance evolutions
were generated, we entered the evaluation stage wherein we evaluated pattern
conformance, pattern grime, and pattern quality/size for each version (pattern
instance) in the pattern instance evolution.

The process of selecting experimental units, or software projects, is as fol-
lows. In an effort to increase generalizability of results, we chose to analyze five
projects in total. To ensure relevancy, projects were selected based on their pop-
ularity ranking on the online code repository GitHub1. Specifically, we ranked all
projects according to their ’number of stars’, which is synonymous with a favorite
or bookmark, and selected the first five projects such that each project had at
least 2,000 commits, 75 releases, and 100 unique contributors. In most cases, all
projects had significantly more than the minimum required filters; for example
the selenium project features 23,550 commits, 116 releases, and 424 contributors.
From each project, we selected the 20 most recent minor releases evenly divided
between most recent minor release and most recent major release, under the as-
sumption that the project follows traditional notation for release numbers, which
is: [major.minor.bug fix]. If a project did not have at least 20 minor releases in

1 www.github.com



Behavioral Evolution of Design Patterns 7

Fig. 1. Summary of study design. Design pattern instances are extracted from software
projects, and the associated UML is reverse-engineered from source code. The evolution
of each pattern instance is generated, and evaluations for conformance, grime, and
metrics are found across each pattern instance evolution.

major release window, we selected minor releases from the next-major release.
We utilized this process to generate an even spread of data points between the
most recent release and the last major release. The outcome from this project
selection process is presented in table 2, along with the release numbers and
respective release dates.

Table 2. Demographics of the projects under analysis

Project name Domain Releases (Total Re-
leases)

Release Dates

Selenium Testing Framework 3.0 - 3.141.59 (20) Oct 2016 - Nov 2018

RxJava Asynchronous Streaming 2.0 - 2.2.7 (20) Oct 2016 - Feb 2019

guava Java Libraries 9.0 - 27.1 (20) Apr 2011 - Mar 2019

spring-boot Java packaging frame-
work

1.0 - 2.1.3 (20) Apr 2014 - Feb 2019

Hystrix Fault tolerance library 1.0.2 - 1.5.18 (20) Nov 2012 - Nov 2018

Due to the exploratory nature of our study, we chose to focus our analysis on
four pattern types; the Singleton pattern from the ’Creational’ category [7], the
Object-Adapter pattern from the ’Structural’ category [7], and the State and
Template Method patterns from the ’Behavioral’ category [7]. Our initial intu-
ition is that patterns in the behavioral category may be more prone to behavioral
deviations, so we selected two pattern types from that category. Additionally,
these four pattern types provided us the largest sample size of detected pattern



8 Derek Reimanis and Clemente Izurieta

instances; many projects featured zero pattern instances of certain types, such
as the Visitor or Observer pattern. The count of pattern instance evolutions for
each pattern type and across each project under analysis is shown in table 3.
Note this is a count of pattern instance evolutions, not pattern instances; the dif-
ference being pattern instance evolutions track a single pattern instance across
multiple versions, while pattern instances refer to a single pattern instance at a
single software version.

Table 3. Count of pattern instance evolutions for each of the projects under analysis

Project name Singleton
Evolutions

Object-Adapter
Evolutions

State
Evolutions

Template
Method
Evolutions

Selenium 9 21 28 9

RxJava 5 27 124 11

guava 44 9 34 103

spring-boot 13 4 10 17

Hystrix 14 0 5 5

Total 85 61 201 145

4 Results

Behavioral evaluations of pattern grime have, to the best our our knowledge,
not been explored in the literature. This allows us to make use of exploratory
techniques when reviewing our findings. We thus, utilize correlation analyses and
linear regression approaches to identify potential relationships between variables,
and will reserve causative analysis techniques for future experiments when re-
search hypotheses are identified.

RQ1 : To answer this research question, which is concerned with identifying
how the behavior of a design pattern instance can deviate from the expected
behavior of that pattern type, we performed an in-vitro experiment [12]. Specif-
ically, we created an instance of the Observer pattern that perfectly aligns to
its SPS and IPS. Such an instance might be impractical in the real-world, yet
would mark a starting/calibration point for experiments. We injected code into
this Observer pattern instance that constitutes modular structural grime, as
presented by Schanz and Izurieta [19]. Modular structural grime is concerned
with the relationships that pattern members may have with either other pat-
tern members, or non-pattern members. Therefore, modular structural grime
provides a constraint on all possible pattern behaviors. In other words, a given
behavior, whether between pattern members or non-pattern members, cannot
exist unless the two members share a structural relationship. To each injected
modular grime instance, we applied the behavioral deviations as presented by
Reimanis and Izurieta [17]. Specifically, these deviations are ’Improper Order of
Sequences’, in which expected behaviors occur in an incorrect order, and ’Ex-



Behavioral Evolution of Design Patterns 9

cessive Actions’ in which excessive actions hamper the run-time expectations of
a pattern. For this work, we chose to focus on a subset of Excessive Actions,
which we refer to as ’Repetitive Actions’, or cases where the same behavior is
performed within the same scope, or function call, of a pattern instance at run-
time. After applying said behavioral deviations to the modular grime taxonomy,
we generated a taxonomy of behavioral grime, which is shown in figure 2.

Fig. 2. Behavioral grime taxonomy. Dimensions of behavioral grime are listed on the
left, and corresponding characterizations are shown in the taxonomy tree.

The dimensions for this taxonomy are mirrored from the modular grime tax-
onomy [19], which are explained as follows. Strength refers to the strength of a
relationship between two UML members; Persistent Strength refers to a UML
association while Temporary Strength refers to a UML use-dependency. Scope
refers to the context of the relationship between two UML members; Internal
Scope refers to a relationship between two pattern members, and External Scope
refers to a relationship between one pattern member and one non-pattern mem-
ber. Direction refers to the direction of the relationships. Afferent Direction refers
to an incoming relationship while Efferent Direction referring to an outgoing re-
lationship. In the taxonomy, the Classification row refers to the acronym that
captures that type of behavioral grime; for example, the PIO classification is an
acronym for ’Persistent-Internal-Order’ grime. This behavioral grime taxonomy
closely mirrors the modular grime taxonomy presented in [19], with two excep-
tions. First, we have incorporated the ’Behavioral Deviations’ dimension, which
corresponds to the type of behavioral grime (Order or Repetition). Second, one
will notice that the taxonomy is not symmetrical across Order and Repetition
sub-trees; specifically, the sub-tree pertaining to External Efferent Order (-EEO)
type grime is non-existent. This is because this sub-tree represents an outgoing
relationship from a pattern member to a non-pattern member can not be in an
incorrect order; such relationships are not captured by the design pattern, and
thus cannot be in an incorrect order.



10 Derek Reimanis and Clemente Izurieta

RQ2, RQ3 : RQ2 and RQ3 are concerned with identifying behavioral grime
within and across multiple pattern instances. To answer these questions, consider
table 4, which summarizes the grime counts found from our analysis. Each cell
in the table refers to a count of behavioral grime across all patterns instances
of the corresponding pattern type. Note that no instances of Order grime were
found across the entire analysis, and thus we will refrain from showing Order
grime results. This does not imply that Order grime does not exist, but rather
it means we failed to detect any in this study.

Table 4. Count of behavioral grime across each pattern instance

Behavioral
Grime Type

Singleton Object-Adapter State Template
Method

PIR 0 296 645 15

PEAR 0 2028 377 60

PEER 390 583 896 392

TIR 24 229 842 266

TEAR 0 4289 921 153

TEER 2088 6822 10320 3053

RQ4, RQ5 : These research questions are concerned with identifying the
potential relationship between structural and behavioral grime. To answer these
questions, we began by generating a pairwise scatter-plot for each type of struc-
tural and behavioral grime, which is shown in figure 3. Structural grime is shown
on the x-axis, and Repetition behavioral grime is shown on the y-axis. Points in
the scatter-plot represent the count of modular grime and repetition grime for
a single pattern instance.

RQ6 : This research question is concerned with the relationship between
behavioral grime and pattern quality, as measured by our surrogate quality-
metrics, Pattern Instability (M5) and Pattern Integrity (M6). Similarly to RQ4
and RQ5, we began by generating pairwise scatter-plots for these metrics for
each behavioral grime type to visually assess trends. This scatter-plot is shown
in figure 4.

RQ7 : This research question is concerned with identifying if the size of a de-
sign pattern instance is related to the amount of behavioral grime in that pattern
instance. Similarly to the previous research questions, we began by generating a
scatter-plot to visually assess the data. This scatter-plot is shown in figure 4.

To assess the strength of each relationship in RQ4-7, we calculated pairwise
correlation coefficients and corresponding p-values. The nature of our data is a
count, which falls under the ratio numeric scale, and a visual assessment of the
scatter-plots suggests a linear relationship; therefore we chose to use Pearson’s
method to calculate correlation coefficients and generate p-values. The appli-
cation of Pearson’s requires addressing two primary assumptions; the normality
assumption and the independence assumption. We may say we have satisfied the
normality assumption because an advantage of using Person’s is that the nor-



Behavioral Evolution of Design Patterns 11

Fig. 3. Pairwise scatter-plots illustrating the relationships between structural grime,
shown on the x-axis, and behavioral grime, shown on the y-axis.

Fig. 4. Pairwise scatter-plots of pattern quality, measured via surrogate metrics Pat-
tern Instability and Pattern Integrity, pattern size, and behavioral grime.



12 Derek Reimanis and Clemente Izurieta

mality assumption is not applicable for larger sample sizes, of which our data is.
However, we cannot say we have satisfied the independence assumption. Specif-
ically, each data point comes from a single pattern instance in a single software
version, and pattern instances may appear in more than one software version,
meaning grime in a future version might be, and likely is, dependent on grime
in previous versions. We alleviate this concern because of the number of pattern
instance evolutions we have detected, which is captured in table 3, but we cannot
say we have satisfied the independence assumption. Regardless, the correlation
coefficients and corresponding p-value for each pairwise metric across RQ4-7
is listed in table 5, with strong relationships (r > 0.60 or r < −0.60) and sta-
tistically significant p-values at the α < 0.05 level shown in bold. Each p-value
corresponds to the probability that the correlation coefficient we received was
not due to chance, under the assumption that the true correlation coefficient is
zero, which implies a very weak relationship.

Table 5. Correlation coefficients (r-values) and corresponding p-values for each pair-
wise metric (pattern quality, pattern size, and grime type). In each cell, coefficients are
presented first and p-values are presented second. Bold values represent strong rela-
tionships, r > 0.60 or r < −0.60 and statistically significant p-values at the α < 0.05
level. Separations within the table refer to separate research questions.

PEAR PEER PIR TEAR TEER TIR

PEA 0.2021 /
0.00

0.0002 /
0.99

0.0153 /
0.19

0.2132 /
0.00

0.0324 /
0.01

0.0694 /
0.00

PEE 0.0358 /
0.00

0.3339 /
0.00

0.2095/
0.00

0.0704 /
0.00

0.5814 /
0.00

0.1285 /
0.00

PI -0.0084 /
0.48

0.0352 /
0.00

0.0264 /
0.03

-0.0006 /
0.96

0.4053 /
0.00

0.0764 /
0.00

TEA 0.6086 /
0.00

0.1430 /
0.00

0.1355 /
0.00

0.5781 /
0.00

0.2050 /
0.00

0.3026 /
0.00

TEE 0.0006 /
0.96

0.2227 /
0.00

0.2018 /
0.00

0.0225 /
0.06

0.6763 /
0.00

0.0549 /
0.00

TI 0.0762 /
0.00

0.3547 /
0.00

0.3702 /
0.00

0.0612 /
0.00

0.5374 /
0.00

0.2633 /
0.00

Pattern
Instability

-0.1888 /
0.00

0.0255 /
0.03

-0.0100 /
0.40

-0.1659 /
0.00

-0.0445 /
0.00

-0.0300 /
0.01

Pattern
Integrity

0.1555 /
0.00

0.1470 /
0.00

0.2206 /
0.00

0.1179 /
0.00

0.2204 /
0.00

0.2119 /
0.00

Size2 -0.0118 /
0.32

0.0810 /
0.00

0.0951 /
0.00

-0.0117 /
0.32

0.0932 /
0.00

0.2341 /
0.00

5 Discussion

The following discussion points highlight the significance of design pattern
research as knowledge communication artifacts in software reuse. We extend the



Behavioral Evolution of Design Patterns 13

body of knowledge by categorizing and evaluating behavioral grime through the
exploration of selected pattern evolutions.

The first series of statistical tests focused on understanding the relationships
between structural and behavioral grime. For nearly all pairwise comparisons
between structural and behavioral grime, very low p-values were found, suggest-
ing that the results we received were not due to chance, and that no relationship
exists between structural and behavioral grime types. This is an interesting re-
sult, because comparing the correlation coefficients from table 5 to the respective
p-values in table 5, many correlation coefficients are quite small, which would
normally suggest a higher p-value. However, because our sample sizes were large,
we found a correlation coefficient that, while being non-zero in many cases, was
based upon enough data to supply a confident statistical estimate. This means
that the correlation coefficient estimates we found may be close to the true
value of the correlation coefficients, but more experiments need to be performed
to confirm this position.

With respect to relationships between structural and behavioral grime, specif-
ically of interest is the behavioral grime type TEER (Temporary External Ef-
ferent Repetition). Grime of this type manifests itself as non-pattern members
that are used by a pattern, but only as a use-dependency (not an association).
Such items constitute a deviation from a pattern’s specification, which imply the
pattern implementation is more difficult to reuse in the future. TEER grime was
moderatly correlated with two structural grime types (PI and TI), yet was also
strongly correlated with two structural grime types (PEE and TEE). The corre-
lations with PEE and TEE do not come as a surprise, considering the structural
forms of that grime type dictate behavioral allowances. In other words, the pres-
ence of TEER grime cannot exist without the presence of one of either PEE or
TEE. However, recall that TEER grime is specifically a repetition of behaviors.
This means that while a pattern instance may have PEE and TEE structural
grime, manifested as a relationship between pattern members and non-pattern
members, the relationship is called upon more than once within the scope of
a pattern’s operation. Conceivably, these usages could originate from poorly
constructed logical flows within code, in which the same logical call, or opera-
tion, might be performed at different points in a single operation. To assert this
thought, we manually reviewed the code of one state pattern instance and dis-
covered that the instance was setting the same state at multiple different places,
all within the same operation. This practice is not strictly discussed in the State
pattern’s best practices, but certainly a cleaner and more reusable version of
the pattern instance would be one in which the state would be set once per
operation. While future research is required to reveal the true effects of such a
practice, such revelations illustrate why behavioral deviations are an important
topic to study.

The second series of statistical tests focused on capturing the relationships
between behavioral grime and pattern quality, with respect to our surrogate
metrics, Pattern Instability and Pattern Integrity. Nearly all pairwise p-values
reported as very low, suggesting we reject the possibility that no relationship



14 Derek Reimanis and Clemente Izurieta

exists between behavioral grime types and pattern quality. Interestingly, the
correlation coefficients for Pattern Instability are low and negative, hinting that
a weak but present inverse relationship exists between Pattern Instability and be-
havioral grime. In other words, an increase in behavioral grime is associated with
one, or both, of the following: A pattern instance’s efferent coupling decreases
while its afferent coupling does not decrease, or a pattern instance’s afferent
coupling increases faster than its efferent coupling. In most cases, the size of a
pattern instance always increased over its evolution, suggesting that the second
option holds true; that afferent coupling increases faster than efferent coupling.
Put another way, as pattern instances aged and evolved, they tended to be used
more by non-pattern members, not that they made use of more non-pattern
members. In these cases, results suggest that behavioral grime increases as well;
regardless, the increased coupling between non-pattern members and pattern
members inhibits future pattern reuse.

Our results pertaining to Pattern Integrity are seemingly counter-intuitive;
the results suggest that as Pattern Integrity increases, i.e., as a pattern instance
more closely follows its specification, the amount of behavioral grime within that
pattern instance increases as well. One would envision that behavioral grime
would decreases as Pattern Integrity increases, because that would suggest a
refactoring of said pattern instance, aligning it more closely with pattern stan-
dards. However, two likely explanations are plausible. First, the case could be
that the pattern instance is evolving and new pattern members are being added
that conform to the respective SPS and IPS, yet these new pattern members
contain behavioral grime. Second, the case could be that refactorings are being
performed that better align existing pattern members to their SPS and IPS, yet
the refactorings introduce more behavioral grime. In either case, a more robust
and extensive study is required to solve this conundrum.

The third series of statistical tests focused on finding the relationship between
behavioral grime and pattern size. Our expectations were that as a pattern
instance evolved and grew, it would also gain more behavioral grime. Behavioral
grime types PEAR and TEAR reported relatively large p-values, suggesting
that we are unable to assume that no relationship exists between PEAR/TEAR
and pattern size. However, the other types of behavioral grime reported very
small p-values, suggesting we can reject the null, and that evidence exists to
support a relationship between behavioral grime and pattern size. Looking at the
correlation coefficients, we see small positive coefficient values, strengthening our
initial expectations. While these values are not as large as expected, we can claim
that the evidence from this study suggests pattern instances gain behavioral
grime as they get larger. While the increasing size of a pattern instance over its
evolution is indicative that the pattern is being reused, the presence of behavioral
grime may imply that the pattern’s growth rates are slowing down. Future work
will address this question, looking at the growth rates of behavioral grime as
they pertain to pattern size.



Behavioral Evolution of Design Patterns 15

6 Threats to Validity

There are several design and implementation considerations in this study
that threaten the validity of the results. External validity is concerned with the
generalization of results. In this study, we limited ourselves to 20 minor-release
versions of five Java projects, chosen based on popularity from the online repos-
itory GitHub. While we attempted to systematically select projects so that our
results would be generalizable, we can only claim that our results hold true for
the projects under analysis. More case studies following this same process are
necessary before more general claims can be made. Internal validity refers to the
ability to reach causal conclusions based on the study design. Internal validity is
minimal in this study because we make no causal claims, just correlations. Fu-
ture studies will be directed at increasing this body of knowledge, thus we will
explore causal links, yet for this study only correlations were used. Construct
validity refers to the choice of independent and dependent variables, with respect
to conclusion. Construct validity is threatened in our study because of our use
of the Pattern Integrity and Pattern Instability metrics as surrogate metrics for
pattern quality. Our rationale for choosing these two surrogate metrics comes
from theory that suggests a very small value for Instability increases system sta-
bility, positively affecting quality, and that high values for Integrity correspond
to more standard and robust implementations, also positively affecting quality.

7 Conclusion

Our research goals focused on the exploration and initial understandings of
behavioral deviations, as they pertain to design pattern evolution and software
reuse. To this end we have constructed a taxonomy that classifies behavioral
grime types. Furthermore, we designed and implemented a case study wherein
we measured counts of structural and behavioral grime, as well as quality and
size, across pattern instance evolutions pertaining to four design pattern types,
originating from 20 versions of five open source software projects. We evaluated
the relationships between structural and behavioral grime and found statistically
significant cases of strong correlations between specific types of structural and
behavioral grime. We identified statistically significant relationships between be-
havioral grime and both choice quality metrics, as well as pattern size. Patterns
are a means of knowledge communication through the reuse of common solutions,
and these findings provide important directions that can help practitioners in
reducing problems encountered through the evolution of software components.

References

1. Caldiera, V.R.B.G., Rombach, H.D.: The goal question metric approach. Encyclo-
pedia of software engineering pp. 528–532 (1994)

2. Collard, M.L.: Addressing source code using srcml. In: IEEE International Work-
shop on Program Comprehension Working Session: Textual Views of Source Code
to Support Comprehension (IWPC05). Citeseer (2005)

3. Eick, S.G., Graves, T.L., Karr, A.F., Marron, J.S., Mockus, A.: Does code de-
cay? assessing the evidence from change management data. IEEE Transactions on



16 Derek Reimanis and Clemente Izurieta

Software Engineering 27(1), 1–12 (2001)
4. Feitosa, D., Ampatzoglou, A., Avgeriou, P., Nakagawa, E.Y.: Correlating pattern

grime and quality attributes. IEEE Access 6, 23065–23078 (2018)
5. Feitosa, D., Avgeriou, P., Ampatzoglou, A., Nakagawa, E.Y.: The evolution of

design pattern grime: An industrial case study. In: International Conference on
Product-Focused Software Process Improvement. pp. 165–181. Springer (2017)

6. France, R., Kim, D., Song, E., Ghosh, S.: Metarole-based modeling language (rbml)
specification v1. 0. Tech. rep., 0. Technical Report 02-106, Computer Science De-
partment, Colorado State (2002)

7. Gamma, E.: Design patterns: elements of reusable object-oriented software. Pear-
son Education India (1995)

8. Griffith, I., Izurieta, C.: Design pattern decay: the case for class grime. In: Pro-
ceedings of the 8th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. p. 39. ACM (2014)

9. Izurieta, C.: Decay and grime buildup in evolving object oriented design patterns.
Colorado State University (2009)

10. Izurieta, C., Bieman, J.M.: How software designs decay: A pilot study of pattern
evolution. In: First International Symposium on Empirical Software Engineering
and Measurement (ESEM 2007). pp. 449–451. IEEE (2007)

11. Izurieta, C., Bieman, J.M.: Testing consequences of grime buildup in object ori-
ented design patterns. In: 2008 1st International Conference on Software Testing,
Verification, and Validation. pp. 171–179. IEEE (2008)

12. Juristo, N., Moreno, A.M.: Basics of software engineering experimentation.
Springer Science & Business Media (2013)

13. Kim, D.K.: A meta-modeling approach to specifying patterns. Ph.D. thesis, Col-
orado State University. Libraries (2004)

14. Lajoie, R., Keller, R.K.: Design and reuse in object-oriented frameworks: Patterns,
contracts, and motifs in concert. In: Object-Oriented Technology for Database and
Software Systems, pp. 295–312. World Scientific (1995)

15. Li, W., Henry, S.: Maintenance metrics for the object oriented paradigm. In: [1993]
Proceedings First International Software Metrics Symposium. pp. 52–60. IEEE
(1993)

16. Martin, R.C.: Agile software development: principles, patterns, and practices. Pren-
tice Hall (2002)

17. Reimanis, D., Izurieta, C.: Towards assessing the technical debt of undesired soft-
ware behaviors in design patterns. In: 2016 IEEE 8th International Workshop on
Managing Technical Debt (MTD). pp. 24–27. IEEE (2016)

18. Rumbaugh, J., Jacobson, I., Booch, G.: Unified modeling language reference man-
ual, the. Pearson Higher Education (2004)

19. Schanz, T., Izurieta, C.: Object oriented design pattern decay: a taxonomy. In: Pro-
ceedings of the 2010 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement. p. 7. ACM (2010)

20. Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., Halkidis, S.T.: Design pat-
tern detection using similarity scoring. IEEE transactions on software engineering
32(11), 896–909 (2006)

21. Warmer, J.B., Kleppe, A.G.: The object constraint language: Precise modeling
with uml (addison-wesley object technology series) (1998)


