
Connecting the Dots: An Integrated Vulnerability
Knowledge Graph for Security Practitioners
1st Brittany Boles

Gianforte School of Computing
Montana State University

Bozeman, Montana
brittanyboles@msu.montana.edu

2ndClemente Izurieta
Gianforte School of Computing

Montana State University
Pacific Northwest National Laboratory

Idaho National Laboratory
Bozeman, Montana

clemente.izurieta@montana.edu

3rdAnn Marie Reinhold
Gianforte School of Computing

Montana State University
Pacific Northwest National Laboratory

Bozeman, Montana
reinhold@montana.edu

Abstract—Vulnerability databases are essential to cybersecu-
rity, providing developers with critical information about soft-
ware security flaws. However, inconsistencies among vulnerability
databases pose challenges for integration. To address this, we
created a graph database that consolidates data from GitHub
Advisories, the Open Source Vulnerability (OSV) database, the
National Vulnerability Database (NVD), the Exploit Prediction
Scoring System (EPSS), and the CWE-1000 View. Our graph
database revealed inconsistent vulnerability severity score across
the databases. To illustrate the utility of our graph database,
we investigated how the databases reported the “top ten” most
routinely exploited vulnerabilities. Our analysis revealed differ-
ences in vulnerability identifiers, and the Common Weakness
Enumeration (CWE) mappings of the top ten vulnerabilities.
By aggregating vulnerability information from disparate sources,
this graph database supports cross-validation, increases trans-
parency, and enables efficient complex queries.

Index Terms—Vulnerability database, Graph database, Com-
mon Vulnerabilities and Exposures, Common Weakness Enumer-
ation, Exploit Prediction Scoring System

I. INTRODUCTION

Cybersecurity risks in code are enumerated as vulnerabili-
ties. Vulnerability databases catalogue known security flaws.
Consequently, vulnerability databases have emerged as a cor-
nerstone of cybersecurity.

Creators and maintainers of each vulnerability database face
a Sisyphean challenge. New vulnerabilities are reported daily
and must be vetted for accuracy. Vulnerability submissions in-
creased 32% from 2023 to 2024, and are estimated to continue
to rise1. The volume and velocity of new vulnerabilities being
reported, makes maintaining the databases more difficult.
Consequently, the reliability, accuracy, and completeness of
the databases are impacted [1], [2].

In February 2024, the National Vulnerability
Database(NVD) paused updates for several months as the
National Institute of Standards and Technology (NIST) worked
to address a growing backlog of submissions2. The sudden
disruption left the cybersecurity community scrambling

1https://www.nist.gov/itl/nvd
2https://www.nist.gov/itl/nvd/nvd-news

for alternative databases3,4. The incident highlighted the
dangers of over-reliance on a single source and emphasized
the necessity for a more robust, multi-database strategy in
cybersecurity.

Security tools already embrace this multi-source philosophy.
Many static analysis tools aggregate multiple vulnerability
databases to improve vulnerability coverage5,6,7. However,
because multiple databases will often report the same vul-
nerability, the way these tools combine vulnerability data im-
pacts which—and how many—vulnerabilities the tools report
[3], [4]. Keeping the databases separate can lead redundant
reportings of the same vulnerability. However, aggregating a
vulnerabilities reports across databases can cause information
loss, reduce transparency, and can be problematic when vul-
nerability databases disagree.

Aggregation and visualization across vulnerability databases
is complex due to schema differences, inconsistencies in meta-
data, and varying levels of abstraction. For instance, the same
vulnerability may have a single identifier in one database but
multiple identifiers in another. Further, vulnerability databases
are constantly evolving, as are the vulnerabilities they track8.

Until now, no technology has enabled analysis and vi-
sualization of vulnerabilities across vulnerability databases.
Here, we created a graph database that integrates three of the
most prominent vulnerability databases: GitHub Advisories,
the Open Source Vulnerability (OSV) database, and the NVD.
This graph database promotes cross-validation and enables the
visualization of cliques of varying sizes, while allowing for
variable levels of abstraction in the underlying vulnerability
databases. We improved overall vulnerability coverage, and
enable security practitioners to make informed decisions based
on diverse perspectives.

3https://www.darkreading.com/vulnerabilities-threats/fall-of-national-
vulnerability-database

4https://anchore.com/blog/navigating-the-nvd-quagmire/
5https://github.com/anchore/grype
6https://github.com/aquasecurity/trivy
7https://github.com/intel/cve-bin-tool
8https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-

Why-Vulnerability-Statistics-Suck-WP.pdf



II. RELATED WORK

Cybersecurity researchers have explored the use of graph
databases for vulnerability management. A graph database
can be advantageous for mapping vulnerabilities because it
does not require a single schema. Moreover, graph databases
allow for integration of diverse data sources and support
complex queries (with multiple joins based on attributes such
as severity, ecosystem, and software version).

Bhalker et al. [5]demonstrated how a graph database can
be used to visualize relationships among vulnerabilities. The
researchers [5] constructed a graph database focused on rela-
tionships, such as “Breach Types”. This study advanced the use
of graph databases in vulnerability analysis, but was based on
a relatively small collected dataset of Cyber Security Breaches
from 2009 to 2014 from varied sources.

In contrast, our graph database incorporates three exten-
sive databases, each containing over 200,000 vulnerabilities.
Our graph database interconnects vulnerabilities using both
“aliased” and “related” vulnerabilities in our graphs. We also
incorporate CWE, Common Vulnerability Scoring System
(CVSS), and Exploit Prediction Scoring System (EPSS) data
for a more holistic approach.

We are not the first to create a graph database containing the
NVD. Wang et al. [6] used a knowledge graph to improve the
analysis of security vulnerabilities. These researchers sourced
vulnerability information from the NVD to address limitations
such as poor readability and inadequate visualization of corre-
lations between vulnerabilities. By leveraging Neo4j, they built
a common vulnerabilities and exposures(CVE) knowledge
graph incorporating raw data, ontology modeling, and data
extraction. Their research allowed for deeper vulnerability
analysis across dimensions like Common Weakness Enumer-
ations (CWEs) and severity.

Our approach expands on previous research by incorporat-
ing a more diverse set of databases. Additionally, our graph
database facilitates security analysis across different iden-
tification conventions (e.g CVE, GitHub Security Advisory
[GHSA], Ubuntu security notice[USN]).

III. METHODS

A. Database Selection

We obtained vulnerability data from GitHub Advisories9,
OSV10, and the NVD11, retrieved on March 11, 2025. These
databases were selected for their widespread adoption and
integration with static analysis tools12,13,14.

Unlike vendor-specific databases, which report vulnerabil-
ities relevant only to their ecosystems, these three sources
provide broad coverage. The NVD, maintained by the NIST,
enriches vulnerabilities as CVEs. The NVD is managed by

9https://github.com/advisories
10https://osv.dev/
11https://nvd.nist.gov/vuln/
12https://github.com/anchore/grype
13https://github.com/aquasecurity/trivy
14https://github.com/intel/cve-bin-tool

MITRE and sponsored by the U.S. Department of Home-
land Security (DHS) and the Cybersecurity and Infrastructure
Security Agency (CISA). The GitHub Advisory Database
aggregates data from eight sources such as GitHub secu-
rity advisories, the NVD, and the npm Security Advisories
database and labels them with GHSA identifiers. The OSV
integrates filtered subsets of data from 18 sources, including
the GitHub Advisory Database, PyPI Advisory Database, and
Go Vulnerability Database, leading to the use of multiple
vulnerability identifiers. In total the OSV has 27 different
vulnerability identifier types in it’s database (e.g CVE, GHSA,
USN, CGA, RSEC). While GitHub Advisories and OSV are
maintained by GitHub and Google, respectively, both are open-
source, allowing public contributions.

In our graph database, we also incorporated scores from the
Exploit Prediction Scoring System (EPSS). We included EPSS
to enable evaluation of exploitability metrics concomitant with
severity metrics (i.e, CVSS). EPSS assigns a score (0–1)
to CVE-labeled vulnerabilities, estimating the likelihood of
exploitation in the next 30 days. It also provides a percentile
ranking, indicating the proportion of vulnerabilities with an
equal or lower score. Integrating EPSS offers developers an
additional perspective on risk assessment beyond CVSS.

We also augmented the graph with Common Weakness Enu-
merations (CWEs) from the CWE 1000 view15. CWEs classify
common software weaknesses that can lead to vulnerabilities.
For example, the Log4j vulnerability (e.g., ’CVE-2023-44228’
in the NVD and OSV, ’GHSA-jfh8-c2jp-5v3q’ in GitHub
Advisories and OSV) maps to CWE-502, which describes
unsafe deserialization of untrusted data. While vulnerabilities
do not always map to CWEs, many do.

B. Building The Graph Database
We integrated the vulnerabilities from the three vulnerability

database using Neo4j (version 1.61) and Python (version 3.13).
All code used to build and analyze the graph database can
be found at (LINK REPO) Each vulnerability database was
represented as a unique node type (GitHub, OSV, NVD) with
each vulnerability entry corresponding to individual nodes.
The attributes of these nodes were determined by the schema
of the respective source databases. These attributes included
information such as CVSS scores and vulnerability descrip-
tions.

Next, we established relationships between vulnerability
nodes. The OSV schema, used by GitHub and OSV, define
an ‘alias’ and ‘related’ relationship.

A ‘related’ vulnerability relationship connects two or more
vulnerabilities that are (1) similar but not unique, (2) multiple
similar vulnerabilities codified in the same entry, or (3) does
not satisfy the strict definition of alias.

An ‘alias’ relationship connects two or more vulnerabilities
that affect any software component the same way; i.e., either
both vulnerabilities affect the software component or neither
do16. A patch addresses all vulnerabilities with the same

15https://cwe.mitre.org/data/definitions/1000.html
16https://ossf.github.io/osv-schema/



TABLE I
EXECUTION TIME IN MILLISECONDS FOR NEO4J EXAMPLE QUERIES. DEMONSTRATES EXAMPLES OF MULTI JOINT SEARCHES TO OUR GRAPH DATABASE.

Neo4j Query Execution Time (s)

Overlap in vulnerabilities between the OSV and GitHub
MATCH (g:GitHub)-[:alias]-(o:OSV)
RETURN g, o

174ms

Collects nodes from the NVD and GitHub when they are aliases and both were published after 2018.
MATCH (n:NVD)-[:alias]-(g:GitHub)
WHERE datetime(n.published) > datetime(’2018-01-01T00:00:00’)
AND datetime(g.published) > datetime(’2018-01-01T00:00:00Z’)
RETURN n, g

2115ms

Get top ten most routinely exploited vulnerabilities
WITH ["CVE-2023-3519", "CVE-2023-4966", "CVE-2023-20198","CVE-2023-20273",
"CVE-2023-27997","CVE-2023-34362", "CVE-2023-22515","CVE-2021-44228",
"CVE-2023-2868", "CVE-2022-47966"] AS top_vulns
MATCH (v) WHERE v.id IN TopVulns
RETURN v

456ms

alias (and no others). In our graph database, we created alias
relationships for vulnerabilities with identical identifiers across
the databases.

To add EPSS data to the ontology we built nodes ‘EPSS’
where each node is the score from a CVE ID and has attributes
of the EPSS score, including the percentile. Corresponding
nodes with a CVE ID were connected using a relationship to
the EPSS node called ‘epssScore’.

Each CWE in the CWE-1000 view was built into nodes,
with attributes such as ‘description’, ‘id’, and ‘type’. CWE
nodes have relationships to vulnerability nodes via a ‘weak-
ness’ relationship. The ‘weakness’ relationship details are
provided by the three vulnerability databases. The CWE nodes
also have their own hierarchal mappings with levels of ab-
straction represented through ‘child’ and ‘parent’ relationships
between the CWE nodes.

C. Analysis

Our analyses were three-pronged. First, we investigated
the overlap of vulnerabilities across the three databases. In
particular, we investigated discrepancies in attributes between
alias nodes. Recall that an alias nodes are two or more
representations of a single vulnerability.

Second, we conducted a pairwise investigation for each alias
relationship to determine consistency in CVSS scores across
the databases. The range of CVSS scores is from 0-10, where
10 is the greatest severity of a vulnerability. To ensure a valid
comparison we only compared the pairs when they both used
the same version of CVSS. Different versions of CVSS will
generate different CVSS vectors. We compared the CVSS
vector provided by each underlying vulnerability database.
Each pair was thus examined for differences in CVSS vectors.

Third, we analyzed the top ten most routinely exploited
vulnerabilities in 2023 reported by the CISA17 to determine
the connectedness and similarities in reporting of the top ten
vulnerabilities across the databases. Note that the top ten for
2024 were not available in February 2025, when this paper

17https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-317a

Fig. 1. Shows the distribution across database of the total 774,077 vulnera-
bility nodes. Overlap occurs when two nodes in different databases have an
alias relationship between them –implying these are the same vulnerability in
different database.

was written. We also tracked execution time for common
queries (Table I) to demonstrate the response time of our graph
database from a user perspective.

D. Graph Construction and Connectivity

IV. RESULTS

We found an increase in total vulnerability coverage by
integrating the NVD, OSV and GitHub Advisories. Further
we found that the databases significantly overlap in vulnera-
bilities allowing for cross-referencing. When comparing alias
vulnerabilities across databases we found significant difference
in CVSS vectors. Finally we investigated the top ten most
routinely exploited vulnerabilities. Our exploration of the top
ten vulnerability subgraph included traversing vulnerability
node relationships ‘related’, ‘alias’, ‘weakness’, ‘epssscore’
and the CWE nodes ‘child’ and ‘parent’ relationships. This



TABLE II
WE COMPARE SEVERITY SCORES ACROSS DATABASES USING ALIAS
RELATIONSHIPS. FOR ALIAS PAIRS WITH THE SAME CVSS METRIC
VERSION, WE ANALYZE SCORE DIFFERENCES. ”TOTAL MATCHED”

COUNTS SUCH PAIRS, WHILE ”NO MATCH” INDICATES PAIRS WHERE
ONLY ONE NODE USES THAT CVSS VERSION. THE ”%” COLUMN SHOWS

THE PERCENTAGE OF ALIAS PAIRS WITH DIFFERING CVSS VECTORS.

Disagreement Matched % No Match
CVSSV2 0 0 NA 281,817
CVSSV3 65 16,729 0.38% 65898
CVSSV3.1 27,408 214,696 12.76% 99,882
CVSSV4 392 6,971 5.62% 22,221

exploration of the subgraph gave us a holistic view of the top
ten vulnerabilities.

A. Vulnerability Database Relationships

The vulnerability graph database successfully integrated
data from three major databases. Each database contributed a
distinct subset of the overall vulnerability landscape. In total
GitHub Advisories contributed 268,644 vulnerability nodes,
OSV contributed 229,094 nodes and the NVD contributed
276,339 nodes for a total of 774,077 vulnerability nodes.
Additionally we had 281,448 EPSS nodes and 988 CWE nodes
for a total of 1,056,513 nodes.

The NVD uses only one ID type (CVE), thus the NVD
has zero alias or related relationships between NVD nodes.
Similarly GitHub only uses GHSA identifiers, and conse-
quently has no interconnected nodes. In contrast OSV database
has 27 different identifiers from different 18 data sources.
Therefore OSV nodes can have ‘alias’ and ‘related’ relation-
ships interconnecting themselves. In total the OSV has 43,675
vulnerabilities with an alias and 114882 vulnerabilities with a
related vulnerability all also in the OSV.

When comparing the three vulnerabilities databases against
each other we find GitHub contributes 6,132 unique vulnera-
bilities without an aliases in the NVD or OSV databases. NVD
contributes 14,463 unique vulnerabilities. OSV contributes
132,216 vulnerabilities with out overlap to the NVD or GitHub
Advisories (Fig. 1). In total 621,266 out of the 774,077
vulnerability nodes have an alias.

Aliases were not the only relationship we included. 625,439
‘related’ relationships connected our database nodes. More-
over, 672,124 nodes had an EPSS score and vulnerabilities
mapped to CWEs 1,022,272 times (vulnerabilities can map to
multiple CWEs). In total the graph databases has 2,932,444
relationships.

B. Discrepancies in Severity Scores

There were 281,817 pairs where only one node had a
CVSSV2 vector, making severity comparison impossible. No-
tably, there were zero instances where both nodes in a pair
had CVSSV2 vectors.(Table II)

There were 65,898 pairs where only one node had a
CVSSV3 vector, preventing direct comparison. However,
16,729 vulnerability pairs had CVSSV3 vectors for both
nodes, with 65 instances of disagreement (0.38%).

Fig. 2. Top exploited vulnerability CVE-2023-3519 graph. Blue GHSA node
is an aliases that is contained in GitHub Advisories. CVE node is from the
NVD. Both databases state this is a CWE-78 weakness.

In total, 214,696 pairs had CVSSV31 vectors, with 27,408
instances of disagreement (12.76%). Additionally, 99,882 pairs
were not comparable due to version mismatches.

There were 22,221 pairs that couldn’t be compared due to
version differences. Among 6,971 vulnerability pairs where
both nodes had CVSSV4 vectors, 392 pairs (5.62%) had
differing CVSSV4 scores.

Severity scores for a vulnerability can depend on the source
used. The discrepancies in CVSS scores specifically with ver-
sion CVSSV3.1 highlight the subjectivity of quantifying vul-
nerabilities [7], and the variations of answers across databases.

C. Top Ten Routinely Exploited Vulnerabilities

We demonstrate the utility of our graph by analyzing the
top ten most frequently exploited vulnerabilities. Our analysis
includes the database coverage of these vulnerabilities, their
CVSS and EPSS scores, as well as their mappings to CWEs.

The top ten vulnerabilities were reported using CVE IDs.
Our findings NVD included all of the vulnerabilities, while
the OSV database only contained CVE-2021-44228. Although
GitHub does not label vulnerabilities with CVE IDs, we
utilized the alias relationships of the CVE nodes to identify all
ten vulnerabilities under GHSA IDs in the GitHub advisories
database.

The CVSSV3.1 severity scores were consistent across the
database for the top ten vulnerabilities. The lowest severity
score was from CVE-2023-20273 at 7.2. Seven of the top ten
vulnerabilities had EPSS scores greater than 0.88. However,
the other 3 of the top ten routinely exploited vulnerabilities
had low EPSS scores: CVE-2023-20273 had an EPSS score
of 0.07, CVE-2023-27997 had an EPSS score of 0.10651, and
CVE-2023-2868 had an EPSS score of 0.07893.

We queried all the weakness the top ten vulnerabilities
mapped to, and any alias connected nodes. Many of the
top vulnerabilities share CWEs (Fig. 3). The most common
weakness was CWE-20, Improper Input Validation, with 4
of the top ten mapping to it. One interesting mapping is
with CVE-2023-4966 where the NVD maps it to CWE-199
and NVD-CWE-noinformation. Upon further investigation we



Fig. 3. Top exploited vulnerabilities in the NVD mapped to CWEs. Here we can see many of the top vulnerabilities share CWEs. The top ten vulnerabilities
map to 14 CWEs. Two of those CWEs are NVD-CWE-noinfo and NVD-CWE-Other

Fig. 4. CVE-2013-44228 graph with CWE relationships. The Green node is
sourced from OSV and tan from the NVD.

know this occurs because the NVD using a secondary source
’secure@citrix.com’ maps the id to CWE-199 but the NVD as
a primary source has no information on what weakness the id
maps to.

When including the CWE 1000 view child and parent
relationships we get another layer of detail for these top
exploited vulnerabilities. When looking at the vulnerability
that mapped to the most CWEs, CVE-2021-44228 we found
two of the CWEs map to the same parent CWE, CWE-
664 (Fig. 4). If we zoom out and look at all the top ten
vulnerabilities and the subgraph of CWEs related to them, the
resulting graph has only two path components. Nine of top
vulnerability nodes all have some chain of child parent nodes
between their CWE nodes. Only one vulnerability, CVE-2023-
20198 had no path of relationships connecting it to the other
top ten vulnerabilities.

V. DISCUSSION

In this work, we proposed integrating multiple vulnerability
databases, GitHub Advisories, OSV, and NVD, into a unified
graph database. We added additional layers of vulnerability
knowledge by including the EPSS database and CWE-1000
view. The integration of these databases improved our overall
domain coverage. While the overall coverage was increased
we also found significant overlap between databases. We

represented the overlap through relationships between the vul-
nerability nodes. These relationships enable cross-referencing
information within milliseconds. Cross-referencing the vulner-
ability databases revealed varying CVSS scores.

Our analysis the top ten routinely exploited vulnerabilities
identified by CISA showcased our graph utility. While the
NVD and GitHub Advisories contained all ten vulnerabili-
ties, OSV included only CVE-2021-44228. Mapping CWEs
revealed major patterns in the top ten vulnerabilities, demon-
strating how a graph database can uncover deep insights with
minimal effort and time required. We state that a critical
part of securing systems is making is making vulnerability
management fast and easy for developers.

A. Graph Construction and Connectivity
Our graph database offers interconnected varied perspec-

tives for vulnerability management. By incorporating three
databases maintained by prominent organizations, GitHub,
Google and the NIST we improve overall ecosystem coverage
and robustness. In total our database has 774,077 (Fig. 1)
vulnerability nodes and in total 1,056,513 nodes when in-
cluding EPSS and CWE nodes. We have 2,932,44 relation-
ships informing users of EPSS scores, associated weaknesses,
alias or related vulnerabilities and child-parent relationships
of CWEs. Over 621,266 vulnerabilities from the combined
datasets have alias relationships, allowing for cross-database
comparisons. We present interconnected information from
expert perspectives, all easily accessible with fast queries to
one source.

B. Discrepancies Found in Cross-Databases Analysis
One of the most striking findings from our analysis is the

inconsistency in CVSS scores across databases. Filtering a
vulnerability report by severities is a common practice in
vulnerability management [8]. The Most severe vulnerabili-
ties are typically prioritized. Our analysis of CVSS vectors
revealed that for 12.76% of the CVSSV3.1 pairs, there were
discrepancies, highlighting the subjective nature of severity
assessments. Previous research has shown that CVSS scores
are subjective, with up to 68% of evaluators assigning differ-
ent severity ratings for the same vulnerabilities, highlighting
inconsistencies in the scoring process [9]



Our database doesn’t inform users which source provided
the ‘correct’ severity score. Merely we aim to give users
the ability to choose which source the trust. We also assert
multiple perspectives can enable more informed decisions.

Furthermore, integrating EPSS scores provides an additional
perspective. EPSS offers an empirical measure of the likeli-
hood that a vulnerability will be exploited but only maps to
vulnerabilities with CVE ids. Utilizing the ‘alias’ relationships
in our graph database, vulnerabilities with different ids such as
GHSA, or USN can still have this extra layer of information.
Once again this gives developers all the information, and the
autonomy to choose the sources that fit their needs with out
the time and effort of scouring the internet and aggregating
multiple sources.

C. Using the Graph Database

Using the relationships between our nodes we were able to
find the top ten routinely exploited vulnerabilities in GitHub
Advisories. The OSV only contained the GHSA and CVE
identifiers for the Log4j vulnerability in the top ten vulner-
abilities.

The relationships between these vulnerabilities and their as-
sociated CWEs reveal common patterns in exploit techniques.
We found many of the top ten vulnerabilities to share CWEs.
When including the CWE child parent relationships we found
9 out of the ten top vulnerabilities weaknesses, CWEs, were
related. This connectivity between the CWEs of the top ten
most routinely exploited vulnerabilities highlights the benefit
of this integrated view. Patterns of weakness being commonly
exploited emerge with out the need for scouring multiple
vulnerability databases and clicking your way through the
CWE-1000’s view.

VI. CONCLUSION

In this work, we developed an integrated graph database
combining OSV, GitHub Advisories, and NVD to enhance
vulnerability management. Linking data across these sources
expanded vulnerability coverage and enabled us to identified
significant overlap. Additionally, the database was enriched
with the EPSS database and the CWE 1000 view to offer
diverse perspectives for vulnerability management. Discrep-
ancies in CVSS scores and CWE mappings were found,
emphasizing the value of multi-source intelligence for security
professionals.

The ability to cross-reference vulnerabilities enables in-
formed decisions making around security risks. Incorporating
vulnerability relationships, the CWE 1000 view and EPSS
scores, enables a robust and in-depth analysis of the top
ten most routinely exploited vulnerabilities. This integrated
data source approach empowers security teams to make more
informed decisions based on diverse perspectives. We have
demonstrated numerous practical queries to our database, all of

which take mere seconds. Our graph database allows not only
searches across sources but also multi-joint searches. These
benefits can reduce the workload for security practitioners and
make securing software easier.

Our future work will focus on expanding data sources,
incorporating real-time updates, and providing an API for
accessibility. By strengthening this system, we aim to further
support security practitioners in mitigating threats with greater
accuracy and efficiency.

ACKNOWLEDGMENT

We would like to thank Gage Nesbit for his contributions
to the graph database, Eric O’Donogue for his table beauti-
fication skills and Madison Munro for their feedback. This
research was conducted with support from the U.S. Depart-
ment of Homeland Security (DHS) Science and Technology
Directorate (S&T) under contract 70RSAT22CB0000005. Any
opinions contained herein are those of the author and do not
necessarily reflect those of DHS S&T.

REFERENCES

[1] R. Croft, M. A. Babar, and M. M. Kholoosi, “Data quality for software
vulnerability datasets,” in 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE), 2023, pp. 121–133.

[2] Y. Jiang, M. Jeusfeld, and J. Ding, “Evaluating the data inconsistency
of open-source vulnerability repositories,” in Proceedings of the 16th
International Conference on Availability, Reliability and Security, ser.
ARES ’21. New York, NY, USA: Association for Computing Machinery,
2021. [Online]. Available: https://doi.org/10.1145/3465481.3470093

[3] B. Boles, E. O’Donoghue, A. Redempta Manzi Muneza, G. Perkins,
C. Izurieta, and A. Marie Reinhold, “ Deciphering Discrepancies:
A Comparative Analysis of Docker Image Security ,” in
2024 IEEE International Conference on Source Code Analysis
and Manipulation (SCAM). Los Alamitos, CA, USA: IEEE
Computer Society, Oct. 2024, pp. 254–259. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SCAM63643.2024.00034

[4] A. M. Reinhold, B. Boles, A. R. M. Muneza, T. McElroy, and
C. Izurieta, “Surmounting challenges in aggregating results from static
analysis tools,” Military Cyber Affairs, vol. 7, 2024. [Online]. Available:
https://digitalcommons.usf.edu/cgi/viewcontent.cgi?article=1101context=mca

[5] P. M. Bhalekar and J. R. Saini, “Comprehensive exploration of the role
of graph databases like neo4j in cyber security,” in 2024 International
Conference on Emerging Smart Computing and Informatics (ESCI), 2024,
pp. 1–4.

[6] Y. Wang, Y. Zhou, X. Zou, Q. Miao, and W. Wang, “The analysis method
of security vulnerability based on the knowledge graph,” in Proceedings
of the 2020 10th International Conference on Communication and
Network Security, ser. ICCNS ’20. New York, NY, USA: Association
for Computing Machinery, 2021, p. 135–145. [Online]. Available:
https://doi.org/10.1145/3442520.3442535

[7] R. Wang, L. Gao, Q. Sun, and D. Sun, “An improved cvss-based
vulnerability scoring mechanism,” in 2011 Third International Conference
on Multimedia Information Networking and Security, 2011, pp. 352–355.

[8] Z. D. Wadhams, C. Izurieta, and A. M. Reinhold, “Barriers to using
static application security testing (sast) tools: A literature review,”
in Proceedings of the 39th IEEE/ACM International Conference on
Automated Software Engineering Workshops, ser. ASEW ’24. New
York, NY, USA: Association for Computing Machinery, 2024, p.
161–166. [Online]. Available: https://doi.org/10.1145/3691621.3694947

[9] J. Wunder, A. Kurtz, C. Eichenmüller, F. Gassmann, and Z. Benenson,
“Shedding light on cvss scoring inconsistencies: A user-centric study on
evaluating widespread security vulnerabilities,” in 2024 IEEE Symposium
on Security and Privacy (SP), 2024, pp. 1102–1121.


