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Abstract—Enhancing the trust of machine learning-based clas-
sifiers with large input spaces is a desirable goal; however, due
to high labeling costs and limited resources, this is a challenging
task. One solution is to use test input prioritization techniques
that aim to identify and label only the most effective test
instances. These prioritized test inputs can then be used with
some popular testing techniques e.g., Metamorphic testing (MT)
to test and uncover implementation bugs in computationally
complex machine learning classifiers that suffer from the oracle
problem. However, there are certain limitations involved with
this approach, (i) using a small number of prioritized test
inputs may not be enough to check the program correctness
over a large variety of input scenarios, and (ii) traditional MT
approaches become infeasible when the programs under test
exhibit a non-deterministic behavior during training e.g., Neural
Network-based classifiers. Therefore, instead of using MT for
testing purposes, we propose a metamorphic relation to solve
a data generation/labeling problem; that is, enhancing the test
inputs effectiveness by extending the prioritized test set with
new tests without incurring additional labeling costs. Further,
we leverage the prioritized test inputs (both source and follow-
up data sets) and propose a statistical hypothesis testing (for
detection) and machine learning-based approach (for prediction)
of faulty behavior in two other machine learning classifiers
(Neural Network-based Intrusion Detection Systems). In our case,
the problem is interesting in the sense that injected bugs represent
the high accuracy producing mutated program versions that
may be difficult to detect by a software developer. The results
indicate that (i) the proposed statistical hypothesis testing is able
to identify the induced buggy behavior, and (ii) Random Forest
outperforms and achieves the best performance over SVM and
k-NN algorithms.

Index Terms—Machine learning, Machine learning testing,
Statistical hypothesis testing, Neural networks, Prioritized inputs,
Metamorphic testing, Intrusion detection systems

I. INTRODUCTION

Machine Learning (ML) provides core functionality to
many critical application domains, such as bioinformatics,
network security, collaborative robots, and self-driving ve-
hicles. Developing high-quality ML models to solve real-
world classification, prediction, and clustering problems is
always desirable because a small bug in these critical high-
consequence applications can lead to disastrous consequences
and can pose serious threats to life and property [10] [11] [12].

Therefore, it is very important to verify their correctness before
deploying them in a production environment. However, the
computational complexity, large input space, and lack of a test
oracle raise serious challenges in order to verify their correct
functionality. Consequently, these applications end up in a
category of non-testable programs, also known as programs
suffering from the Oracle Problem [3].

From a quality assurance perspective, it is always desirable
to verify the correctness of ML-based classifiers over a large
range of test scenarios. However, the high cost of obtaining a
test oracle, a.k.a. labeling a large number of test instances,
makes it a resource-intensive and infeasible task. One of
the solutions proposed in the literature is to use test input
prioritization techniques that aim to identify and label only the
most effective test instances [16] [17]. However, concerns like,
whether the small number of prioritized test inputs are enough
to test the correctness of critical ML applications over a diverse
set of data, are unaddressed. We propose a Metamorphic
Relation (MR) that aims to target this data collection/labeling
problem by extending the prioritized test set with new tests
without incurring additional labeling costs. It thus allows the
software tester to check the program correctness over a diverse
set of input scenarios.

Metamorphic Testing (MT) is considered an effective testing
technique to alleviate the oracle problem in testing ML appli-
cations [4] [6] [7] [15]. MT is not only a testing technique
but can also be used to generate domain specific data using
valid transformations to the input data e.g., rotation, scaling,
reflection etc. At the heart of MT are MRs that are derived
from the necessary characteristics of the program under test.
Each MR is composed of a source test case and a follow-
up test case. A valid transformation performed on the source
test-case generates a new test case, known as a follow-up test
case. Instead of verifying the output for individual inputs, the
relation between the input and its associated output is used to
verify the program correctness. The MR is said to be violated
if the result of the source and follow-up test case does not
adhere to the relation specified in the corresponding MR. A
violation of a MR will indicate that there is some potential
bug in the system.

One of the challenges faced in applying tradition MT ap-978-1-6654-3545-1/21/$31.00 ©2021 IEEE



proach to test ML applications is when the program under test
exhibits a stochastic behavior in training e.g., Artificial Neural
Network (ANN) based classifiers (due to random initialization
of weights). For example, given the same inputs, the NN-
based application may produce slightly different output in each
run; thus rendering traditional MT techniques inadequate if
they rely on using the equality operator to check the relation
specified in the MR. One of the solutions proposed in the
literature (for getting deterministic results) is either to fix the
random seed(s) or initialize the network weights with the same
constant values [6] [7]. However, the proposed solution has
its own limitations i.e., it is only applicable in an environment
where either the random seeds or the weights can be fixed,
which is not always possible. Furthermore, even if somehow
the random seeds have successfully been fixed, it is not
guaranteed that we can obtain deterministic results on GPUs
because of inherent non-determinism introduced by NVidia
CUDA libraries [6]. Also, in practice, it may not be viable
for a software tester to identify and then fix the seeds in a
highly complex system internally using a large number of
third-party libraries, especially when some of the libraries do
not provide any option at all. To alleviate this problem, our
prior work focuses on proposing statistical measures for testing
deep neural network based applications in a non-deterministic
environment [9].

The above-highlighted limitations motivate us to propose an
approach that can not only be used to extend the prioritized
test set with new test inputs (using the proposed MR) but
can also leverage these inputs (both source and follow-up
test sets) to test NN-based classifiers (in both deterministic
and non-deterministic environments) using a combination of
statistical and ML techniques. The purpose of performing
statistical analysis is to check whether the difference between
the results produced by original and mutated program versions
is statistically significant. If so, the buggy behavior is said
to be detected. Next, we use this knowledge to build ML
classifier that can be used to predict whether, for the given
prioritized test inputs, the output (probability distribution over
classes) produced by an NN-based classifiers under test ex-
hibits a ‘buggy’ or ‘non-buggy’ behavior. These prioritized
test inputs can be a part of permanent test case repository
that the organization frequently uses to test the new release in
regression testing environment and reducing the overall cost
of software testing phase.

To show the effectiveness of the proposed approach, we
have worked with detecting and predicting buggy behavior
in two NN-based Intrusion Detection Systems (N-IDSs). The
following are the main contributions made in this paper:

• Mutants generation to obtain the faulty versions of the
program which give the same high accuracy as that of
the original program, hence difficult to identify the buggy
behavior induced by them.

• Instead of relying on a synthetic data set (generated
randomly) that may contain noise and missing values, we
propose an MR to generate a new set of prioritized data
without incurring additional labeling costs. Such MRs can

be very useful in a scenario when we do not have enough
test instances available but are still interested in verifying
the system correctness over a diverse set of data (other
than the data already available).

• Statistical analysis of probability scores over predicted
classes (predicted by original and mutated programs)
using a statistical hypothesis testing technique to check
whether the difference is significant. If so, the buggy
behavior is said to be successfully detected.

• Proposed an approach that takes advantage of ML tech-
niques to test and predict faults in NN-based classifiers
using prioritized test inputs.

• Conducted one more independent experiment to show that
addition of an informative metadata features can further
enhance the performance of proposed ML classifiers.

The rest of the paper is organized as follows. Section II
talks about the related work. Section III discusses the moti-
vation to use probability vectors/scores. Section IV presents
the proposed approach and the contribution made in this
paper. Section V discusses the experimentation and evaluation
performed. Section VI discusses the threats to validity and,
lastly, in Section VII, conclusions are drawn along with the
future work.

II. RELATED WORK

Testing ML applications is getting considerable attention in
the research community, however, couple of challenges make it
a harder task, i.e., (i) high labelling costs, and (ii) susceptibility
to the oracle problem due to large input space. Byun et al.
[16] focused on proposing a test prioritization technique to
reduce the cost associated with labeling the data instances.
They took advantage of the probability vectors (produced by
either softmax or sigmoid output layers in neural networks) and
proposed three sentiment measures (confidence,uncertainty,
and surprise) to prioritize the inputs that are more likely
to reveal faults in a trained model. Zhang et al. [17] used
probability vectors to prioritize the uncertain or sensitive
inputs that have the high potential to become adversarial
examples using small perturbations. Dwarakanath et al. [6]
proposed MT based approach to alleviate the oracle problem in
testing DNN based image classifiers but the proposed approach
is only applicable in an environment where the random seeds
can be fixed to get deterministic results.

Shaikh et al. [1] introduced ML-based classification models
(LibSVM and LinearLib) that use NASA dataset models to
foresee the faults in a software defect-prone model. Based on
comparative analysis performed, the results show that overall
LibSVM attains high accuracy and is more efficient than Lin-
earLib. Prabha et al., [2] first performed dataset dimensionality
reduction (using PCA) and then applied Random Forest, Naı̈ve
Bayes, SVM, and Neural Networks to predict software defects
that can help software developers to identify and correct a
program’s buggy code before deploying them in the actual
environment. It also allows the software development team to
prioritize and focus more on the modules that are problematic.
Sethi [5] proposed Artificial Neural Network (a feed-forward



back propagation model) to predict defects in twenty software
projects. It was found that the proposed model provides better
performance than the classic fuzzy-based approach. Nehi et
al., [8] took advantage of the history available in version
control systems to perform software defect prediction. The
authors used the code history information (e.g., bug reported
by the client, code defects determined, etc.) extracted from
several open-source projects and prepared a benchmark data
set. To show its usefulness, the data set is used to evaluate
the performance of different defect prediction approaches. The
authors applied Artificial Neural Networks, Random Forest, K-
Nearest Neighbor, Naı̈ve Bayes, and Support Vector Machine
and performed their evaluation using different measures e.g.,
Precision, Recall, F-measure, G-mean, and AUC. The results
show that Random Forest outperforms and has higher predic-
tive power in the identification of faults in the programs under
test.

It is important to mention that the available literature primar-
ily focuses on using the public data sets and harnessing ML
approaches in the prediction of faults in traditional software,
not specifically in ML applications. This makes it a potential
area for exploration and making for fruitful contributions; thus
we propose an approach that takes advantage of statistical and
ML techniques to detect and predict buggy behavior in ML
classifiers using prioritized test inputs.

III. MOTIVATION TO USE PROBABILITY VECTORS /
SCORES

In this study, we took an advantage of using the probability
vectors produced by the output layer in NN-based classifiers
under test. Therefore, we provide a brief motivation regarding
why we think that probability vectors contain additional in-
formation about the computation performed in an NN-based
application and can be used for detecting and predicting buggy
behavior in the programs under test. The probability vectors
have been used to prioritize test inputs that are more likely to
uncover faulty behavior in deep neural networks so that efforts
can focus only on labeling the prioritized inputs [16]. These
vectors help in deriving sentiment-based metrics (confidence,
uncertainty, and surprise) that capture extra information about
the computation performed inside deep neural networks on
the given data input(s). The higher priority is given to the
data inputs that are more uncertain or surprising (i.e., the
inputs for which the probability distribution is spread out)
and likely to reveal the faulty behavior in the trained model.
The probability vectors have also been used to detect high-
noise sensitive inputs that have a high potential to become
adversarial examples, such that if a small perturbation is added
to them, they can fool the DNN [17]. Alternatively, low noise-
sensitive inputs will require a significant perturbation that
will easily be detected by defensive models and hence is not
effective.

Knowing that probability vectors have been used in solving
the test input prioritization problem, we are interested in
exploring their usefulness in the detection of buggy behavior

and the development of ML models for its prediction in NN-
based classifiers.

IV. PROPOSED APPROACH

This section discusses the proposed approach used for
detection (using statistical hypothesis testing) and prediction
(using ML-based approach) of implementation bugs in two
NN-based classifiers under test, as shown in Fig. 1.

In order to detect and predict defects in NN-based classifiers
under test, we took advantage of multiple techniques namely,
(i) random sampling method [13] for selection of prioritized
test inputs (ii) MR: applying valid transformation to the
source/original prioritized inputs to generate new (follow-up)
prioritized inputs without incurring additional labeling costs.
(iii) Mutants generation: injecting high accuracy producing
mutants into the NN-based classifiers under test, so that for
the prioritized test inputs (both source and follow-up), the
behavior of non-buggy/original and mutated program versions
can be recorded and analyzed, (iv) Statistical hypothesis
testing: to check statistically, whether the difference in the
results produced by multiple program versions is statistically
significant. If so, the buggy behavior is said to be detected,
and (v) ML: automatic detection of bugs by leveraging ML
techniques to learn from this difference and to predict whether,
for the same prioritized test inputs, the new release under test
shows the buggy or non-buggy behavior.

The effectiveness of the proposed approach is shown by
testing two NN-based Network Intrusion Detection Systems
(N-IDSs). The details for each classifier are shown in Table I.

• Application#1: This application is a shallow NN-based
N-IDS (having one hidden layer, an input layer, and an
output layer) that deals with a multi-class classification
problem in an Open Stack environment and predicts
whether the request is normal, by an attacker, or by a
victim.

• Application#2: This application is a deep neural
network-based N-IDS (having three hidden layers, an
input layer, and an output layer) that deals with a binary
class classification problem and predicts whether the
network request is malicious or benign.

TABLE I
CLASSIFIERS UNDER TEST ARCHITECTURE

Classifiers Under
Test

No of
Layers

Hidden Layer(s)
Type

Output Layer

Application#1 3 Fully Connected
+ ReLU

Softmax

Application#2 5 Fully Connected
+ sigmoid

Sigmoid

A. Step 1: Mutants Generation

For the development of a machine learning model, a data
set containing information about the buggy/mutated and non-
buggy/original program versions is needed. So, the first step
is to obtain the buggy code for the classifiers under test.
As we do not have access to actual buggy versions of the



Fig. 1. Proposed Approach

classifiers under test, we took advantage of mutants genera-
tion process used in mutation testing technique [19], that is
considered an effective approach in simulating the real faults
made by programmers [18]. We injected 4 valid mutants into
the programs under test that give the same high accuracy
as that of the original program. These mutants belong to
the category of CRP-constant replacement type mutants. The
behavior recorded for all these mutated versions is treated as
buggy behavior. As shown in Table II, it can be seen that
these mutated versions achieve the same high accuracy as that
of the original program, knowing the fact that they represent
the faulty implementations. The goal is to apply statistical
and ML techniques for the identification of buggy behavior
induced by such high accuracy producing faulty programs;
which otherwise may not be possible for software engineers
who primarily focus on using accuracy measure to develop
accurate models. Fig. 2 represents one of the injected mutants
to simulate the mistake made by a software developer. It will
cause the model to learn from a lesser number of informative
features but it has been observed that this mutated model has

produced almost the same high accuracy as that of the original
program. The details of other mutants, the python code for the
NN-based classifiers under test, the data used for training the
models, the R-code for performing statistical analysis, and the
proposed ML models’ Python code, are all open-source and
available online1.

TABLE II
ORIGINAL AND MUTATED VERSIONS AVERAGE ACCURACY (%)

Application Original Mutant#1 Mutant#2 Mutant#3 Mutant#4
App#1 98.9% 98.3% 98.9% N/A N/A
App#2 92.5% N/A N/A 92.5% 92.9%

Fig. 2. Mutant#4: Original Code (top) and Mutant (below).

B. Step 2: Metamorphic Relation (MR-1) For New Test Inputs
Generation- Shifting the features by constant k

Let Xtrain denote the training data and Xtest denote the
prioritized test data. In order to select the prioritized test
instances, we have used the random sampling method [13].
After training the NN classifier, suppose it classifies a specific
test instance xitest as belonging to class ‘a’ (known as source
execution). MR-1 says that if the features in both the training
and test data are shifted by constant k; where k = 0.3, the
output for the test instance xitest should remain the same i.e.,
class ‘a’ (known as the follow-up execution). Such transfor-
mation will not change the existing relationship between the
data points, and a correct NN model should learn from the
relationship among the data points, not from their position in
the space [6]. The follow-up transformation will help in the
generation of new ‘m’ prioritized follow-up instances from the
given ‘n’ number of prioritized original/source data instances,
thus extending the prioritized test set size from ‘n’ to ‘n+m’.

The proposed MR1 will facilitate in enhancing the testing
phase effectiveness by doubling the size of prioritized test
inputs, so that the behavior of NN-classifiers under test can
be observed over a diverse set of data (both source and
follow-up data). Another advantage of the proposed MR is
that it also helps in removing the labeling costs for the newly
generated test instances (follow-up data instances) that might
be expensive in some cases.

C. Step 3: Data set Preparation

Due to the stochastic nature of NN-based classifiers, a single
run may not be enough to verify their correctness, therefore,
we obtain the results over multiple iterations. In this step,
we record the results (probability distribution over classes

1https://github.com/matifkhattak/MLTesting/tree/master



predicted by original and mutated versions) and metadata
information of NN-based classifiers under test separately for
both the prioritized source and follow-up test instances. As
shown in Fig. 1, each instance in the prepared data set is
comprised of a prioritized test instance features, the probability
scores over predicted classes, the trained NN Model’s metadata
information, and the class label (Buggy, Non-Buggy). As
mentioned earlier, a correct NN classifier (retrained on the
same data) may produce slightly different results for the given
test instances; which does not necessarily mean that there is
a bug in the system. Those multiple trained NN classifiers
(if correct) may have different initialization points but will
have almost the same convergence points [6]. By utilizing this
property of NN classifiers, we obtain the results for prioritized
test inputs over multiple iterations, whereas each iteration
denotes a trained NN classifier. This allows us to capture the
probability distribution for each prioritized test instance for a
sufficient number of times that have been predicted by both
the mutated and original NN-based classifiers under test.

D. Step 4: Statistical Hypothesis Testing

Once the probability scores (over predicted classes) for
both the original/non-buggy and mutated/buggy programs are
obtained, we compare the probability scores for each of the
classi (produced by the mutated version) with the probability
scores of the same classj (produced by the original version).
This is important because before developing the ML model, it
first needs to be confirmed that for the given prioritized test in-
puts, the difference between the probability distributions over
predicted classes for both types of programs is statistically
significant, otherwise, there is no information available for the
ML model to distinguish the buggy program version’s behavior
from the non-buggy one. It is important to mention that the
proposed approach is not meant to identify the individual
injected mutants, instead we are interested to identify whether
in general, the program behavior can be characterized as buggy
or not. This is the reason that we treat the behavior produced
by all the mutated versions as ‘buggy’ and formulate this
problem as statistically comparing the two samples (buggy
vs non-buggy). The following are the Null and Alternative
hypothesis.

• H0: There is no difference in the probability scores
predicted by the original and the mutated programs.

• Ha: The probability scores predicted by the mutated
programs are different from the original program.

After applying the test-statistic, the p-value obtained is com-
pared with the set standard significance level (α = 0.05). If it
is less than the value of α, H0 is rejected. The rejection of H0

would suggest that (i) the difference between two samples is
significant, showing that there is likely a bug in the system, and
(ii) the probability scores do have some information available
to distinguish both types of programs (buggy and non-buggy).

E. Step 5: Data Cleaning

It is possible that for multiple iterations the same probability
distribution over classes is predicted for a specific test instance,

which will result in the addition of duplicate observations in
the data set. Such duplicate instances may bias the results of
the ML models and can lead to incorrect conclusions. There-
fore, a data cleaning process is an essential step in making
sure that the observations are unique and the results produced
by the models are unbiased. Thus, we performed the data pre-
processing step and removed the duplicate observations before
training the models.

F. Step 6: Proposed Machine Learning Based Approach

The last step is to harness ML techniques for predicting
buggy behavior in NN-based classifiers using prioritized test
inputs. For this purpose, we select three widely used ML
algorithms in the literature (i.e., Random Forest, SVM, and
k-NN) to extract the hidden knowledge captured in the data
set, as shown in Fig. 1. Due to the space limit, we do not
discuss them here but we refer the interested readers to read
[14] for details. The data set is split into 80%-20%, where
80% is used for training purposes and 20% is used for testing.
We use the k-fold cross-validated grid-search method to find
the best hyperparameter settings for the classifiers. The best
classifier (with optimal hyperparameter settings) is identified
and is used as a final model to predict the output for the
test data. In the end, a performance report is generated for
each of the classifiers, and results are compared using the
evaluation metrics e.g., accuracy, precision, recall, and F1-
score (harmonic mean of precision and recall) [14], to select
the best model having higher prediction power.

V. EXPERIMENTATION AND EVALUATION

By taking into account our proposed approach, we derived
the following three Research Questions (RQs):

• RQ1: Is the proposed statistical hypothesis testing tech-
nique effective in detection of buggy behavior in the
classifiers under test?

• RQ2: Is the proposed ML-based approach effective and
which ML model is more suitable for the problem under
investigation?

• RQ3: Does the addition of metadata features increase the
performance of proposed models?

A faulty new program release giving the same high accuracy
as that of the original/correct program may classify a test
instance with the same class label ‘a’ that was predicted by
the original/correct program but may affect the probability
distribution over the predicted classes. As an example, Fig.
3 shows that both the original and high accuracy producing
mutated programs have predicted the same class label ‘attack’
but the probability distributions over predicted classes have
significantly changed for the mutated version. Our experiment
shows that unlike predicted class labels, the probability scores
provide more granular details and can be analyzed statistically
to detect the buggy behavior induced by such high accuracy
producing mutated program versions. In total, we injected 4
valid mutants into the programs under test and performed
multiple iterations to obtain the results for 200 prioritized test
instances (100 source and 100 follow-up instances), which



resulted in a total of 8000 data instances (50% of the data
is labeled as buggy and the other 50% is labeled as non-
buggy). The data set for App#1 contains 37 features, whereas,
for App#2, it contains 46 features.

RQ1: Is the proposed statistical hypothesis testing tech-
nique effective in detection of buggy behavior (produced by
the high accuracy producing mutated program versions) in
the classifiers under test?

Before training the ML model, it is important to check
whether the probability distribution over predicted classes for
both types of programs (original and mutated) is statistically
significant. Therefore, we perform statistical hypothesis testing
to check whether, for the given prioritized test inputs, the
injected mutants have significantly changed the probability dis-
tributions over predicted classes. Comparing the distributions
of two classes (e.g., classi probability scores produced by
mutated code vs the same classj probability scores produced
by the original code) can be treated as a problem of statistically
comparing two samples. During a single run, the same model
is used for predictions for multiple prioritized test inputs, so
they all are connected to the same model. For this reason,
applying a paired t-Test will be an appropriate choice. How-
ever, during analysis, we found that the normality assumption
was badly violated, hence applying the paired t-Test, although
known to be a robust test, may not provide reliable results.
For example, Fig. 4 provides evidence that the normality
assumption is violated for one of the classes (because of large
tails at both ends). For this reason, the Wilcoxon signed-rank
test is applied, which is a non-parametric test used for paired
data and does not rely on the satisfiability of the normality
assumption [13].

Fig. 3. Final predicted output (i.e., attack) is same but probability distributions
over predicted classes have significantly changed for the mutated program

After performing the statistical analysis on the probability
distributions over predicted classes, results in Table III and
Table IV show that we have strong evidence to reject H0

for all the classes (except for class2 in App#1) for both
the classifiers under test (p-value < 0.05). Rejection of H0

means that the difference is significant and there is likely
some bug in the system, hence the buggy behavior is said to

Fig. 4. Q-Q plot

be detected. It is important to note that the mutated program
versions under investigation produce the same high accuracy
as the original program, knowing the fact that they represent
the faulty implementation of the programs under test. Such
mutants may otherwise be difficult to detect and can mislead if
the software developers solely rely on observing the accuracy
of the ML model in a new release. Therefore, we conclude
that high accuracy does not necessarily mean that the pro-
gram is correct/free of bugs, and the proposed statistical
hypothesis testing technique is effective in the detection of
buggy behavior produced by such high accuracy producing
program versions, which answers RQ1.

TABLE III
WILCOXON SIGNED RANK TEST RESULTS FOR APP#1 (α = 0.05)

Class Label p-value Reject H0 Buggy behavior De-
tected?

Class1 (Normal) < 0.0001 Yes Yes
Class2 (Attacker) 0.63 No No
Class3 (Victim) < 0.0001 Yes Yes

TABLE IV
WILCOXON SIGNED RANK TEST RESULTS FOR APP#2 (α = 0.05)

Class Label p-value Reject H0 Buggy behavior De-
tected?

Class1 (Attack) < 0.0001 Yes Yes
Class2 (Benign) < 0.0001 Yes Yes

RQ2: Is the proposed ML-based approach effective and
which ML model is more suitable for the problem under
investigation?

After answering RQ#1 and finding that the difference be-
tween the probability distribution over predicted classes is
statistically significant, the next step is to use this knowledge
for developing the ML models, so that the ‘buggy’ and ‘non-
buggy’ behavior for the prioritized test inputs can be learned
and then using this knowledge to predict the faulty behavior in
the new release (using the same prioritized test inputs). Table
V and Table VI shows the performance of Random Forest,



SVM (with RBF kernel) and k-NN algorithms on App#1 and
App#2 data sets respectively. We used a fixed random seed to
make sure that the data set is split in the same way for all the
algorithms, so that, every algorithm is trained and evaluated
on the same data instances. The evaluation metrics used to
evaluate the performance of models include accuracy, preci-
sion, recall, and the F1-score. The results obtained show that
for both the classifiers under test, random forest outperforms,
having higher scores for all four measures. For App#1, SVM
and k-NN provide satisfactory performance but not very well
for App#2. Apart from that, SVM attains a lower F1-score than
k-NN for App#2 but performs better than k-NN for App#1.
We also observed that for the given data set, even the best
identified k-NN model (using 10-fold cross-validated grid-
search method) is over-fitting, thus may not be an appropriate
choice for predicting buggy behavior in App#2. Based on
the results shown in Table V and Table VI, we conclude
that overall, the proposed ML models have performed well
in extracting the hidden patterns of ‘buggy’ and ‘non-buggy’
program versions. Furthermore, among the proposed models,
random forest outperforms and attains higher performance
(high accuracy and F1-score) than SVM and k-NN. Hence, it
answers our RQ2 that the proposed ML based approach is
effective in predicting the faulty behavior in the programs
under test (especially for App#1), and among the proposed
models, Random Forest achieves the best performance for
both the NN based N-IDSs under test.

TABLE V
PERFORMANCE REPORT ON APP#1 DATA SET

Classifier Accuracy Precision Recall F1
SVM 0.87 0.86 0.88 0.87
Random Forest 0.93 ± 0.0 0.93 ± 0.0 0.93 ±

0.001
0.93 ±
0.0

k-NN 0.84 0.83 0.86 0.85

TABLE VI
PERFORMANCE REPORT ON APP#2 DATA SET

Classifier Accuracy Precision Recall F1
SVM 0.60 0.67 0.47 0.55
Random Forest 0.83 ±

0.004
0.86 ±
0.008

0.81 ±
0.008

0.83 ±
0.005

k-NN 0.59 0.62 0.54 0.58

RQ3: Does the addition of metadata features increase the
performance of proposed ML models?

The results in Table VI show that for App#2, the SVM,
and k-NN classifiers do not achieve very good performance.
This motivates us to conduct one more experiment and to add
metadata features extracted during training of both types of
programs (original and mutated ones), expecting the addition
of new informative features to increase the performance of
models. The two metadata features extracted include ‘training
time taken in minutes’, and ‘training time taken in seconds’.
We are interested in observing whether the addition of meta-
data features can further discriminate both classes (high accu-
racy producing buggy code and non-buggy code) and whether

they can help to enhance the ML models’ performance. This
model can be used in a scenario where the developer has sub-
mitted the change documentation mentioning that the change
is neither related to enhancing/reducing the model complexity
nor significantly expanding the training set size. An example
can be: changing the Min-Max Normalization method to z-
Score Normalization. Such change should not have a sig-
nificant impact on either enhancing or reducing the model’s
training time. However, if the model mistakenly becomes
overly or insufficiently complex, it will have an impact on the
model training time which can be a useful feature in capturing
the information about the trained NN-based classifier under
test. Based on the results obtained on a new data set having
metadata features, if the results in Table VII are compared
with Table VI, it can be seen that the performance of all the
models has significantly improved. In comparison to k-NN,
SVM attains high accuracy and precision but has a low recall
value. However, random forest still outperforms and achieves
the best predictive power. Therefore, we conclude that the
addition of metadata features is useful in enhancing the
ML models’ performance and can play a handy role in
developing accurate ML models, which answers RQ#3.

TABLE VII
PERFORMANCE REPORT ON APP#2 DATA SET AFTER ADDING METADATA

FEATURES

Classifier Accuracy Precision Recall F1
SVM 0.76 0.96 0.54 0.69
Random Forest 0.90 ± 0.0 0.96 ± 0.0 0.93 ±

0.01
0.94 ±
0.01

k-NN 0.70 0.72 0.65 0.68

VI. THREATS TO VALIDITY

In this study, we do not aim to identify the individual
injected mutants, instead we are interested in identifying
whether, in general, the program behavior can be characterized
as buggy or not. This is the reason that we treat the behavior
produced by all the mutated versions as ‘buggy’ and by
the original program as ’non-buggy’. The proposed approach
serves its purpose well in meeting this objective. Nevertheless,
we identify the following threats to validity:

• Although we propose only a single MR, it worked suffi-
ciently well to show the applicability of the MT approach,
(i) in extending the prioritized test set with additional tests
without incurring additional labeling costs, and (ii) using
the prioritized test inputs (both source and follow-up data)
to record and observe the behavior of the classifiers under
test over a diverse set of inputs.

• Due to time and resource constraints, we are only able
to find and inject 4 valid high accuracy producing mu-
tants in the NN-based N-IDSs under test. Although the
number of mutants is small, it fulfills the objective and
applicability of the proposed approach in detecting their
buggy behavior that may otherwise be difficult to detect
by a software developer. Second, the main reason to
use only the high accuracy producing mutants is that



when the software developer sees the low accuracy of
the model, the developer gets an alert indicating that
some problem in the model requires further investigation.
However, when the model produces high accuracy, that
may be skeptical and mislead the developer, assuming
that everything is fine and model is ready to be deployed
in the production environment.

• It can be argued that some of the mutants will produce
a different probability class distribution than the origi-
nal/correct program version, and hence it can be easy
to identify them. This poses a potential threat to the
construct validity of this study, however, this observation
is subjective and is error prone. Also, it may not hold true
without providing some solid statistical evidence. Second,
in order to automate the testing process, there must exist
a systematic approach to automatically detect the buggy
behavior in such high accuracy producing faulty program
versions.

• The NN-based N-IDSs under test belong to the class of
fully connected neural networks, thus generalizing the
results to other types of DNNs e.g. CNNs, RNNs, would
be speculative and reveals a threat to external validity.

VII. CONCLUSION AND FUTURE WORK

The high labeling cost associated with data instances and
testing computationally complex machine learning classi-
fiers that have stochastic behavior are both challenging and
resource-intensive tasks. To address the first challenge, we
propose a Metamorphic Relation (MR) that effectively solves
the data generation/labeling problem without any need to
label the new test instances manually. To target the second
challenge, we propose a statistical hypothesis testing (for de-
tection) and machine learning-based approach (for prediction)
of faulty behavior in NN-based classifiers using the prioritized
test inputs. The proposed statistical and ML-based approach is
applicable for testing NN-based classifiers in an environment
where the random seeds can not be fixed for getting deter-
ministic results and checking the program correctness. The
usefulness of our proposed approach is shown in detecting and
predicting buggy behavior in two NN-based network intrusion
detection systems i.e., one based on Shallow NN, whereas the
other is a DNN-based classifier. The results obtained show
that, (i) the proposed statistical hypothesis testing is effective
in detecting the buggy behavior, and (ii) among the proposed
ML models, random forest outperforms and achieves better
performance than SVM and k-NN algorithms.

In this paper, we propose a sample MR to show the
effectiveness of MT in solving the data generation/labeling
problem. In future research work, we intend to propose
more effective MRs that can be used to generate additional
representative data; thus reducing the labeling cost further
and enabling organizations to check program correctness on
large input scenarios for enhancing their trust. It will also be
interesting to explore what other types of useful features can
be added to enhance the performance of ML models and to
show the applicability of the proposed approach in general.

The results obtained in this preliminary study are encouraging,
and a comprehensive study on applying the proposed approach
on a larger number of mutants is in progress.
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