This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3103121, IEEE Software

Department: Head
Editor: Name, xxxx@email

Technical and Non-Technical
Prioritization Schema for
Technical Debt: Voice of
TD-Experienced Practitioners

Vladimir Mandié
University of Novi Sad, Serbia

Nebojsa Tausan
INFORA Research Group, Serbia

Robert Ramac
University of Novi Sad, Serbia

Savio Freire
Federal University of Bahia, Brazil

Nicolli Rios
Federal University of Rio de Janeiro, Brazil

Boris Pérez
Universidad de Los Andes, Colombia

Camilo Castellanos
Universidad de Los Andes, Colombia

Dario Correal
Universidad de Los Andes, Colombia

Alexia Pacheco
University of Costa Rica, Costa Rica

Gustavo Lopez
University of Costa Rica, Costa Rica

Clemente Izurieta
Montana State University, Montana, USA

Davide Falessi
University of Rome “Tor Vergata,” ltaly

Carolyn Seaman
University of Maryland Baltimore County, Maryland, USA

Rodrigo Spinola
Salvador University, Brazil

X/X 2021 1

0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee4orf/publicationsﬁstandards/publications/rights/index:html for more information.
Authorized licensed use limited to: Montana State University Bozeman. Downloaded on August 11,2021 at 14:08:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3103121, IEEE Software

2

0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Abstract—Technical Debt (TD) can be injected at any stage of software development. Once
injected, TD rarely remains contained and spreads across other stages causing various
problems. During software development, technical and non-technical roles need to cooperate
and communicate complex issues to implement optimal solutions. This article presents a model
for conceptualizing TD causes, effects, payment practices, and payment avoidance reasons with
a prioritization schema for technical and non-technical roles. The model is based on the analysis
of 168 responses from TD-experienced practitioners and aims to support: (a)
communication—by highlighting the similarities and differences between two perspectives, and
(b) complementing the existing TD management and prioritization approaches with a conceptual
model that takes into consideration the contextual factors and presents them in a form of

prioritized lists of the most significant factors.

B IN THE LAST DECADE, technical debt (TD)
research advanced from the notion of a metaphor
toward specific engineering practices and tools
for identifying, monitoring, and remedying TD
issues. Many of these advances are related to
the most obvious software artifact—source code.
However, nowadays we know that TD can be
injected into almost any artifact and during any
stage of software development leading to different
flavors of technical debt—T7D types [1], [2]—e.g.,
code, architecture, design, documentation, test,
process, or people debt. This is understandable
since software development is a collaborative
effort of practitioners working on and deciding
about a number of issues, which may be closer
to the source code artifact, thus more technical, or
more distant from it, i.e., non-technical. All those
decisions impact the creation of the product and
consequently may lead to the creation of technical
debt [2].

The importance of the technical and non-
technical perspectives, although apparent, is still
not fully comprehended when it comes to rea-
soning about TD. In a way, it is easy to imagine
situations when due to the misalignment of tech-
nical and non-technical priorities, sub-optimal
decisions are made, resulting with the injection
of new TD. After all, the introduction of the
metaphor was motivated with an emerging need
of communicating important technical concepts
(e.g., refactoring) to the non-technical stakehold-
ers [3].

An important feature of the TD phenomenon,
rooted in its nature, is the inherent temporal delay
of TD effects manifestations. Therefore, the most
valuable lessons to learn are from practitioners
who have been actively involved with managing
TD.

© 2021 IEEE

Published by the IEEE Computer Society

In this article, we focus on TD-experienced
practitioners, and how they conceptualize key TD
constructs. We used a family of surveys (see side
box A) to collect feedback from industry experts.
The most notable features of this report include:

e Analysis of 168 responses from practitioners
who had experiences with managing TD, of
those 74% having a technical role and 26% a
non-technical role.

e Presentation of a model for conceptualizing
TD causes, effects, payment practices and
payment avoidance reasons with prioritization
schemas for technical and non-technical roles.
In total, 25 high-priority factors are extracted
and explained.

e Analysis of the alignment between two per-
spectives. Data indicates a high level of align-
ment between technical and non-technical per-
spectives of TD causes and payment practices
while the perspectives of TD effects and avoid-
ance reasons are significantly less aligned.

Findings presented in this report are different
from and complement the majority of TD man-
agement approaches that are focused on identi-
fication, prioritization, monitoring and mitigation
of TD infected software artifacts [1]. We provide
a conceptual model that takes into consideration
the contextual factors and presents them in a
form of prioritized lists of the most significant
factors. Practitioners can utilize the findings and
information presented graphically (Figure 1) for
the purpose of coping with contextual factors
surrounding the TD management process.

UBIQUITOUS AWARENESS ABOUT
TECHNICAL DEBT

Ward Cunningham introduced the TD
metaphor in the 1990s by making an analogy

IEEE Software

Authorized licensed use limited to: Montana State University Bozeman. Downloaded on August 11,202f at 14:08:00 UTC from IEEE Xplore. Restrictions apply.

between internal software quality aspects and
financial debt. While the metaphor is easy
to comprehend, the underlying phenomenon
remains elusive, multifaceted, and pervasive. For
many years, different aspects of internal software
quality were studied under different names [4]:
software maintenance, evolution, aging, decay,
re-engineering, sustainability, and so on. Later, it
became clear that all those aspects are addressing
the same phenomenon that is aptly described as
technical debt [5].

Years of TD research and practice marked sig-
nificant changes in ways how the industry deals
with the TD phenomenon. Now, we understand
that a more holistic approach is needed, that
various code analysis tools are useful, and that
context is a major factor when assessing and
prioritizing TD [1], [6].

However, undeniably the single most impor-
tant achievement is the increased awareness about
TD within industry practitioners. In our research,
we observed that seven out of ten practitioners
are aware of TD and its consequences (see side
box A). Even though some of them are not
using sophisticated tools or techniques for TD
management, the existing awareness about TD is
encouraging.

CONCEPTUALIZING THE ELUSIVENESS
OF THE TD PHENOMENON AND THE
INSIGHTD SURVEY

The nature of the TD phenomenon is elusive
and often tacit, which represents a challenge
not only for research, but also for the industry.
Therefore, we used a survey instrument (see side
box A) that is designed using a few constructs
understandable to various roles involved with
software development. Those constructs are TD
cause, TD effect, TD payment practice, and TD
payment avoidance reason.

Preconditions that lead to the injection of
TD are modeled as causes. For example, some
often cited causes are lack of time or lack of
resources [1], [2]. Note that causes stand for the
stakeholders’ comprehension of triggers that can
lead to biased decisions toward TD.

Manifestations of TD are commonly known
as effects or symptoms. Cognition about effects
helps stakeholders to reason about potential prob-
lems that can occur as consequences of injected

X/X 2021

debt. Such reasoning about TD determines further
actions regarding debt removal.

Although it is hard to quantify the impact of
negative effects, some studies provide estimates
of that impact, e.g., between 2USD and 20USD
per line of source code of TD [7], or 25% of
development effort is spent on TD caused issues
[8].

Once TD effects become visible, a decision
needs to be made whether to pay, i.e., to reme-
diate, the effects, or to accept them and to avoid
any corrective actions due to objective reasons.

PRIORITIZATION SCHEMA FOR TD
CONSTRUCTS

There is a multitude of factors that lead to
favorable situations for TD injection, as well as
many factors that impact a decision to remediate
the injected debt or to accept it. Some factors are
unique and very specific, while others can occur
in different project contexts. By prioritizing TD
constructs, we extract more common factors that
represent generalizable knowledge about the TD
phenomenon.

Furthermore, comparing technical and non-
technical prioritization schemas gives us insight
into the level of alignment of those two groups’
perspectives regarding identified factors. Conse-
quently, it is expected that better alignment leads
to better communication with less friction be-
tween groups.

Figure 1 depicts the process of injecting and
handling the injected TD. Prior to the injection
of TD, potential causes can build-up a situation
that results with newly created TD. Ideally, causes
can be recognized before debt injection. This
would require active monitoring of causes, by all
involved practitioners. From Figure 1, practition-
ers can be informed about the most significant
causes, either from technical or non-technical
perspectives. The priorities indicate which causes
are more serious with respect to TD injection.

Once TD is present in the project, a number of
symptoms can be identified. Note that symptoms
or effects may be considered as an indication
of a present TD. Special attention is advised for
effects with higher priorities. According to TD-
experienced practitioners, higher priority effects
indicate a higher probability of having TD in the
project. The effects prioritization schema can be

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3103121, IEEE Software

3

0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Montana State University Bozeman. Downloaded on August 11,202f at 14:08:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3103121, IEEE Software

Department Head

©
EE’ ist @ 655% (1)Deadiine 2= ONreer] [hbeedie TD causes
] i (2) Lack of technical
B} (2) Lack of technical ond W 544% ¢
< 1st A 6.55% o v knowledge
F o0 A sos (9Nonadoptonof good 3rd A 500% (3)Inappropriate planning Potential causes
E practices sn W 471 (@) Notefective project \
= vo— .
S (4) Not effective project management -
E 3d A 4.36% TR - I PRIORITIZATION OF
0.5 o 0.9 Sth A 4.41% (5) Focus on nroducmg more CAUSES
3rd A 436% (5)Pressure at the expense of quality A

[A certain period of time defined by the team, project manager and/or “The rush of managers (customers) that want to
customer to deliver a determined activity, feature, or product. receive something working as soon as possible”.

Lack of technical knowledge Refers to the unfamiliarity with any activity or artifact of the project. “Lack of knowledge of the team in tests”. Noriechnie Tetnical
74 Inappropriate planning Refers to problems in project planning. “Deficiency in project planning (disorganization)”. List Li
1}
a 5 = Refers to the non-use of good practices that would facilitate the q o
=
£ Lot il el accomplishment and maintenance of activities in the project. R ST D CE R TS The most significant
g Not effective project Refers toi during project “Lack of understanding of managers”. causes

Focus on producing more atthe Refers to focusing almost exclusively on producing more and more and “Choice to forego quality controls in favor of speed to
expense of quality disregarding the quality of the produced items. delivery”

2

Occurs when there Is high pressure on team members to meet
deadlines and speed up deliveries.

— — — TDinjection |— — —
EFrecTs ks
1.

Pressure “Customer pressure to accelerate the project”.

©
E} 1st A 9.83% (1) Financial loss 1st A 9.20% (1) Low maintainability
[*]
N 20 4 809% (2)Rework 2nd A 800% (2) Delivery delay
g 3rd . 7.40% (3) Low external quality TD EffeCt'S
8 30 @ 7.51% (3)Lowexternal quality
4th \ 500% (4)Financial loss Visible effects
3d W 751% (4)Lowmaintainability A /

05 09 o
4 W 578% (5)Delivery delay P st A 440% (5)Low performance PRIORITIZATION OF
FFECTS

Encompasses problems that occur during software maintenance

Low maintainability activities, such as increased effort to fix bugs as well as limitation in “Extremely difficult maintenance and evolution”.
system evolution.
e Occurs when a company has financial losses due to issues in “Decrease of profitability because of the extremely
9 software development. high costs to keep the product in the market”. Nortechinica Technioall
I Delivery delay Non-fulfiliment of the deadlines agreed with the customer. “Six months delay in project delivery”. List List
= = = = =
Refers to redoing something that should have been done following a The increasing rework that will be needed when TD is
© PPy
3 (e quality standard. resolved”. The most significant
e Refers to any aspect that reduces the quality of an artifact (including “Low quality of what was offered known and effects
G errors and known defects that are not fixed). uncorrected defect”. NO
Refers to issues in reaching performance requirements of the software “After application growth, performance has become WHY?

Low performance

(due to the degraded internal quality of the software). unsustainable and refactoring was inevitable”. P A
aymen
- echnical priorities PRACTICES Technical priorities decision
E, ist @2333% (1)Code Refactoring by st @28.41% (1) Code refactoring
? 2nd A 1000% (2)Usingshortfeedback S — 2nd A 7.95% Lﬂi'aﬁzﬁ"g G Potential practices
E, LIS o : for debt payment HOW?
B 2nd A 10.00% (3) Prioritizing TD items RBO 3d W 682% (3)Prioritizing TD items
1] .
= (4) Investing effort on TD 3rd 6.82% (4 Investing effort on TD Practices
[l ¢ A1000% o imentactiities v repayment activities
= Dme—————
a
2nd A 10.00% (5) Design refactoring 0.5 P 0.9 ath W 5.68% (5) Design refactoring
PRIORITIZATION OF
) Refers to the process of restructuring code without changing the “IL was fixed, code was refactored and greatly PRACTICIES
ErifEiEeiy functionality. simplified.” A
:\;ﬁﬁng Effort on Testing Refers to foousing efforts on various testing activities in Order to deteot .yl
vities bugs and later rework.
Using short feedback iterations ?‘;"a’z:’ ;ﬁ‘;’;ﬂ"ﬁﬁﬁ'ﬁ: time It takes to get feedback on various ftems .\, gonaroube for quick feedback.” — —
. jon-technical echnical
y— » 2 " List List.
Prioritizing TD ltems Ref;’z ;‘: G D G D S T D R et 7 “Prioritize TD items over business requirements.”
by The most significant
Investing effort on TD repayment R “Bugathon and coverathon days are held to eliminate practices
activities Refers to focusing activities on TD repayment. technical debt.”
“After bad design in terms of Sprint MVC integration TDiremoval
) Restructuring the design in order to better implement the overall was discovered it was addressed by the new architect
Deslzylietanto g architecture. who spent significant time to redesign and re-
implement the integration.”
Non-technical priorities REASONS Technical priorities E‘—
easons

3rd A 10.00% (4)Risk for the project

PRIORITIZATION OF
ard 'V 1346% (4)Cost REASONS

©
= o -

o 1t A 2000% (1) Lack of organizational 1t A 25.00% @) ,I:ocu,mg T

] interest goals ,

z 1t A DR e Payment avoidance

c t 20.00% (2)Cost izati

§ 2nd W 17.31% o reasons

© .

s 2nd @ 15.00% (3) Lack of time 1 v
s

=

a

oy 1000% (.r;)a Focusing on short term 05 3) R [m— A
T —— Refers to focusing on short term wins and (un)intentionally ignoring long *If phase 2 funding happens it will have to be
term effects of TD. addressed.
Py " = T~ Non-technical Technical
Lack of organizational interest ﬁ:;fn':’:‘z ghel Ryl Bleckol oM DN vision from management to tackle the T item.” | List List |
[l cost Refers to the organization not understanding the cost benefit of repaying “The cost of switching is too high to have a hand full of The most significant
%’_ . better features. * reasons
£ z
(5] Lockoftime Refers to the lack of time that is needed to repay the TD. p‘::::r:a_s b
3 .
§ 5 . “Project deadlines prohibit a full search and fix, and
Risk for the project 7D repayment represents a risk to the project (e.g. It's payment may there are no tests In the legacy code to ensure the D
introduce new problems). 0
changes result in no behavior change. acceptance
The organization is lacking resources that need to be allocated in order “Lack of staff for the amount of work that was
Lack of resources -
to repay the TD. needed.

Figure 1. Conceptual model of TD injection and acting upon it during software development. Technical and
non-technical perspectives are modeled with the top-5 ranked lists of TD causes, effects, payment practices,
and payment avoidance reasons. In addition, RBO stats is calculated for each TD construct.

4 IEEE Software

0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: Montana State University Bozeman. Downloaded on August 11,2021 at 14:08:00 UTC from IEEE Xplore. Restrictions apply.

used by practitioners to assess the project situa-
tion before any specific TD issues are identified.

At some point a decision is made to remediate
TD issues. The decision is particularly interesting
because the decision process reveals the level of
organizational maturity towards managing TD.
For example, in some organizations a form of
cost-benefit analysis will be used to argument the
decision, while in others no decision will be made
explicitly, i.e., implicitly TD is accepted without
clear reasoning behind such a decision.

Practitioners who are dealing with TD, can
be in an unenviable position between business
managers who do not perceive TD as an issue and
colleagues who expect some action to be taken on
the identified TD. Prioritization schemas for TD
practices and payment avoidance reasons (Figure
1) can help by suggesting the most effective
TD payment practices and providing the most
significant avoidance reasons.

Especially, the list of payment avoidance rea-
sons, can be used as a powerful tool to objectively
prepare and argument TD payment decisions.
For example, if a consensus is made to deal
with TD, then the practitioners should address
all major reasons in advance by taking actions
to neutralize them. This can include dedicating
funding, time, resources or altering short term
goals. By doing so, the success of dealing with
TD will be increased.

ALIGNMENT AND MISALIGNMENT OF
TECHNICAL AND NON-TECHNICAL
PERSPECTIVES

Alignment of technical and non-technical
prioritization schemas was assessed using the
RBO method [9]. RBO results revealed that the
causes and payment practices schemas are aligned
(RBO Z 0.8) while the effects and payment
avoidance reasons schemas differ (RBO 5 0.8)
and are thus seen as misaligned. To calculate the
similarity, RBO uses a list of identified factors
ranked by frequencies. Top five of these factors
are presented for each TD construct in Figure
1, while the diagram between these lists shows
the comparison result of all identified factors.
The resulting curve in the diagrams shows the
degree of similarity, or alignment between the
lists depending on the number of top items that
are emphasized (0 < p < 1). Note that the

X/X 2021

factor’s rank is marked with numbers, while the
factor’s priority is presented in dedicated blocks
beside the priority symbol and the ratio of the
factor in all identified factors.

For example, if we look at the schema for TD
practices (Figure 1), code refactoring has priority
of 1% at technical and non-technical lists and is
thus marked with e at both lists. Furthermore, the
remaining four items at the non-technical list have
the same priority (2"%), because they have the
same percentage (10.00%) of all citations in the
corresponding group. Also, indicators are useful
to compare priorities, e.g., design refactoring at
non-technical list has higher priority than it has
at technical list and is marked with at non-
technical list and with V at technical list.

Alignment of perspectives on TD causes and
payment practices

Technical and non-technical practitioners con-
ceptualize TD causes and payment practices in
the same way despite their different perspectives.
We observe a high consensus about pressure (any
form of pressure, e.g., time, productivity) as the
cause with the greatest priority, while the lack of
technical knowledge cause is trailing close and
seems to have a greater priority from the non-
technical perspective. Interestingly, this cause,
although the name suggests it, is not specific only
to the technical group. The non-technical people
also use this cause to express, e.g., unfamiliarity
with requirements management tools or business
analysis techniques.

Regarding payment practices, code refactor-
ing has the largest priority in both perspectives.
It is encouraging to see that non-technical people
understand the significance of code refactoring.
According to our study, we conjecture that this
practice is no longer difficult to explain and com-
municate with non-technical people. Ten years
ago, refactoring was an exemplar technical prac-
tice that was difficult to explain to non-technical
people [3].

Misalignment of technical and non-technical
perspectives on TD effects and payment
avoidance reasons

Perception of effects and non-payment rea-
sons are far less aligned among the two groups.
From this misalignment, however, interesting

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3103121, IEEE Software

5

0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Montana State University Bozeman. Downloaded on August 11,202f at 14:08:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3103121, IEEE Software

6

0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Department Head

commonalities can be observed. First, there were
no significant unique instances of TD effects or
non-payment reasons that are specific for the one
of the perspectives. This suggests that different
roles have a very specific perception of the im-
portance of the effects and payment avoidance
reasons.

Second, the reasons for avoiding TD payment,
with the largest priority, in both groups can be tied
to organizational issues and therefore fall into the
management domain. Technical people seem to
understand that the causes and reasons for non-
payments are also non-technical in nature.

he identified prioritization schema often

contains identical factors, but these factors
do not necessarily have the identical meaning
in technical and non-technical contexts. For ex-
ample, in the non-technical context, Lack of
technical knowledge can denote the need for
practitioners skilled in requirements management
tools, whereas in the technical context, the need
for skilled unit testers. On the other hand, the
meaning of code refactoring is the same, re-
gardless of the context. In the first case, the
factor is interpreted with respect to the artifacts
that are specific to groups, thus requires different
treatment. In the second, the factor interpretation
remained the same in both groups as the fac-
tor is tied to the same artifact. Highlighting on
interpretation differences can contribute toward
better communication and reasoning about TD
constructs.

In the years to come, we need to see more
work done on approaches for de-pressuring the
software development process to alleviate nega-
tive consequences of the pressure on TD injec-
tion. The importance of such approaches needs
to be understood on an organizational and man-
agerial level.

The InsighTD project team is committed to
investigating the TD phenomenon, an interested
reader can be further informed at project’s web-
site (footnote 1). At the website besides the
research roadmap and publications, guidelines for
joining the initiative can be found.

Appendix

Sidebox 1. Methodological approach

This study is part of InsighTD'—a global
initiative to investigate TD from different per-
spectives. A family of surveys was used to col-
lect the data, while the survey design® allowed
participants to report multiple instances of TD
constructs, TD management related data, as well
as the demographic data. Participant selection
followed the convenience sampling approach [10]
resulting with 653 responses. This study relied on
answers from 168 participants out of which 124
technical and 44 non-technical. These participants
stated to be experienced in software development
and experienced with TD management (Figure 2).

Collected data was analyzed using both qual-
itative and quantitative research methods. Qual-
itative coding was used to analyze open-type
questions i.e. to identify TD constructs [11].
Descriptive statistics was primarily used to char-
acterize the demographics (closed-type questions)
and the identified TD constructs. Rank-biased
overlap (RBO) method® was used to compare the
technical and non-technical lists.

To convey the internal validity, each research
team followed the common analysis procedure
that involved iteration, review, and decision by
consensus. Additionally, each team evolved the
common code-schema derived based on previous
replications. The external validity is addressed by
collecting data from industry practitioners from
different countries, work environments and roles.
We acknowledge that the unbalanced number of
technical and non-technical responses used in this
study may challenge the generalizability of the
findings. Still, since the RBO method is resilient
to frequency changes (footnote 3) and that the
unbalance is inherent in the target population, the
sample is seen as suitable for this study.

B REFERENCES

1. N. Rios, M. G. de Mendonga Neto, and R. O. Spinola,
“A tertiary study on technical debt: Types, manage-
ment strategies, research trends, and base information
for practitioners,” Information and Software Technology,
vol. 102, 2018.

Thttp://www.td-survey.com
2The survey instrument: https:/bit.ly/2SCOM9S
3RBO analysis report is accessible at https://bit.ly/3qjEZSK

IEEE Software

Authorized licensed use limited to: Montana State University Bozeman. Downloaded on August 11,202f at 14:08:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3103121, IEEE Software

a) TD familiarity b) Level of expertise among those who managed TD

TD recognized but

not managed
19.75%

Proficient
39%

N 653 v N =180

c) Demographics for Competent, Proficient and Expert practitioners
who have managed TD
N =168

Technical 73.81% Non-technical 26.19%

Business analyst 1%
Requirements analyst 1%

Database administrator/ Quality analyst 1%
analyst 1%
Developer 46% Software architect 20% Tester 8% Project leader/manager 23%
Traditional
oc\ Agile 58% Hybrid 38% 4%
o‘°\
&
& Competent 20% Proficient 42% Expert 38%
N
&
@.Qé Less than 1 year More than 10 years

%

12% 1-2 years 20% 2-5 years 39% 5-10 years 17% 12%

Less than 5 people 21-30 people

10% 5-9 people 29% 10-20 people 24% More than 30 people 29%

g
%
l

&,f Less than 10KLOC
\I"g 7% 10-100KLOC 29% 100KLOC-1MLOC 33% 1-10MLOC 20% 10+ MLOC 11%
S
&
£
o\
@ Small 23% Medium-sized 41% Large 36%
Q"é" Brazil
<.°"o
6'\ 6% Chile 13% Colombia 26% Costa Rica 19% Serbia 9% United States 27%
00
(’0
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 2. Respondents TD familiarity. Level of expertise of respondents that managed TD. Technical and non-
technical structure of experienced respondents that managed TD.

X/X 2021 7

0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: Montana State University Bozeman. Downloaded on August 11,2021 at 14:08:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3103121, IEEE Software

Department Head

2. R. Ramag¢, V. Mandi¢, N. Tausan, N. Rios, M. G. de
Mendonca Neto, C. Seaman, and R. O. Spinola, “Com-
mon causes and effects of technical debt in Serbian IT:
InsighTD survey replication,” in 2020 46th Euromicro
Conference on Software Engineering and Advanced
Applications, 2020.

3. P.Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt:
From metaphor to theory and practice,” IEEE Software,
vol. 29, no. 6, 2012.

4. P. Avgeriou, P. Kruchten, R. L. Nord, |. Ozkaya, and
C. Seaman, “Reducing friction in software develop-
ment,” [EEE Software, vol. 33, no. 1, 2016.

5. P. Avgeriou, P. Kruchten, |. Ozkaya, and C. Seaman,
“Managing Technical Debt in Software Engineering
(Dagstuhl Seminar 16162),” Dagstuh! Reports, vol. 6,
no. 4, 2016.

6. V. Lenarduzzi, T. Besker, D. Taibi, A. Martini, and F. Ar-
celli Fontana, “A systematic literature review on tech-
nical debt prioritization: Strategies, processes, factors,
and tools,” Journal of Systems and Software, vol. 171,
2021.

7. B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating
the principal of an application’s technical debt,” [EEE
Software, vol. 29, no. 6, 2012.

8. T. Besker, A. Martini, and J. Bosch, “Software developer
productivity loss due to technical debt—a replication
and extension study examining developers’ develop-
ment work,” Journal of Systems and Software, vol. 156,
2019.

9. W. Webber, A. Moffat, and J. Zobel, “A similarity mea-
sure for indefinite rankings,” ACM Trans. Inf. Syst.,
vol. 28, no. 4, Nov. 2010.

10. C. Wohlin, P. Runeson, M. Hést, M. C. Ohlsson, B. Reg-
nell, and A. Wesslén, Experimentation in software engi-
neering. Springer Science & Business Media, 2012.

11. N. Rios, R. O. Spinola, M. Mendonca, and C. Seaman,
“The practitioners’ point of view on the concept of tech-
nical debt and its causes and consequences: a design
for a global family of industrial surveys and its first
results from Brazil,” Empirical Software Engineering,
vol. 25, no. 5, 2020.

8 IEEE Software

0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: Montana State University Bozeman. Downloaded on August 11,2021 at 14:08:00 UTC from IEEE Xplore. Restrictions apply.

