
Statistical Metamorphic Testing of Neural Network
Based Intrusion Detection Systems

Faqeer ur Rehman
Gianforte School of Computing

Montana State University
Bozeman, MT, USA

Email: faqeer.rehman@student.montana.edu

Clemente Izurieta
Gianforte School of Computing

Idaho National Laboratories
Montana State University

Bozeman, MT, USA
Email: clemente.izurieta@montana.edu

transportation, machine translation, voice recognition, safety-
critical applications (e.g., self-driving cars and self-flying
drones), and as exemplified above, the Cybersecurity domain.
Normally, we focus more on the development of accurate
models but much less on ensuring their quality. Thung et
al. [4] showed in their study that 22.6% of faults in ML
applications are due to incorrect implementation that caused
them to produce inconsistent and unexpected results. A small
bug in the system may lead to catastrophic failure which
can result in both financial and human loss. For example,
on 14 Feb 2016, a Google self-driving car crashed due to
misjudgment and putting itself into the path of an oncoming
bus, in an attempt to avoid sanbags [1]. In May 2016, a Tesla
Model S crashed when the autonomous driving system hit the
trailer and did not treat it as an obstacle [2]. In March 2018,
an Uber self-driving car killed a woman in Arizona, when at
night it failed to recognize a pedestrian on the road [3]. In the
face of these disasters, ensuring the correctness of ML-based
systems is very challenging but equally an essential problem
to be solved.

It is important to note that in comparison to traditional
software systems, testing ML applications poses several chal-
lenges. First, when we talk about traditional software solu-
tions, they are manually programmed to perform the needed
functionality. The code of program under test is usually fixed
and the output produced by the program is generated using
the specified set of rules. However, the rules defined in ML
applications are not explicitly hard-coded, instead, they involve
complex computations and are learned from the training data.
Second, ML applications have a large input space for which
they need to be verified. Features like price, date of birth,
width, height, and road conditions (in an image) may contain
a large range of values. As a result, it is difficult to verify
the correctness of a system against all those possible values.
Third, the low accuracy of ML models is a composite effect,
which can arise from a combination of three ML components,
namely: data, program (code written by the programmer),
and the framework/library (e.g., Weka, Pytorch, TensorFlow),
whereas each of them many contain bugs. Therefore, it is
essential to verify the correctness of each of these ML compo-
nents. Finally, testing ML-based applications seriously suffer
from the Oracle problem due to the difficulty in assessing

Abstract—Testing computationally complex neural network-
based applications (i.e. network intrusion detection systems) is a
challenging task due to the absence of a test oracle. Metamorphic
testing is a method to potentially solve the oracle problem when
the correctness of individual output is difficult to determine.
However, due to the stochastic nature of these applications,
multiple runs with the same input can produce slightly different
results; thus rendering traditional metamorphic testing technique
inadequate. To address this problem, this paper proposes a
statistical metamorphic testing technique to test neural network
based Network Intrusion Detection Systems (N-IDSs) in a non-
deterministic environment. We also performed mutation analysis
to show the effectiveness of the proposed approach. The results
show that the proposed method has a strong defect detection
capability and is able to kill 100% implementation bugs in two
neural network-based N-IDSs, and 66.66% in a neural network-
based cancer prediction system.

Keywords—Metamorphic testing, oracle problem, statistical
hypothesis testing, intrusion detection system, neural networks,
stochastic algorithms

I. INTRODUCTION

Information Technology (IT) practitioners grapple on a
daily basis with how to maintain their networks secure from
malicious adversaries. A large number of tools exist today
that can help with identifying potential weaknesses and vul-
nerabilities regarding all types of Cybersecurity concerns.
The ISO 25k standard [6] characteristics helps us partition
such threats into different categories. However, operational
solutions to theoretical characterizations are not contextual,
and require significant manual efforts from practitioners to
identify relevant attacks. To aid practitioners and prevent such
disastrous threats proactively, one possible solution would
be to choose and deploy an intelligent machine learning
based Network Intrusion Detection System (N-IDS). These
automated techniques act in context and remove significant
manual efforts. A challenge faced by these systems, however;
is how can we trust and rely on the correctness of such
computationally complex machine learning based N-IDSs?,
especially, when the organization has purchased it from a new
vendor or built on top of some open source libraries.

Machine learning (ML) is heavily used in solving real-world
problems in many application domains like finance, healthcare,

978-1-6654-0285-9/21/$31.00 ©2021 IEEE

20

2021 IEEE International Conference on Cyber Security and Resilience (CSR)
20

21
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
yb

er
 S

ec
ur

ity
 a

nd
 R

es
ili

en
ce

 (C
SR

) |
 9

78
-1

-6
65

4-
02

85
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
SR

51
18

6.
20

21
.9

52
79

93

Authorized licensed use limited to: Montana State University Bozeman. Downloaded on September 08,2021 at 14:22:44 UTC from IEEE Xplore. Restrictions apply.

whether the generated output is correct [5]. An oracle is a
mechanism where a program is verified by comparing its
output with the expected outcome. To test such complex
systems, either the oracle is unavailable or too expensive to
apply.

A major approach used to solve the oracle problem in
such non-testable programs is known as Metamorphic Testing
(MT) [7]. MT has been proven to be an effective approach
in alleviating the oracle problem in testing ML applications,
for which the correctness of individual output is difficult to
determine [8] [9]. The first step in metamorphic testing is
to identify the set of necessary properties/characteristics of
a system known as Metamorphic Relations (MRs). Each MR
describes the relationship between the input and the related
output that specifies how the output of the program should
be changed when changing the input. A simple example of
an MR for a program calculating the standard deviation of
a list of numbers can be stated as ‘shuffling the order of
elements in a list should not change the final output’. Once
the MRs have been identified, source and follow-up test cases
are generated. The source test case (treated as original data)
can either be domain-specific or can be randomly generated,
whereas the follow-up test case is generated by performing
some valid transformation to the original data (as specified
in the related MR). Both the source and follow-up test cases
are then executed on the target program under test. If the
results generated by the source and follow-up executions do
not adhere to the relation specified in the MR, then this would
indicate a potential bug in the system.

One of the challenges faced in applying MT to Neural
Network (NN) based applications is their stochastic nature
(due to random initialization of weights) where they produce
slightly different outputs for multiple runs with the same
inputs. In order to get consistent results for both the source and
follow-up test cases, a couple of researchers have proposed
the solution of fixing the random seeds [10][11]. The first
paper is focused on applying MT to uncover implementation
bugs in a Deep Learning (DL) based image classifier [10].
The authors used maximum standard deviation σmax (based
on variation in a loss on the test data) as a threshold to verify
if the program under test adhered to MRs or not. In order to
alleviate stochasticity, the authors fixed the random seed to
get deterministic results (obtaining consistent σmax) for the
program under test. The authors highlighted that they were
able to get deterministic results on CPUs but not on GPUs
due to inherent non-determinism introduced by NVidia CUDA
libraries. Hence, their approach was limited to work only on
CPUs. The second paper deals with applying MT to test an
Artificial Neural Network (ANN) based classifier, taken from
Stanford’s cs231n course [11]. In order to get deterministic
results and to verify the MRs using the equality operator, the
authors initialized the weights of a classifier with fixed values.
The problem with this approach is two-fold, (i) it will not
work in an environment where either the weights of the ANN
cannot be fixed or where getting non-deterministic results is
unavoidable, and (ii) it may not be applicable in a scenario

when a model needs to be trained on GPUs to accelerate the
training time.

In order to solve the above highlighted problems, this
paper proposes a statistical-based MT technique to unveil
implementation bugs in NN-based N-IDSs, especially, in an
environment where neither the random seeds nor the weights
can be fixed in order to get deterministic results. Apart from
that, in real-world it may not be possible for a software
tester to fix the random seeds explicitly in a project that
has millions lines of code and is also using a large number
of third-party libraries. Therefore, instead of relying on a
single run, the proposed approach statically analyses the results
over multiple iterations (each iteration denotes a trained NN
classifier) because a correct NN classifier should converge
to the same solution most of the time, if not always [10].
To show the applicability of the proposed approach, we have
worked with three ML applications. Two applications belong
to Cybersecurity space i.e. N-IDSs, whereas the third one is
from the healthcare domain that classifies cancer types among
patients.

The following are the main contributions of this paper:
• Three metamorphic relations are proposed to uncover

implementation bugs in ML-based applications (i.e., N-
IDSs and Cancer prediction system).

• Four statistical measures are used that will allow software
testers to verify the correctness of a program under
test (especially in a non-deterministic environment) using
a combination of statistical hypothesis testing and MT
technique.

• Mutation testing [12] is applied to show the effectiveness
of the proposed MT-based approach. The results show
that the proposed method is able to kill 100% implemen-
tation bugs in the two N-IDSs, whereas 66.66% in the
cancer prediction system.

The rest of the paper is organized as follows: First, the
related work is presented in Section II. Next, the proposed
approach for testing N-IDSs is presented in Section III. Section
IV presents the results, showing the effectiveness of our
proposed approach, and Section V concludes the paper along
with potential future work.

II. RELATED WORK

Deploying applications that are not fully tested can have
disastrous consequences in the real world. Zhou et al. [9]
reported serious defects in the Uber system 8 days prior
to when the autonomous Uber killed Elaine Herzberg (a
pedestrian) on March 18, 2018, in Tempe, AZ. The authors
applied Fuzz testing in combination with MT to test LiDAR
(light detection and ranging), an obstacle perception module
used in Uber, and revealed several previously unknown fatal
errors. Xie et al. [8] applied MT (as a test oracle) to test
a popular open-source ML tool, known as Weka. Weka pro-
vides a large number of algorithms for data-prepossessing,
classification, clustering, prediction, feature selection, and
visualization [13]. The proposed MRs are not only able to
find implementation bugs in K-Nearest Neighbors and Naive

21

Authorized licensed use limited to: Montana State University Bozeman. Downloaded on September 08,2021 at 14:22:44 UTC from IEEE Xplore. Restrictions apply.

Bayes classification algorithms (treated as a verification step)
but are also helpful in serving as validation steps. Pei et al.
[14] proposed DeepXplore, a white-box testing framework to
address two main challenges faced in the automated testing
of a large-scale DL system: (i) identification of erroneous
behavior(s) in the system without a need to labeling each
test instance manually, and (ii) generation of inputs that can
exercise different parts of a DL system’s logic (known as
neuron coverage) to uncover hidden defects in it. The proposed
approach has shown promising results in uncovering thousands
of erroneous behaviors in 5 DNNs. However, one of the
limitations of the proposed approach is its strong dependency
on a differential testing technique, which requires at least two
similar implementations of a system. Apart from that, the
authors did not provide any details regarding how they verified
that the generated images truly represent real-world scenarios.

Normally, practitioners rely on using accuracy measures to
check the appropriateness of an algorithm for the underlying
problem. Li et al. [11] showed that higher accuracy does not
necessarily mean that the trained model is free of bugs. The
authors applied the MT technique to test NN classifiers. The
proposed MRs first transform the original inputs to generate
follow-up test cases and then check, whether the produced
output (for both source execution and follow-up execution)
adheres to the corresponding MRs or not. To check the
effectiveness of the proposed MRs, mutation testing is applied,
and artificial bugs are injected into the source code of a
program under test. The authors highlighted a few mutants
that produced the same high accuracy as that of the original
program, knowing the fact that they represent the faulty
implementations. The results obtained show that the proposed
MT-based approach is more effective in detecting faults than
using the accuracy measure. However, the proposed approach
is only applicable in an environment where the software tester
can fix the random seeds to get deterministic results, which is
not always possible.

It is important to note that despite efforts to find relevant
references in the literature that address how MT could be used
to test N-IDSs, we were unsuccessful, and although beyond
the scope of this paper, we believe this is an important gap in
the body of knowledge that needs further investigation.

III. PROPOSED APPROACH

In this section, we present the proposed statistical-based MT
technique in detail. In order to verify the proposed approach,
two research questions are raised in this paper.

• RQ1: How effective is statistical MT in identifying the
faults in NN-based classifiers when trained in a non-
deterministic environment?

• RQ2: Do all MRs have the same defect detection ability
for NN-based applications?

First, we provide three MRs which are used to find imple-
mentation bugs in the applications under test. Next, instead
of checking the correctness of MRs over a single source and
follow-up execution (not possible due to random initialization
of weights causing the non-deterministic behavior), we obtain

results over multiple iterations and analyze them statistically
(using the proposed statistical measures) to verify whether the
outputs adhere to the relation specified in the MRs or not. The
violation of an MR will be an indication of a potential bug in
the program under test. Lastly, a mutation testing technique is
applied on the following N-IDSs to check the effectiveness
of proposed MRs. In order to show the relevance of the
approach in other domains (i.e., health care), we also include
a DNN-based cancer prediction system. The details for each
application are presented in Table I.

• Application#1: A shallow NN-based N-IDS used for
the detection of malicious attacks in an OpenStack
environment. It is a multi-class classification problem
that classifies the network request among 3 class labels
(normal, attacker, and victim).

• Application#2: A DNN-based N-IDS for intrusion detec-
tion in a network that solves a binary class classification
problem (i.e., either the request is attack or benign).

• Application#3: A DNN-based cancer prediction system
used to identify cancer types among patients. It is a multi-
class classification problem that classifies the patient
among one of 10 cancer types.

TABLE I
NEURAL NETWORK MODEL ARCHITECTURES

Application #
Hidden
Layers

Hidden Layer(s)
Type

Output Layer

Application#1
(ANN N-IDS)

1 Fully Connected
+ ReLU

Softmax

Application#2
(DNN N-IDS)

3 Fully Connected
+ sigmoid

Sigmoid

Application#3
(DNN Cancer
identification)

3 Fully Connected
+ sigmoid

Softmax

A. Metamorphic Relations (MRs)

We propose the following three MRs that are applicable to
all three ML based applications under test:

1) MR-1:- Changing the order of features (of both training
and test data): Let Xtrain be the training data and Xtest be
the test data. After training the neural network, let a specific
test instance xitest be classified as class ‘a’. MR-1 says that
if we change the order of attributes in both the training and
test data, the output for the test instance xitest should remain
same (i.e., class ‘a’).

2) MR-2:- Addition of uninformative attribute to both train-
ing and test data: Let Xtrain be the training data and Xtest be
the test data. After training the neural network, let a specific
test instance xitest be classified as class ‘a’. MR-2 says that if
we add an uninformative attribute (attribute having value 0) to
all the instances of both the training and test data, the output
for the test instance xitest should remain same.

3) MR-3:- Shifting of both the training and test features:
Let Xtrain be the training data and Xtest be the test data.
After training the neural network, let a specific test instance
xitest be classified as class ‘a’. MR-3 says that if we shift the

22

Authorized licensed use limited to: Montana State University Bozeman. Downloaded on September 08,2021 at 14:22:44 UTC from IEEE Xplore. Restrictions apply.

features in both the training and test data with some constant
c, it will not change the existing relationship between the data
points, so the output for the test instance xitest should remain
same.

B. Statistical Hypothesis Tests

In this section, four statistical measures are discussed that
we used to perform statistical hypothesis testing and verifica-
tion of a relation specified in MRs. For this purpose, we added
custom code in the classifiers under test to store their predicted
results in excel files. The generated excel files contain detailed
information for each test instance e.g. expected class label,
predicted class label, the probability distribution for multiple
classes, the maximum probability for the predicted class
label, etc. We then developed a C# utility to process those
excel files and extract the needed information on which the
proposed statistical measures are applied. If the results are
found statistically significant e.g., if the probability (p-value)
is less than the set significance level (α), we reject the Null
Hypothesis (H0). Rejection of H0 would suggest that the MR
has been violated and that there is a potential bug in the
system. The classifiers’ original code, mutants generated, excel
files (containing predictions) and their processed versions, the
C# utility, and the results produced, all are open-sourced 1).
The statistical measures are as follows:

1) Maximum Voting: To understand the proposed maximum
voting concept, let XsData be the source data, and XfData be
the follow-up data. We train the same classifier ‘n’ times on
the source data and ‘m’ times on the follow-up data (where n
= m). This results in Cn trained classifiers on the source data
and Cm trained classifiers on the follow-up data. Those trained
models (Cn and Cm) are then used to predict the class label for
the test instance xitest. The results obtained are accumulated
and a frequency distribution table is prepared, as shown in
Table II.

For a given test instance xitest, the MR is said to be violated,
if the maximum times of the class predicted for the source
executions is different than the maximum times predicted for
the follow-up executions.

2) Comparing Distributions Using Chi-square Test of Ho-
mogeneity & Fisher’s Exact Test: There may exist some
scenarios where the Maximum Voting approach may not work.
For example, in Table II, it can be seen that for both the
source and follow-up executions, the class which is predicted
maximum times is Class2. So, the proposed measure would
suggest that the MR is satisfied. However, one may argue that
the difference between the Class2 and Class3 distribution (for
follow-up executions) is not very high and that this difference
could be treated as the identification of a potential bug in the
system. This motivates us to analyze the distributions over
multiple class labels for better identification of true positive
alarms. For this purpose, we take advantage of the Chi-square
test of homogeneity (χ̃2), which is used to compare two
samples having unknown population distributions. Using the

1https://github.com/matifkhattak/StatisticalMT/tree/master

frequency table (as shown in Table II), we formulate the under-
lying problem as one where we compare the source executions’
distribution Si (treated as the expected distribution) with the
follow-up executions’ distribution Fi (treated as the observed
distribution).

χ̃2 =
n∑

i=1

(Fi − Si)
2

Si

However, one of the limitations of the Chi-square test is that
it may produce inaccurate and unreliable results if any of the
cell values is less than 5 [15]. To solve this problem for some
of the distributions we obtained, we apply an alternative test
known as Fisher’s exact test, which works equally well for the
distributions having small cell values [15]. Based on the results
obtained, if the p-value is less than the set significance level,
null hypothesis is rejected, which ultimately means that the
MR is violated and there is some potential bug in the system.

The following are the proposed null and alternative hypoth-
esis used for both the χ̃2 and Fisher’s exact test.

• H0: The distributions for both the source and follow-up
executions are same.

• Ha: The distribution for the source executions is different
from the follow-up executions.

TABLE II
FREQUENCY DISTRIBUTION TABLE

Execution Type Class1 Class2 Class3
Source (n=30) 3 15 2
Follow-up (m=30) 3 9 8

3) Comparing Distributions Using Two Sample t-Test &
Permutation Test: In an NN-based classifier, an activation
function (e.g., sigmoid or softmax) is used in the output layer
that generates a probability vector, providing the probability
for each of the class labels. A class with the highest probability
is treated as the predicted class label for the given test
instance. We take advantage of using these probabilities and
perform statistical analysis to check how close the probability
distributions are for both the source and follow-up executions
for any given instance.

We treat this problem as comparing the two sample means
using the t-Test. First, the results in excel files are processed
(using the C# program) and the class label predicted maximum
times during the source executions is identified. For the given
test instance xitest, the purpose is to first find the class label
for which the model is more confident and then extracting
the probability of that specific class for both the source and
follow-up executions. This will result in the generation of two
samples for each MR, one for the source and other for the
follow-up executions, as shown in Table III.

Let x = (x1, x2,...,xn) and y = (y1, y2,...,yn) represent two
samples, one corresponding to source executions and the other
corresponding to follow-up executions. In order to conduct the
statistical t-Test, we need to find the mean x̄n =

∑n
i=1 xi and

the variance s2x,n = 1
n−1

∑n
i=1(xi - x̄n)2 for both samples.

The t-score is calculated as,

23

Authorized licensed use limited to: Montana State University Bozeman. Downloaded on September 08,2021 at 14:22:44 UTC from IEEE Xplore. Restrictions apply.

TABLE III
EXEMPLARY PROBABILITIES

Source Executions Follow-up Executions
0.63 0.61
0.64 0.60
0.61 0.62
0.61 0.65
0.60 0.59
0.61 0.60

t =
x̄n − ȳn√
s2x,n

n +
s2y,n

n

After applying the t-Test, the p-value obtained is compared
with the significance level. If it is less than the set significance
level, H0 will be rejected, which ultimately means that the
MR is violated and that there is a potential bug in the system.
The following are the null and alternative hypothesis to check
whether the MRs have been satisfied or not.

• H0: There is no difference in the sample means of both
the source and follow-up executions.

• Ha: The sample mean of source executions is different
from the sample mean of follow-up executions.

It is important to note that before applying the two-sample
t-Test, we have analyzed the data to check whether the
assumptions are fully satisfied. During the analysis (using a
Q-Q plot), we found that for some of the MRs, the normality
assumption is slightly violated.

However, the t-Test is robust against such violations and can
still be applied [16]. To perform better analysis and support
decision-making, we show our results using both the t-Test
and the permutation test in §IV. The permutation test is a non-
parametric test that does not rely on the normality assumption.
For more details about the permutation test, we refer the
interested readers to read Chapter 1 [16].

IV. EMPIRICAL RESULTS

All three applications (N-IDSs and Cancer identification
system) under test are built on Keras 2.3.1 and TensorFlow 2.0.
We used the MutPy [17] tool to generate mutated versions of
the classifiers under test. After excluding the mutants, which
were either changing the architecture of the neural network or
causing the program to crash, we selected 3 valid mutants for
each application (details are available online 2). One of the
generated mutants is shown in Fig. 1. A mutant is said to be
killed if the results do not adhere to the relation specified in
the MR. The effectiveness of MR is determined based on the
mutation score (number of killed mutants / total number of
mutants).

The main objective of this study is to test the NN based N-
IDSs in a non-deterministic environment. To show whether the
results are statistically significant, we analyzed the results over
multiple iterations. The results for Application#1 (shown in

2https://github.com/matifkhattak/StatisticalMT/tree/master

Fig. 1. Original Code (top) and Mutant (below). This mutant will cause the
program to over-fit.

Table IV) and Application#3 (shown in Table VI) are obtained
based on 200 trained models for each MR (100 models
trained on source data and 100 trained on follow-up data).
However, due to time resource constraints, for Application#2,
we obtained the results based on 60 trained models for each
MR (30 models trained on source data and 30 trained on
follow-up data), as shown in Table V. The results presented
show the effectiveness of each MR using the mutation score
(as a %). We present the mutation scores at two levels, (i) of
each individual MR, and (ii) of each statistical measure (with
combined MRs).

It is important to note that all three applications under
investigation are critical systems of high consequence, so a
Type-II error has more severity because the acceptance of
a false Null hypothesis (in case of using low α level) will
suggest that there is no bug in the system when actually there
is. To perform better analysis and support decision-making, we
reported the results with both α = 0.05 and α = 0.1. Results
presented in Table IV, V, and VI show that most of the time
using the proposed statistical measures, the given MRs are
able to kill at least 66% of the mutants. Further, if we have
enough resources to apply all four statistical measures, the
results (under column name Overall) show that the proposed
approach is able to kill 100% of mutants in two N-IDSs
(Application#1 and Application#2), and 66% of mutants in
the cancer prediction system (Application#3), which shows its
strong capability to detect defects. Therefore, we find that
the proposed statistical-based MT technique is effective in
finding the implementation bugs in NN-based applications
in a non-deterministic environment, which answers RQ1.

However, it can be seen that the proposed MRs have
different fault detection capability for each application under
test. For example, upon closer inspection of the results in Table
V, when statistically analyzed using the t-Test, we can see
that MR-1 has a strong defect detection capability of 66.66%,
whereas MR-2 has the lowest mutant killing rate of 0%. We
can use the same knowledge to check the effectiveness of
different MRs for different applications, as shown in Table
IV, V, and VI. The results in Table VI (for Application#3)
show that mutant#2 is survived and none of the MRs are able
to kill it (for both α = 0.05 and α = 0.1). Upon further analysis,
we find that each time a DNN is trained, it predicts the same
class label for all the test instances, which shows that there
is some potential bug in the classifier under test. Hence, we
come to the conclusion that different MRs have different
fault detection ability for the NN-based applications under
test, which answers RQ2.

24

Authorized licensed use limited to: Montana State University Bozeman. Downloaded on September 08,2021 at 14:22:44 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
RESULTS FOR APPLICATION#1: SHALLOW NEURAL NETWORK BASED N-IDS, Y DENOTES THE MUTANT IS KILLED

Significance Level (α) = 0.05

Mutants Maximum Voting χ̃2 / Fisher Exact Test t-Test Permutation Test Overall
MR-1 MR-2 MR-3 MR-1 MR-2 MR-3 MR-1 MR-2 MR-3 MR-1 MR-2 MR-3

Mutant#1 Y Y Y Y Y
Mutant#2 Y Y Y Y
Mutant#3 Y Y Y

Mutation Score 33.33% 33.33% 33.33% 33.33% 33.33% 0% 33.33% 33.33% 0% 33.33% 33.33% 0%
66.66% 66.66% 66.66% 66.66% 100%

Significance Level (α) = 0.1

Mutants Maximum Voting χ̃2 / Fisher Exact Test t-Test Permutation Test Overall
MR-1 MR-2 MR-3 MR-1 MR-2 MR-3 MR-1 MR-2 MR-3 MR-1 MR-2 MR-3

Mutant#1 Y Y Y Y Y
Mutant#2 Y Y Y Y Y Y
Mutant#3 Y Y Y Y

Mutation Score 33.33% 33.33% 33.33% 66.66% 66.66% 0% 33.33% 33.33% 0% 66.66% 33.33% 0%
66.66% 100% 66.66% 66.66% 100%

TABLE V
RESULTS FOR APPLICATION#2: DEEP NEURAL NETWORK BASED N-IDS, Y DENOTES THE MUTANT IS KILLED

Significance Level (α) = 0.05

Mutants Maximum Voting χ̃2 / Fisher Exact Test t-Test Permutation Test Overall
MR-1 MR-2 MR-3 MR-1 MR-2 MR-3 MR-1 MR-2 MR-3 MR-1 MR-2 MR-3

Mutant#1 Y Y Y Y Y Y Y
Mutant#2 Y Y Y
Mutant#3 Y Y Y

Mutation Score 33.33% 33.33% 33.33% 33.33% 0% 0% 66.66% 0% 33.33% 66.66% 0% 33.33%
66.66% 33.33% 66.66% 66.66% 100%

Significance Level (α) = 0.1

Mutants Maximum Voting χ̃2 / Fisher Exact Test t-Test Permutation Test Overall
MR-1 MR-2 MR-3 MR-1 MR-2 MR-3 MR-1 MR-2 MR-3 MR-1 MR-2 MR-3

Mutant#1 Y Y Y Y Y Y Y Y
Mutant#2 Y Y Y
Mutant#3 Y Y Y Y Y

Mutation Score 33.33% 33.33% 33.33% 33.33% 33.33% 66.66% 66.66% 0% 33.33% 66.66% 0% 33.33%
66.66% 66.66% 66.66% 66.66% 100%

TABLE VI
RESULTS FOR APPLICATION#3: DEEP NEURAL NETWORK BASED CANCER PREDICTION SYSTEM, Y DENOTES THE MUTANT IS KILLED

Significance Level (α) = 0.05

Mutants Maximum Voting χ̃2 / Fisher Exact Test t-Test Permutation Test Overall
MR-1 MR-2 MR-3 MR-1 MR-2 MR-3 MR-1 MR-2 MR-3 MR-1 MR-2 MR-3

Mutant#1 Y Y Y Y Y Y Y
Mutant#2
Mutant#3 Y Y Y Y Y Y Y

Mutation Score 66.66% 33.33% 33.33% 66.66% 33.33% 0% 66.66% 33.33% 0% 66.66% 0% 0%
66.66% 66.66% 66.66% 66.66% 66.66%

Significance Level (α) = 0.1

Mutants Maximum Voting χ̃2 / Fisher Exact Test t-Test Permutation Test Overall
MR-1 MR-2 MR-3 MR-1 MR-2 MR-3 MR-1 MR-2 MR-3 MR-1 MR-2 MR-3

Mutant#1 Y Y Y Y Y Y Y
Mutant#2
Mutant#3 Y Y Y Y Y Y Y Y Y

Mutation Score 66.66% 33.33% 33.33% 66.66% 33.33% 33.33% 66.66% 33.33% 33.33% 66.66% 0% 0%
66.66% 66.66% 66.66% 66.66% 66.66%

25

Authorized licensed use limited to: Montana State University Bozeman. Downloaded on September 08,2021 at 14:22:44 UTC from IEEE Xplore. Restrictions apply.

V. CONCLUSION

We proposed a statistical-based Metamorphic Testing (MT)
technique for testing a class of Machine Learning (ML)
applications (i.e, network intrusion detection systems) that
have stochastic behaviour in their results. Having this property,
traditional MT approaches are not applicable because they rely
on using an equality operator to verify the relation specified
in Metamorphic Relations (MRs). We introduce three MRs
for uncovering implementation bugs in the applications under
test. Furthermore, we propose four statistical measures that
allows us to statistically analyze the predicted outputs and
to verify the relation specified in MRs. The effectiveness of
our proposed method is show with the identification of bugs
(injected through mutation testing technique) in three ML-
based applications. This research is focused on showing the
applicability of statistical-based MT techniques with sample
MRs for neural network-based network intrusion detection
systems. Furthermore, we also show the usefulness of the
proposed approach in the healthcare domain (e.g., Cancer
identification system). A more comprehensive study on for-
mulating new MRs and evaluating their performance using
the proposed approach is in progress.

REFERENCES

[1] Ziegler, C. (2016). A google self-driving car caused a crash for the first
time. The Verge.

[2] Lambert, F. (2016). Understanding the fatal tesla accident on autopilot
and the nhtsa probe. Electrek, July, 1.

[3] Ohnsman, A. (2018). Lidar maker velodyne ‘baffled’by self-driving uber’s
failure to avoid pedestrian. Forbes, March.

[4] Thung, F., Wang, S., Lo, D., & Jiang, L. (2012, November). An em-
pirical study of bugs in machine learning systems. In 2012 IEEE 23rd
International Symposium on Software Reliability Engineering (pp. 271-
280). IEEE.

[5] Weyuker, E. J. (1982). On testing non-testable programs. The Computer
Journal, 25(4), 465-470.

[6] ISO/IEC 25010:2011 Systems and Software Engineering – Systems and
Software Quality Requirements and Evaluation (SQuaRE) – System and
Software Quality Models, Mar. 2011

[7] Chen, T. Y., Cheung, S. C., & Yiu, S. M. (2020). Metamorphic test-
ing: a new approach for generating next test cases. arXiv preprint
arXiv:2002.12543.

[8] Xie, X., Ho, J. W., Murphy, C., Kaiser, G., Xu, B., & Chen, T. Y. (2011).
Testing and validating machine learning classifiers by metamorphic
testing. Journal of Systems and Software, 84(4), 544-558.

[9] Zhou, Z. Q., & Sun, L. (2019). Metamorphic testing of driverless cars.
Communications of the ACM, 62(3), 61-67.

[10] Dwarakanath, A., Ahuja, M., Sikand, S., Rao, R. M., Bose, R. J. C.,
Dubash, N., & Podder, S. (2018, July). Identifying implementation bugs
in machine learning based image classifiers using metamorphic testing.
In Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis (pp. 118-128).

[11] Li, Z., Cui, Z., Liu, J., Zheng, L., & Liu, X. (2020, January). Testing
Neural Network Classifiers Based on Metamorphic Relations. In 2019 6th
International Conference on Dependable Systems and Their Applications
(DSA) (pp. 389-394). IEEE.

[12] Jia, Y., & Harman, M. (2010). An analysis and survey of the devel-
opment of mutation testing. IEEE transactions on software engineering,
37(5), 649-678.

[13] Witten, I. H., & Frank, E. (2002). Data mining: practical machine
learning tools and techniques with Java implementations. Acm Sigmod
Record, 31(1), 76-77.

[14] Pei, K., Cao, Y., Yang, J., & Jana, S. (2017, October). Deepxplore:
Automated whitebox testing of deep learning systems. In proceedings of
the 26th Symposium on Operating Systems Principles (pp. 1-18).

[15] John H. McDonald http://www.biostathandbook.com/small.html, last ac-
cessed: 15 Feb 2021

[16] Ramsey, F., & Schafer, D. (2012). The statistical sleuth: a course in
methods of data analysis. Cengage Learning.

[17] Python Software Foundation. 2013. MutPy 0.4.0.
https://pypi.python.org/pypi/ MutPy/0.4.0. [Online; accessed 15-
Jan-2018].

26

Authorized licensed use limited to: Montana State University Bozeman. Downloaded on September 08,2021 at 14:22:44 UTC from IEEE Xplore. Restrictions apply.

		2021-09-04T22:10:32-0400
	Preflight Ticket Signature

