This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3103710, IEEE Software

A Gap in the Analysis of
Technical Debt in
Procedural Languages

An Experiential Report of Go

Grant Nelson
Gianforte School of Computing
Montana State University, Bozeman, USA

Clemente Izurieta
Gianforte School of Computing
Montana State University, Bozeman, USA

Abstract—Although the last ten years have seen significant growth in the approaches to
managing and measuring technical debt and in the strength of its community, few resources are
available today to practitioners in the procedural space. The focus has been vastly geared
toward object-oriented paradigms, paying little attention to growing communities in
non-object-oriented practices. This is a missed opportunity, because procedural approaches are
gaining popularity in both information (IT) and operational technology (OT) environments. This
article provides a perspective from one language: Go. We describe the analysis complications
faced and the potential for future developments to help practitioners.

B THE PROGRAMMING LANGUAGE GO
(golang.org) is growing in popularity and
becoming widely used. Fullstackacademy.com
ranks Go as the fourth best language to learn in
2021 and Geeksforgeeks.org lists Go in the top
10 languages which “will rule in 2021.” Go is
used by many well known companies including
Google, Uber, Workiva, Twitch, Dailymotion,
Dropbox, and SoundCloud.

Go is typically used for multi-threaded appli-
cations such as servers and desktop software. Its
design was influenced by C and Pascal. However,
Go has some more modern capabilities such as
a garbage collector and memory safety. It is an
imperative procedural language with some sup-
port for object-oriented designs via duck typing
and type embedding. Duck typing is a dynamic

IEEE Software

Published by the IEEE Computer Society

approach that binds an object to an interface
based on the presence of matching function sig-
natures rather than explicitly defined inheritance.
Type embedding is similar to inheritance except
the functions can’t be overwritten, instead the
embedded type’s members are accessible from the
wrapping object.

The use of many procedural languages such
as FORTRAN, C, Pascal, and VB has dwindled
since object-oriented languages such as C++, C#,
Objective-C, and Java gained popularity. How-
ever, procedural languages such as Rust and Go,
have become more prevalent during the last 10
years.

As with all software, while a Go project is
being developed, Technical Debt (TD) inevitably
builds up from developers, intentionally or unin-

© 2021 IEEE

0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorf/publicationsﬁstandards/publications/rights/indexhtml for more information.
Authorized licensed use limited to: Montana State University Bozeman. Downloaded on August 11,202

at 14:08:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3103710, IEEE Software

2

0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

tentionally, lowering quality in order to deliver
source code by a deadline. The lower quality
causes an increase in the delivery time and costs
for future maintenance efforts [1].

We have chosen to do an experiential report
to aid practitioners who are using or are inter-
ested in using Go. Practitioners in the exploratory
phases of researching TD analysis tools targeting
procedural languages will also benefit. Because
a systematic search for TD tools that support
Go reveals little, we instead report on concrete
experiences trying to manage and measure TD.
We chose Go due to its rising popularity and
author experience. We synthesize our findings by
reporting on three areas we found that limit TD
analysis.

This article discusses the current TD analysis,
any lacking analysis, and the complications which
arise while determining TD in Go with modern
TD analysis techniques. It provides insights that
our community can not afford to ignore, given
new growth predictions in modern (and loved)
procedural languages [2]. In section 1 we dis-
cuss tools and techniques currently being used
to analyze TD in Go. In section 2 we discuss
TD analysis which would help identify increased
maintenance costs. In section 3 we discuss Go
features which makes current TD analysis tech-
niques more difficult to apply to Go. Finally, in
section 4 we discuss directions that can be taken
to support the practitioner community.

1. Current Technical Debt Analysis

There is an abundance of static and change
analysers for Java and other object-oriented lan-
guages. Go has several tools for linting (e.g.,
golint, staticcheck.io), validating (e.g., govet), and
formatting (e.g., gofmt, goimports). There are
also tools to help manage Go package depen-
dencies (e.g., godep, vender, gomod, spaghetti-
cutter), however; few tools exist to help with TD
analysis. The majority of them, such as gocyclo
and SonarQube, focus on code complexity met-
rics.

SonarQube exemplifies a typical and highly
used TD tool due to its popularity and support
for many languages [3]. SonarQube provides 38
built-in rules for statically checking Go code
(see Figure 1); 29 of those rules are aimed at
a type of code smell, different from the more

B Vulnerability [Bug Security [Code Smell

C#

o+ [

Java

Object-Oriented

Objective-C _
c i
Go
Rust
i

Python

Mixed | Procedural

0 100 200 300 400 500 600 700

Figure 1. SonarQube rule count by language

commonly known Fowler code smells [4]. Out
of these rules, the only TD analysis performed is
in the form of Cyclomatic Complexity of single
functions. Section 3.1 discusses how Cyclomatic
Complexity is used when determining TD issues
such as God Objects.

CodeScene provides tools for evaluating Go
in a unique way compared to SonarQube. As part
of CodeScene’s analysis for determining mainte-
nance candidates it calculates an intention-based
complexity metric [S]. As with SonarQube, this
complexity measurement is also calculated at the
function level. CodeScene groups the complexi-
ties by file. As further discussed in Section 3.1,
in Go, functions with specific receivers can be
spread across several files in a package, thus
making the complexity of a structure seem lower
because complexity is measured locally, when in
reality, the maintenance costs of that structure can
be much higher.

2. Lacking Technical Debt Analysis

Many reusable design patterns for object-
oriented software [6] can be applied to Go to
create high quality, maintainable software. Go
does not have inheritance; however, using its form
of an interface and duck-typing, it is possible
to create implementation inheritance. This means
that several patterns, such as the composite and
decorator patterns, can be used.

The pattern and anti-pattern analysis being
used to find decay and grime [7] [8] [9] could be
applied to Go if the equivalent objects created by

IEEE Software

Authorized licensed use limited to: Montana State University Bozeman. Downloaded on August 11,202f at 14:08:48 UTC from IEEE Xplore. Restrictions apply.

Go’s structures and functions can be determined.
Since functions with receivers, see Figure 2, may
only be defined to receive a structure in the same
package, object discovery isn’t as complicated as
it would be in other procedural languages.

Go may have patterns not yet seen in object-
oriented patterns. Go has some multithreading
language features not seen in many other lan-
guages. It provides goroutines, channels, and
channel selectors. These can be used to quickly
build dynamic multithreaded applications when
used correctly. They can also be used poorly,
making maintenance and development time cost
more. Research could be expanded to understand
designs that can benefit from patterns, and also
those that can increase the TD of the system.

All existing TD analysis and any TD analysis
for Go’s unique qualities should be used when
creating Go projects to retain high quality code.
CI tools to perform this analysis would be greatly
beneficial to the practitioner communities and
their respective organizations.

3. Analysis Complications

The following sections describe three areas
where current TD tools are hindered by proce-
dural constructs. We use Go to exemplify such
problems. Beyond the three areas discussed in this
section, procedural languages have other com-
plications such as functions embedded inside of
functions, increased usage of closures and anony-
mous functions, and type definition for types
other than structures and interfaces. Takeaways
from this section are meant for practitioners and
researchers working towards building the TD
analysis tools and to explain why analysis tools
for object-oriented languages cannot simply be
used as-is for procedural languages. We must in-
clude developers that understand these procedural
concerns to help evolve current TD analysis tools.

3.1. Finding Objects For Patterns

As discussed in section 2, to apply some of
the current TD analysis to Go, tools would have
to find equivalent objects in the source code to
those in design patterns. This can be complicated
since the tools may not be aware of which Go
structures are intended to be used in place of
some interfaces. Structures that are duck-typed do
not explicitly specify the interfaces they intend to

November/December 2021

package main
import “fmt"

type Example struct {
name string

}

func (e *xExample) WithReceiver(message string) {
name := "Nil"
if e !'= nil {
name = e.name

}
fmt.Println(message, name)
}

func WithoutReceiver(message string, e *Example) {
name := "Nil"
if e != nil {
name = e.name
}
fmt.Println(message, name)

}

func main() {
e := &Example{name: "World"}
e.WithReceiver("Hello") // Hello World
WithoutReceiver("Goodbye", e) // Goodbye World

e = nil

e.WithReceiver("Hello") // Hello Nil

WithoutReceiver("Goodbye", e) // Goodbye Nil
}

Figure 2. Receivers in Go

implement.

In some cases, TD tools find that a structure is
implementing an interface because it duck-types
to that interface. However, the developers may
have had no intention of implementing that inter-
face and the tool’s finding occurs by coincidence.
It is common to have multiple packages define
identical interfaces. For example, two packages
with a “writer” interface which have a single
function, write(string).

It is difficult for a TD tool to know if the
interfaces are part of multiple separate designs
with their own patterns, or part of a single design
and pattern. Developers will sometimes create
multiple identical interfaces in different packages
and rely on duck-typing to help prevent depen-
dency cycles between those packages.

Developers may also choose to not use a
receiver on a function when writing a func-

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3103710, IEEE Software

3

0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Montana State University Bozeman. Downloaded on August 11,202f at 14:08:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3103710, IEEE Software

4

0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

tion specifically for a structure. In Figure 2 the
function WithReceiver is part of the Example
structure. However, some developers could use
a function, similar to WithoutReceiver, for func-
tions which are still intended to be specifically de-
signed for the Example structure but don’t appear
to be. The two example functions are functionally
the same, the only difference is in how they are
invoked. This means that some functions may not
be available as a method to an object if the tool
only uses receivers to indicate membership. Since
interfaces may not be used as a receiver in a
function, it is common for developers to not use
a receiver.

When part of the object’s whole picture is
missing, some analytics such as total complexity
may not be calculated correctly. Take for example
a God Object. A God Object is a structure junk-
drawer which is too big and does too much, and
is hard to maintain but easy to create. When
determining a God Object the Weighted Method
Count (WMC) is used [10]. The WMC is the
sum of the method complexities for an object.
In a procedural language an equivalent overly
complicated structure could be created without
ever using a function with a receiver. This makes
it difficult to determine which functions belong
to that structure and calculate the correct WMC.

In the cases where receivers aren’t being
used, even code change frequency, as used in
CodeScene, may have difficulty detecting a God
Object. The structure may be distributed across
many files and even many packages.

3.2. Encapsulation Not Encouraged

Go does not provide ways to use custom
iterators in a foreach-statement so it is up to the
developer to create map methods, their own iter-
ator, or expose the underlying map or slice (slice
is a type of array). In many cases the developer
will do the easiest thing, exposing the underlying
data, thus incurring TD. This can also make it
difficult to protect the data and programmatically
determine if this is a TD item. The developer
may pass around a slice of components, instead
of taking the time to encapsulate the data into a
pattern, such as composite.

This can even lead to a dichotomy. Proper
encapsulation would encourage good practices
and slow the growth of TD in the long run.

However, some developers feel the encapsulation
is difficult to use and extend because they cannot
use constructs like the foreach-statement. This
also means that each form of encapsulation re-
quires the developer to learn how the designer of
that object intended it to be used. This is counter
to object-oriented languages, such as C# or Java,
which simply provides an interface to implement
as part of the encapsulation, and therefore is
quickly learned and can be used in language
specific features.

3.3. Less Reusable Functionally

Go currently does not support parameterized
types (e.g. generics or templates). Many projects
will need to have more complicated data struc-
tures or specialized objects to be optimized for
speed and memory. Without parameterized types
developers have three options.

1) The data structure uses a functionless in-
terface, interface{}, which is similar to
Java’s Object. However, this consumes ex-
tra memory and takes extra time to cast.
Casting to and from the interfaces can also
complicate code using the data structure.
Lastly, it doesn’t allow for compile time
type checking.

2) The developers can write a custom data
structure for each type. This creates nearly
identical code. This gives multiple places
which need to be updated when a bug is
found to keep all implementations main-
tained. However, this gives the best perfor-
mance and is easier for developers to create.

3) There are tools similar to Mustache or C
macros (e.g. gomacro) which take a Go file
with special symbols in it that get replaced
prior to compilation. This generates code
with predefined types. This writes fast code
and makes only one spot to maintain but
the added step makes CI more complicated
and some of the other Go tooling can’t cope
with the special symbols.

This complication may be elevated in future
versions of Go. Since developers typically choose
option 2 and create duplicate code, the com-
munity has argued that providing functionality
to support this requirement is of high priority
and the solution needs to be easy to maintain,

IEEE Software

Authorized licensed use limited to: Montana State University Bozeman. Downloaded on August 11,202f at 14:08:48 UTC from IEEE Xplore. Restrictions apply.

reusable, fast, and memory efficient [11]. The
implications and consequences of duplicate code
lower maintainability, increase technical debt (re-
sources and costs), and potentially impact time to
market.

4. Minding the Gap

Practitioners who have chosen or are thinking
about choosing Go or other procedural languages
for their projects can benefit from the takeaways
presented in this report.

TD analysis tools aid practitioners by pro-
viding metrics that can be used to determine
which parts of the project require additional effort
to maintain. In the absence of these tools for
procedural languages (i.e., Go), organizations will
have to manage TD in the same way that TD was
managed prior to the emergence of these tools.
Teams should be provided with the time to do
maintenance and refactor as needed, and must
rely on developers to make the best judgements
regarding quality tradeoffs [12]. This is difficult
because it requires developers to agree on which
tasks are important, and management to recognize
this importance even if the part of the code is not
functionally wrong nor customer facing. TD items
need to be treated as first class citizens in team
backlogs.

When Go releases a version with parameter-
ized types it will be important for developers of a
project to have the time to refactor existing code
and take advantage of this feature. The TD that
has accumulated by duplicating code or by not
using compile time type checking will need to be
paid down.

Due to the rising popularity and usefulness
of new procedural languages, the community is
adopting them in larger and more complex sys-
tems. These new procedural languages can pro-
duce high quality code. However, our community
needs to be aware of the gap in TD analysis,
and current tooling is not enough. Experienced
procedural engineers are required to help expand
the corpus of TD rules necessary to analyse these
languages.

Practitioners using modern procedural lan-
guages should stay aware of new TD analysis
tools that will be released and plan accordingly
for necessary refactors. The TD research com-
munity needs to help bridge the gap with rele-

November/December 2021

vant studies that address new modern procedural
languages that TD tool developers can adopt,
hopefully sooner than in another ten years.

B REFERENCES

1. Clemente lzurieta, Ipek Ozkaya, Carolyn Seaman,
Philippe Kruchten, Robert Nord, Will Snipes, and Paris
Avgeriou. Perspectives on managing technical debt: A
transition point and roadmap from dagstuhl. In Inter-
national Workshop on Technical Debt Analytics (TDA),
Hamilton, New Zealand, 2016.

2. Kamaruzzaman. Available December 23, 2019.
https://towardsdatascience.com/top-7-modern-
programming-language-to-learn-now-156863bd1eec

3. Paris Avgeriou, Davide Taibi, Apostolos Ampatzoglou,
Francesca Arcelli Fontana, Terese Besker, Alexander
Chatzigeorgiou, Valentina Lenarduzzi, Antonio Martini,
Athanasia Moschou, llaria Pigazzini, Nyyti Saarimaki,
Darius Sas, Saulo de Toledo, and Angeliki Tsintzira, An
Overview and Comparison of Technical Debt Measure-
ment Tools, In /EEE Software, vol. 38, no. 3, pages 61-
71, May-June 2021, doi: 10.1109/MS.2020.3024958.

4. Valentina Lenarduzzi, Franscesco Lomio, Heikki Hut-
tunen, and Davide Taibi. Are SonarQube rules inducing
bugs? arXiv:1907.00376v2 [cs.SE], 2019.

5. Adam Tornhill. Prioritize technical debt in large-scale sys-
tems using CodeScene. In 2018 ACM/IEEE International
Conference on Technical Debt, 2018.

6. Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Pearson/Addison-Wesley,
1995. ISBN 978-0-201-63361-0.

7. Derek Reimanis and Clemente Izurieta. Behavioral evo-
lution of design patterns: Understanding software reuse
through the evolution of pattern behavior. Peng X., Am-
patzoglou A., Bhowmik T. (eds) Reuse in the Big Data
Era. ICSR 2019, 11602, 2019.

8. Clemente lzurieta and James M. Bieman. How Software
Designs Decay: A Pilot Study of Pattern Evolution. 1st
ACMV/IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement, ESEM '07, Madrid,
Spain, September 2007.

9. Daniel Feitosa, Paris Avgeriou, Apostolos Ampatzoglou,
Elisa Y. Nakagawa. (2017) The Evolution of Design Pat-
tern Grime: An Industrial Case Study. In Felderer M. et al.
(eds) Product-Focused Software Process Improvement.
PROFES 2017. Lecture Notes in Computer Science, vol
10611. Springer, Cham. doi: 10.1007/978-3-319-69926-
4 13

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3103710, IEEE Software

5

0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Montana State University Bozeman. Downloaded on August 11,202f at 14:08:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3103710, IEEE Software

10. Radu Marinescu. Detection strategies: Metrics-based
rules for detecting design flaws. In Proceedings of the
20th IEEE international Conference on Software Mainte-
nance, pages 350-359, ICSM. IEEE Computer Society,
Washington, DC, 2004.

11. lan Lance Taylor. Available January 12, 2021.
https://blog.golang.org/generics-proposal

12. Zadia Codabux and Byron Williams, Managing technical
debt: An industrial case study 4th International Workshop
on Managing Technical Debt (MTD), 2013, pages 8-15,
doi: 10.1109/MTD.2013.6608672.

6 IEEE Software

0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: Montana State University Bozeman. Downloaded on August 11,2021 at 14:08:48 UTC from IEEE Xplore. Restrictions apply.

