
Information and Software Technology 140 (2021) 106692

A
0

T
a
B
R
a

b

c

d

e

f

g

h

i

A

K
T
T
I
P
P
S

1

s
q
t
t
c
b

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

echnical debt payment and prevention through the lenses of software
rchitects
oris Pérez a,b,∗, Camilo Castellanos a, Darío Correal a, Nicolli Rios c, Sávio Freire d,e,
odrigo Spínola f, Carolyn Seaman g, Clemente Izurieta h,i

Universidad de los Andes, Bogotá, Colombia
Univ. Francisco de Paula Santander, Cúcuta, Colombia
Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
Federal University of Bahia, Salvador, Brazil
Federal Institute of Ceará, Morada Nova, Brazil
Salvador University, Salvador, Brazil
University of Maryland, Baltimore MD, United States
Montana State University, Bozeman MT, United States
Idaho National Laboratories, Bozeman MT, United States

R T I C L E I N F O

eywords:
echnical debt
echnical debt management
nsighTD
ayment practices
reventive actions
oftware architects

A B S T R A C T

Context: Architectural decisions are considered one of the most common sources of technical debt (TD). Thus,
it is necessary to understand how TD is perceived by software architects, particularly, the practices supporting
the elimination of debt items from projects, and the practices used to reduce the chances of TD occurrence.
Objective: This paper investigates the most commonly used practices to pay off TD and to prevent debt
occurrence in software projects from the architect’s point of view.
Method: We used the available data from InsighTD, which is a globally distributed family of industrial surveys
on the causes, effects, and management of TD. We analyze responses from a corpus of 72 software architects
from Brazil, Chile, Colombia, and the United States.
Results: Results showed that refactoring (30.2%) was the main practice related to TD payment, followed by
design improvements (14.0%). Refactoring, design improvements, and test improvements are the most cited
payment practices among cases of code, design and test debt. Concerning the TD preventive practices, we find
that having a well-defined architecture and design is the most cited practice (13.6%), followed by having a
well-defined scope and requirements. This last practice is the most cited one for expert software architects.
Finally, when comparing preventive practices among the three major roles derived from the survey (software
architects, engineer roles, and management roles), we found that none of the roles shared the most cited
practice, meaning that each role had its worries and focus on different strategies to reduce TD’s presence in
the software.
Conclusion: The lists of TD payment and prevention practices can guide software teams by having a catalog
of practices to keep debt controlled or reduced.
. Introduction

Tight schedules and deadlines are common conditions faced by
oftware companies when delivery of software in faster cycles is re-
uired. These conditions increase the pressure for the development
eams to deliver working features to their customers [1]. Additionally,
he onset of continuous integration approaches as well as DevOps has
ontributed to this problem [2]. Technical debt (TD) is a metaphor used
y the software community to describe technical decisions that can give

∗ Corresponding author at: Universidad de los Andes, Bogotá, Colombia.
E-mail address: br.perez41@uniandes.edu.co (B. Pérez).

companies a benefit in the short term [3] but possibly hurt the overall
quality of the software and the productivity of the development team
in the long term [4]. Intentional TD injection during software develop-
ment is a common practice for software teams because it can help to
achieve the project’s goals sooner or more cheaply. However, this TD
could pose risks to projects if it becomes difficult to manage [5], such
as financial and technical problems linked to software maintenance and
evolution costs [6].
vailable online 22 July 2021
950-5849/© 2021 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.infsof.2021.106692
eceived 29 December 2020; Received in revised form 21 May 2021; Accepted 18
 July 2021

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:br.perez41@uniandes.edu.co
https://doi.org/10.1016/j.infsof.2021.106692
https://doi.org/10.1016/j.infsof.2021.106692
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2021.106692&domain=pdf


Information and Software Technology 140 (2021) 106692B. Pérez et al.

a
p
b
s
e
w
F
c
r
T
p
p

b
t
m
s
(
t
s
o
r
p

m
c
p
i
p
r
f
o
c

a
o
w
p
t
a

2

2

t
s
t
c
(
p
h
p
f
I
t
i
t

According to Ernst et al. [7], architectural decisions are the most im-
portant source of TD. Therefore, it becomes crucial to understand how
TD is managed by those who make architectural decisions, i.e., software
architects: the practices used to pay off the debt introduced in software
projects, and the practices performed by them to avoid or reduce TD
occurrence in software projects. Investigating payment and preventive
practices solely from the perspective of software architects is a com-
pelling argument because they are responsible for critical decisions that
affect the longevity of software products. These two practices (payment
and prevention) are important because they are related to each other:
debt prevention can be better and cheaper for the development team
than incurring debt and paying it off later [8]. In other words, TD
prevention also supports other TD management activities by reduc-
ing not only payment activities but also monitoring or identification
activities [1]. Prevention supports the implementation of the optimal
solution right from the beginning without potential interest payments.
Also, catching TD early by architects facilitates implementation phases
for practitioners. TD preventive actions can support the development
team to minimize the occurrence of debt [9]. Therefore, TD prevention
is worth additional consideration [8]. These two practices (payment
and prevention) are of special interest to the software community
because knowing the current practices adopted by practitioners can
provide initial guidance for software teams on how to prevent or pay
off debt items.

Despite the attention surrounding TD by both industry and aca-
demia, there is a lack of empirical evidence about both the payment-
related and preventive practices used by software architects in real-life
software projects [10,11]. There are, however, two studies close to
ours: a study focused on TD payment practices [12], and a study
focused on TD preventive practices [9]. The former [12] discusses an
analysis of the most cited TD payment practices considering the size
and age of systems, followed by an analysis of how TD causes can be
associated with TD practices. The analysis includes 432 professionals
from Brazil, Chile, Colombia, and the United States. The latter [9]
discusses an analysis of the preventive actions that can be used to avoid
the occurrence of TD and the impediments that hamper the application
of these actions. This analysis includes 207 professionals from Brazil
and the United States. Both studies focused on the point of view of
all software practitioners’ roles including developers, testers, project
managers, software architects, among others. Our study focused only
on the perspective of software architects. Also, differences between
populations lead to varying results among these studies.

The goal of this study is to investigate the practices performed on
TD payment and on TD prevention from the point of view of software
architects in real-life software systems projects. It is important to note
that TD payment/preventive practices were reported without knowing
how much debt was paid off nor the level of success of the practice,
therefore, this study does not make any assumptions on how optimal
a practice is. This study focused on payment-related practices of the
debt that practitioners were aware of, and not on whether the debt
was intentionally introduced. This study uses data from Brazil, Chile,
Colombia, and the United States, collected by the InsighTD Project,
which is a globally distributed family of industrial surveys on the causes
and effects of TD [13]. A total of 72 software architects from the coun-
tries mentioned responded to the survey. This study analyzes this data
through qualitative and quantitative strategies: first, we characterize
the study participants, and then, qualitatively analyze the payment and
preventive practices cited by them.

Results show that refactoring and improve design (19 citations al-
together) are the most cited TD payment practices used by software
teams, as reported by software architects. These practices were ex-
pected to be at the top of the list [1,10,14,15], considering that both
practices are intertwined. Lists of payment practices among design,
code, and test debt tend to be more similar as more practices are
included. We find that 6 out of 7 payment practices are shared between
2

code and design debt, and only three practices are shared among all s
three TD types: refactoring, improve design, and improve testing. Finally,
software architects reported the most common causes of TD occurrence,
and when they were mapped against the payment practices we found
that refactoring is the most used practice for TD payment in 5 out of 9
most cited TD causes.

Related to the TD preventive practices, we found that well-defined
rchitecture/design and well-defined scope/requirements were the most
erformed practices. Software architects understand the relationship
etween architectural design and TD. Also, we found that well-defined
cope/requirements was the most performed preventive practice for
xpert group, code evaluation/standardization for proficient group and,
ell-defined architecture/design for both competent and beginner groups.
inally, when comparing the preventive practices among software ar-
hitects, engineer roles, and management roles, we found that all three
oles share more than 50% of the performed preventive practices.
his is expected considering how close they are to the development
rocess. However, all three roles are different in their first 5 most cited
ractices.

Software practitioners can benefit from the results of this study
y using the list of practices related to TD payment used in industry
o support initial efforts to understand their debt (by considering the
ost cited TD causes) and to pay it off in their software projects. Also,

oftware practitioners could review the list of TD preventive practices
commensurate with their level or expertise) and use it as a guide
o improve their software development process. The global family of
urveys allows practitioners to evaluate their own TD situation against
verall industrial trends. For researchers, our results support future
esearch by providing insights into software architects’ perspectives on
ractices related to TD payment and TD prevention.

The contributions of this work are two-fold. First, an analysis of the
ost used TD payment-related practices (refactoring being the most

ited) is presented. In addition, a comparison of the similarity of the
ayment practices according to the three major TD types cases found
n our study is presented, together with a heatmap of the most cited
ractices related to TD payment against the most cited TD causes
eported by software architects. Second, an analysis of the most per-
ormed TD preventive practices is presented, together with an analysis
f these practices according to the experience of the architects, and in
omparison with management roles and engineering roles.

The rest of the paper is structured as follows: Section 2 presents
description of the InsighTD project history altogether with a review

f TD concept. Section 3 presents the survey design. In Section 4,
e present the results of our analysis. Discussion of our results are
resented in Section 5. Section 6 presents a review of studies similar
o this one. And finally, in Section 7, we present threats to validity,
nd conclude the paper in Section 8.

. Background

.1. InsighTD project

InsighTD is a globally distributed family of industrial surveys ini-
iated in 2017 and focused on organizing an open and generalizable
et of empirical data on the state of practice and industry trends in
he TD area. The InsighTD’s survey includes questions covering (i) the
haracterization of the participants and their respective organizations,
ii) the understanding of the TD concept, (iii) the identification of
ossible causes and their possible effects on software projects, and (iv)
ow software development teams react (e.g. monitor, pay off, or define
reventive actions) to debt items in their projects. To date, researchers
rom 11 countries (Brazil, Chile, Colombia, Costa Rica, Finland, India,
taly, Norway, Saudi Arabia, Serbia, and the United States) have joined
he project. The rationale behind country-level replication as the scope
s twofold: i. Organizing the work and making the dissemination of
he survey wider by utilizing the local industry contacts of a large

et of researchers, and ii. Investigating whether differences in local



Information and Software Technology 140 (2021) 106692B. Pérez et al.
development practices could influence how participants experience the
TD concept.

Currently, several studies have been conducted to analyze this
information, such as a discussion on the top 10 causes and effects
of TD [13], causes and effects of TD in agile software projects [16],
reaction to the presence of debt in the Chilean software industry [17],
documentation debt in software projects [18], among others [9,19,20].

2.2. Technical debt (TD)

The most recent definition of TD can be found in the Dagstuhl semi-
nar report 16162 [21]: ‘‘In software-intensive systems, technical debt is
a collection of design or implementation constructs that are expedient
in the short term, but set up a technical context that can make future
changes more costly or impossible. Technical debt presents an actual or
contingent liability whose impact is limited to internal system qualities,
primarily maintainability and evolvability’’. As stated by McConnell
in [22], internal quality attributes are characteristics that a user of
the software product is not aware of, for example, maintainability,
flexibility, portability, reusability, readability, and testability.

TD is composed of a debt, interest and principal. Debt is the term
used to describe the gap between the existing state of a software
and some ‘‘ideal and optimised’’ state [23]. Interest is related to the
extra effort in maintaining the system due to the presence of TD. And
principal is related to the effort required to address (refactoring) the
TD and lead the system to an optimal level of quality [24,25].

In the systematic mapping study by Li et al. in [10], they classified
TD in 10 different types as follow: design, architecture, code, documen-
tation, test, defect, requirement, infrastructure, build, and versioning
debt. In [15], Alves et al. identified four more TD types: people, process,
service, and usability debt. Kruchten et al. in [3] stated that architec-
ture, documentation and testing can add significantly to the debt and
thus are part of the TD landscape. Also, Holvitie et al. in [26] found that
inadequate architecture and inadequate documentation were the most
frequently causes of TD. According to Ernst et al. in [7], architectural
decisions are the most important source of TD.

3. Research method

This section presents the research questions posed in this work, and
discusses its data collection (survey research method) and data analysis
procedures.

3.1. Research questions

The goal of this study is to identify and analyze the practices
performed to pay off TD and to prevent TD occurrence from the point
of view of software architects in real-life software systems projects.
Based on this goal, we derived the following Research Questions (listed
below) guiding our study, the reporting of the results, and the knowl-
edge contribution to the TD community. In the list, we also present
the mapping between the RQs and the questionnaire Questions (Q)
described in Section 3.2.

RQ1: From a software architect’s point of view, what are the
practices for TD payment used by software development
teams? This RQ explores the practices used by software teams to
pay off or to support the payment of TD items that practitioners
were aware of, regardless of the intentionality of the injection.
This research question is not related to a practice used by the
software architects to pay off the TD, but to an action taken by
the software development team at any specific time, to pay off
the TD. It is important to mention that this question focuses on
the practice used, without considering the amount of TD paid
off, or whether the practice was successful or not. Questions 26
and 27 are used to answer this RQ.
3

P

RQ1.1: Is it possible to find similarities of the TD payment prac-
tices according to the TD type associated with them? This
RQ focuses on discovering if the type of TD (Section 2.2) has
an impact on the practice used to pay off TD. This is important
because software teams can define a set of practices according
to the type of TD facing at that moment. Q13 and Q27 are used
to answer this RQ.

RQ1.2: Is it possible to establish an association between main
causes leading to TD occurrence and main practices related
to TD payment? This RQ focuses on identifying any existing
relationship between causes leading to TD and how software
teams paid off these TD cases. Grouping TD payment practices
based on what cause the TD injection can support software
teams to adopt a set of most used practices of eliminating debt
items. Q16 to Q18, and Q27 are used to answer this RQ.

RQ2: From a software architect’s point of view, what practices
have been performed to prevent TD occurrence? This RQ
explores the main practices performed by software architects to
prevent TD occurrence in software projects. These practices are
based in the personal opinion and experience of the respondents.
Q28 is used to answer this RQ.

RQ2.1: Does the software architect’s level of expertise influence
the preventive practices performed by them? This RQ seeks
to discover if there are preventive practices that are common
regardless of the level of experience of the architects. Q7 and
Q28 are used to answer this RQ.

RQ2.2: Are preventive practices performed by software architects
different from the ones performed by other software devel-
opment roles? This RQ was formulated to better understand
how TD prevention is perceived by software architects, in com-
parison with other roles. We decided to compare the list of
preventive practices performed by them against the ones per-
formed by management roles and engineer roles. This analysis
allows us to understand if it is possible to establish a set of
preventive practices accepted by all roles, or if each role presents
its own set of preventive practices. Q6 and Q28 are used to
answer this RQ.

3.2. Data collection

The data was collected in the context of the InsighTD project, using
an online questionnaire (Google Forms). This allowed us to reach a
greater number of participants. Invitations were sent online only to
software practitioners. The sending of the questionnaire followed a
defined invitation procedure1: an invitation explaining the purpose of
the survey and the people involved was sent to participants. A reminder
was sent to participants one month later. Due to the anonymous nature
of the survey, reminders were sent to everyone. This protocol was
similar in all replications.

This survey can be classified as both exploratory and descriptive
research. It is exploratory research because it focuses on the discov-
ery of ideas and insights [27]. Open-ended questions are commonly
used in this kind of research. It is descriptive research because it is
preplanned and structured in design and the information collected can
be statistically inferred on a population [27]. Respondents were asked
to describe a specific past experience related to their participation in
a software system project [28]. This past experience can be placed at
different points of time, therefore, this survey cannot be considered

1 https://github.com/borisrperezg/TDPaymentAndPreventivePractices-
rotocol.

https://github.com/borisrperezg/TDPaymentAndPreventivePractices-Protocol
https://github.com/borisrperezg/TDPaymentAndPreventivePractices-Protocol


Information and Software Technology 140 (2021) 106692B. Pérez et al.

r

Table 1
Survey questions.

No. Question Type

Q1 What is the size of your company? Closed

Q2 In which country you are currently working? Closed

Q3 What is the size of the system being developed in that
project? (LOC)

Closed

Q4 What is the total number of people of this project? Closed

Q5 What is the age of this system up to now or to when
your involvement ended?

Closed

Q6 To which project role are you assigned in this project? Closed

Q7 How do you rate your experience in this role? Closed

Q8 Which of the following most closely describes the
development process model you follow on this project?

Closed

Q13 Please give an example of TD that had a significant
impact on the project that you have chosen to tell us
about:

Open

Q16 What was the immediate, or precipitating, cause of the
example of TD you just described?

Open

Q17 What other cause or factor contributed to the
immediate cause you described above?

Open

Q18 What other motives or reasons or causes contributed
either directly or indirectly to the occurrence of the TD
example?

Open

Q26 Has the debt item been paid off (eliminated) from the
project?

Closed

Q27 If yes, how? If not, why? Open

Q28 Considering your personal experience with TD
management, what actions have you performed to
prevent its occurrence?

Open

cross-sectional. Also, considering the online nature of the survey, re-
spondents could answer the survey at any time, avoiding researchers
to intervene while participants filled up the survey.

The InsighTD questionnaire consists of 28 questions [13]. Table 1
presents the subset of the survey’s questions related to the context
of this work. Questions Q1 to Q8 capture the characterization ques-
tions. For Q6, the options available are: business analyst, dba/data
analyst, developer, process analyst, project leader/project manager,
requirements analyst, software architect, and test manager/tester. Also,
option Other is included to allow participants to enter a different role.
Related to Q7, participants defined their level of experience in their role
among the following options: Novice (Minimal or ‘‘textbook’’ knowl-
edge without connecting it to practice), Beginner (Working knowledge
of key aspects of practice), Competent (Good working and background
knowledge of area of practice), Proficient (Depth of understanding of
discipline and area of practice), and Expert (Authoritative knowledge
of discipline and deep tacit understanding across area of practice).

Closed questions in Table 1 refer to multiple-choice closed ques-
tions. This type of question can only be answered by selecting from
a limited number of options. Some of the closed questions include
a free text option (e.g., other) so that the participants can express
their opinion more appropriately. This set of closed-ended questions
is mainly used for the characterization questions (Q1 to Q8). Question
26 is a yes/no closed-ended type question. Available options for each of
these questions are reported in Fig. 1 (Section 4.1). The set of available
options for the questions was selected based on the experience of the
Core Team (CT) of InsighTD and the steps described in the validation
phase presented in [13].

Question 13 asks participants to describe a case of a TD item that
had a significant impact on their software project (this case is used as
a basis for answering follow-on questions). In this question, the impact
could be measured in labor hours required to pay off the debt, or the
impact on maintainability, or possible delays for future releases. Any
measure that the participant considered relevant to describe the impact
4

of the TD item.
Also, it is important to note that it could be possible to expect
subjects not to be familiar with the TD concept. To mitigate this
scenario, participants were asked about their familiarity with the con-
cept of Technical Debt (Q9). Then, a TD definition adapted from
McConnell [29] was included before Q11. Question Q11 asks partic-
ipants to indicate how close was this definition to the understanding of
TD of the participant (5-point Likert scale), and also if there were parts
of this definition that the participant disagrees with (Q12). These three
questions (Q9, Q11 and, Q12) are not listed in Table 1.

Participants describe a case of a TD item in Q13. This case of a
TD item was then classified according to the TD types (code debt,
design debt, etc.) presented in Section 2.2. This classification is required
in order to answer our RQ1.1 (Is it possible to find similarities of
the TD payment practices according to the TD type associated with
them?). Each of the example cases given by the respondents followed
a mapping process between the overall description and TD indicators
from Alves et al. [15]. For example, ‘‘Update pending documentation’’
was an answer for Q13, and it has a direct mapping with the TD
indicator outdated documentation. This TD indicator is associated with
documentation debt, therefore, this example case was classified as doc-
umentation debt. This classification process was done independently
for each replication, and could have been done by one or all of the
researchers in each replication.

Questions Q16 to Q18 ask participants to describe the causes lead-
ing to the occurrence of TD in the case presented in Q13. Questions
Q26 and Q27 ask participants to answer if the TD item (from Q13)
was eliminated and how. Question 27 asks the participant to answer
how the debt was paid off, however not further instructions were given
to the respondent, such as the amount of debt actually paid off or by
whom the payment practice was performed. Also, respondents did not
include any information beyond the practice used. Finally, Q28 asks
participants about their personal opinion about practices performed by
them to prevent TD in their software systems.

3.2.1. Instrument validation
Three main steps were required to validate this survey, as presented

in [13]: internal validation, external validation, and pilot study [13].
Internal and external validations were completed in a period of six
months. Both validations were done to ensure that questions were
clearly interpretable and sufficiently complete to answer the original
research questions [13]. A pilot study was performed to ensure that the
questionnaire was well understood by a small number of participants
representing the target population of the study. Additional validation
activities were performed in countries where questions had to be
translated to their corresponding native language.

3.2.2. Selection of participants
The selection of participants was done based on their role in the

software industry. The following roles were considered: configuration
analyst, configuration manager, developer, process analyst, product
owner, programmer, project manager, requirements analyst, software
architect, software engineer, system analyst, test analyst, test manager,
and tester. Three main invitation channels were used to reach the target
population (software practitioners): the social media platform LinkedIn,
mailing lists, and industry partners. LinkedIn gave us direct access to
a large number of professionals with whom we did not have previous
contact. This process has been applied in all replications (Brazil, Chile,
Colombia, and the United States).

3.3. Data analysis

During the data analysis stage, only four countries had finished the
data gathering stage: Brazil, Chile, Colombia, and the United States, and
therefore, these countries were selected in this paper. Also, we only
selected answers where participants chose Software Architect as their
ole in a software project (Q6). Finally, according to RQ1, this study



Information and Software Technology 140 (2021) 106692B. Pérez et al.
Fig. 1. Characterization of participants.
focused only on answers where participants reported that the TD was
paid off (answered yes to Q26) , without considering the amount of TD
paid off, or the level of success of the payment. Negative answers were
not considered as a part of this study.

The survey instrument is composed of a mix of closed and open
questions. For closed-ended questions, we used descriptive statistics
to get a better understanding of the data. For open-ended questions,
answers were codified using a code schema provided from the InsighTD
project.2 Manual open coding was initially applied resulting in a set
of codes. The process was performed iteratively revising and unifying
codes at each cycle of analysis until reaching a point where no new
codes were identified. At the end of the analysis, we obtained a stable
list of codes along with their citation frequency. For example, two
participants cited the following preventive practices in raw form: ‘‘...
Educate the different participants of the project about the implications
of TD. Education is key’’, and ‘‘... I’ve also tried to track the TD
items, classify them, and estimate their TTF (time to fix)’’. We initially
coded these two chunks with ‘‘raising awareness of the debt’’, and
‘‘implementation of a TD management strategy’’, respectively. Then,
we could identify these two examples as different nomenclature for
the same preventive practice. Finally, we unified the names of sets
of preventive practices using the most commonly used term in that
subset, which was ‘‘td awareness/management’’ in this example. After
repeating these steps on the whole data set we had the final list of
preventive practices.

The coding process was performed by at least three researchers in
each of the four InsighTD replications. Each researcher could assume
one or two of the following roles: (i) code identifier, responsible for
reviewing the answers and extracting the corresponding codes, (ii) code

2 https://github.com/borisrperezg/TDPaymentAndPreventivePractices-
Protocol.
5

reviewer, responsible for reviewing and joining all extracted codes, and
(iii) referee, responsible for resolving disagreements in codes identified
by the code identifier and code reviewer. For example, for the pre-
ventive practice ‘‘specialized training in development patterns’’, two
researchers identified two different codes: ‘‘training’’ and ‘‘appropriate
use of design pattern’’. In this case, the referee decided to focus on
the final goal of the practice which is the appropriate use of design
patterns, and therefore, the code ‘‘appropriate use of design pattern’’
was selected.

The data-gathering stage was done in 2017 for Brazil, 2019 for both
Chile and Colombia, and 2018 for the United States. Some of these data
may seem quite old, but practices and actions described by software
architects are related to the what and not about the how. For example,
refactoring (the what) could be done by several means (the how) such as
using external tools to automating refactoring, or by doing some small
changes in the code. Therefore, the practice could remain updated no
matter how it was performed. In the same vein, a preventive action
such as having well-defined requirements (the what) can be done in
multiple ways (the how).

4. Results

This section presents the practices used to pay off TD, as reported by
software architects, and the practices performed by software architects
to prevent TD injection into software projects.

4.1. Characterization of the respondents

As a result of the joint effort of the participating countries, 427
responses were obtained. Of these responses, we found 72 software
architects, distributed as follows: 10 (13.9%) from Brazil, 16 (22.2%)
from Chile, 28 (38.9%) from Colombia, and 18 (25%) from the United
States. Fig. 1 summarizes the distribution of the survey participants

https://github.com/borisrperezg/TDPaymentAndPreventivePractices-Protocol
https://github.com/borisrperezg/TDPaymentAndPreventivePractices-Protocol


Information and Software Technology 140 (2021) 106692B. Pérez et al.

d

t
c
t
r
(
a

u
b
r
t
g
i
r
a
p

i
p

r

Table 2
Most cited practices related to TD payment.

Practice related to TD payment #CP %CP

Refactoring 13 30.2%
Improve design 6 14.0%
Adoption of good practices 3 7.0%
Budget increase 3 7.0%
Improve testing 3 7.0%

per company size, team size, system age and size, level of experience,
and process model. We notice that the participants are well distributed
among the different company sizes, most of them working in teams
composed of 5 to 9 practitioners following mostly hybrid or agile
processes. Further, systems with sizes mostly from 10 KLOC to 100
KLOC and 100 KLOC to 1 MLOC, and aged between 1 and 2 years, and
2 and 5 years are the most commonly mentioned among the surveyed
practitioners. Finally, software architects see themselves as proficient
regarding their level of experience, indicating that, in general, the
questionnaire was answered by professionals with experience in their
functions.

We are aware that these participants do not represent all the soft-
ware architects in the software industry from Brazil, Chile, Colombia,
and the United States. However, participants are characterized by
representing a broad and diverse audience reaching different levels of
experience, different sizes of organizations, and projects of different
ages and team sizes.

4.2. From a software architect’s point of view, what are the practices related
to TD payment used by software development teams? (RQ1)

To answer this RQ, we used question Q26 to select only answers
where TD was paid off: 31 answers (43.1%). Then, we used the answers
for question Q27 to extract the specific practice used to pay off the TD.
We excluded answers where no payment practice was described. In the
end, 27 valid responses from software architects were used to answer
RQ1. It is worth mentioning that TD payment practices were reported
without knowing how much debt was paid off nor the level of success
of the practice, therefore, this study does not make any assumptions on
how optimal a practice is.

We identified 16 TD payment-related practices. Some of the respon-
dents described more than one practice, and therefore, they were coded
and counted. For example, one respondent cited three practices: improve
esign, refactoring, and code reviewing.

Based on the 16 practices related to TD payment, we selected the
op 5 most cited practices and present them in Table 2. Only practices
ited more than two times are presented, and they represent 65.1% of
he set of all identified practices. Table 2 presents the TD payment-
elated practices, the total number (i.e., count) of times the practice
#CP) was cited, and the percentage of #CP in relation to the total of
ll cited practices (%CP).
Refactoring, as presented in Table 2, is the most cited practice

sed to pay off TD (13 citations) by software teams, as reported
y software architects. The reported practice was not an unexpected
esult [1,10,14,15]. In the context of this study, refactoring means
o refactor the source code of a system. Some examples of answers
iven by the respondents are: ‘‘Engineers taking the time to eliminate
t during new feature development or taking it upon themselves to
efactor a messy bit of code’’, ‘‘Performing the necessary refactoring’’
nd ‘‘Code restructuring (refactor)’’. As can be seen, answers about the
ayment practices used to pay the debt were straightforward.

The second TD payment practice is improve design. This practice
is related to the changes in the system architecture. Changes in the
architecture will be performed in the code later, so, refactoring and
mprove design are intertwined, and therefore, it is unsurprising that this
6

ractice (improve design) ranks as one of the first two practices listed to
remove the debt. Some examples of answers given by the respondents
are: ‘‘The identified tech debt has been resolved through updated
designs and refactors’’ and ‘‘refactoring and change of architecture’’.

In [30], the authors found that some TD payment-related practices
do not directly allow the elimination of TD items. For instance, the
practice adoption of good practices is more related to preventive practices
to avoid (reduce) TD occurrences but does not eliminate the item by
itself. The authors [30] indicated the existence of four types of practices
related to TD payment: payment practice, defining a favorable setting
for TD payment, TD prevention, and TD prioritization. We also have
such kinds of cases in our results. The following three practices in
our rank are sorted alphabetically since they share the same number
of citations (3 citations): adoption of good practices, budget increase,
and improve testing. Adoption of good practices and improve testing are
more related to preventive practices. On the other hand, budget increase
could be a consequence of having too much TD or a requirement
to pay TD off. Also, budget increase is the only practice related to
the management level of software development. Quotes of these three
practices were very explicit: ‘‘Benefits of a shared library cutting down
on dev time duplicating or maintaining extra code’’, ‘‘The cost was
implicitly assumed’’, and ‘‘Defining hours of testing by the development
team’’.

Other practices not listed in Table 2 (with two citations) are: code
eviewing, extra effort, improve communication, incremental payment, and
use of external tools. Extra effort and incremental payment could be both
related to refactoring. Extra effort was required to pay the debt, and an
incremental payment was used to pay TD off. However, answers were
not explicit about the payment practice itself. Code reviewing, improve
communication, and use of external tools could be related to preventive
practices to avoid or reduce TD occurrences.

4.3. Is it possible to find similarities of the TD payment practices according
to the TD type associated with them? (RQ1.1)

This RQ focused on measuring quantitatively how similar the list TD
payment practices are for each of the following types of debt: code debt,
design debt, and test debt. To accomplish this task, we first investigate
the type of TD based on the example case reported by respondents in
Q13, and then, the list of practices (ranked by citations) according to
each of the TD types was extracted. The identification of the type of
TD based on the example case was presented in Section 3.2. The three
main types of debt are code (32%), design (24%), and test debt (16%).
Code debt refers to the problems found in the source code that can
negatively affect the legibility of the code increasing maintainability
efforts [15]. Design debt refers to violations, at the source-code level, of
the principles of good object-oriented design (e.g. very large or tightly
coupled classes) [31]. Test debt refers to shortcuts taken in testing,
such as lack of tests (e.g., unit tests, integration tests, and acceptance
tests) [10].

To quantitatively measure how similar the lists of TD payment
practices are to each other, we used the rank-biased overlap (RBO)
similarity measure [32]. RBO compares two ranked lists and returns
a numeric value between zero and one to quantify their similarity. An
RBO value of zero (0) indicates the lists are completely different, and
an RBO of one (1) means completely identical or overlapping. RBO was
used because it supports top-weighted ranked lists, the ranked list could
be incomplete and the decision to truncate the ranking at any depth is
arbitrary. RBO is defined as follows:

𝑅𝐵𝑂(𝑆, 𝑇 , 𝑝) = (1 − 𝑝)
∞
∑

𝑑=1
𝑝𝑑−1 ⋅ 𝐴𝑑

where 𝑆 and 𝑇 are the ranked lists; 𝑝 is the probability of looking
for overlap at depth 𝑑 + 1 after having examined element at 𝑑. The
𝑝 value used in RBO represents the number of elements to compare,
for example, 𝑝 = 0.5 corresponds to a comparison of the first two
elements approximately, and 𝑝 = 0.97 corresponds to a comparison



Information and Software Technology 140 (2021) 106692B. Pérez et al.
Fig. 2. RBO analysis of TD payment practices ranks per TD type.
Table 3
TD payment practices per TD type.

Payment practice Code debt Design debt Test debt

Refactoring 8 1 1
External tools 2 – –
Adoption of good practices 1 2 –
Code reviewing 1 1 –
Improve design 1 2 1
Improve testing 1 1 1
Incremental payment 1 1 –
Budget increase – 1 –
Extra effort – 1 –
Tech independent implement. – 1 –
Backlog inclusion – – 1
To make defect free system – – 1

of all elements approximately. The smaller the 𝑝 value, the more top-
weighted the metric. 𝐴𝑑 is the agreement between 𝑆 and 𝑇 at depth 𝑑,
i.e. the proportion of 𝑆 and 𝑇 that are overlapped.

Fig. 2 depicts the pairwise RBO comparisons among the three lists
of practices related to TD payment (one line for each pair of TD types).
This figure presents a visual comparison of the similarity of practices.
RBO comparison went from 𝑝 = 0.5 to 𝑝 = 0.97.

Overall, the RBO comparison indicates that the similarity level
concentrated on the very initial practices of the ranks is only around
15%. This value increases as we consider more practices from all the
ranks. However, the difference of perceptions in the very beginning of
the ranks is very significant because these practices have the biggest
citation values, which means that they have a large use as perceived
by the software architects.

We can also notice that the payment practices from design debt and
code debt tend to be more similar as more practices are included. At
𝑝 = 0.5, the RBO value for the pair design debt-code debt was 0.11, and
then, at 𝑝 = 0.97, the RBO value increased to 0.68. We found 7 practices
for cases of code debt, and 6 out of 7 practices are shared with design
debt.

The pair design debt-test debt presents some degree of similarity.
They both have improve design in second position, and also share
improve testing and refactoring. For the test debt-code debt pair, it can be
seen that they do not share practices at the first two elements, but then,
as more practices are included, more similarity tends to show (RBO =
0.43).

The list of practices per TD type is presented in Table 3. This Table
lists the TD payment practices and the number of times it was cited
according to the TD type derived from Question 13.
7

As can be seen, it is possible to note that only three practices
are shared among the three TD types: refactoring, improve design, and
improve testing. There are also cases of particular practices per type
of TD, for example, cases of code debt reported the practice (use of)
external tools, and cases of test debt reported the practices backlog
inclusion and to make defect free system. For design debt, there are three
practices only described for this TD type: budget increase, extra effort,
and technology independent implementation.

4.4. Is it possible to establish an association between main causes leading
to TD occurrence and main practices related to TD payment? (RQ1.2)

To answer this RQ, we took the nine (out of 21) most cited causes
leading to TD occurrence reported by software architects together
with an associated heatmap against the most cited TD payment-related
practices (Fig. 3). We took the causes leading to TD occurrence that
were cited 4 or more times. This was done to prevent the heatmap from
being scattered, considering that there are cases that were cited only
once.

The selected nine causes for the analysis represent 73.6% of the total
of causes identified. The list of causes was gathered joining answers
from questions Q16, Q17, and Q18. Then, a codification process was
performed to assign codes to the answers, as described in Section 3.3.
The list of causes in Fig. 3 includes the number of times they were cited.

From Fig. 3, it is possible to see that non-adoption of good practices is
the most cited cause leading to TD occurrence, followed by inappropri-
ate planning and lack of qualified professionals. The first and third causes
have a technical inkling, while the second one, has a management
inkling. In total, there are four causes with management and five with
technical inkling. So, from the point of view of software architects,
technical and management issues are almost equally decisive for the
occurrence of debt items.

Refactoring is the most selected practice used for TD payment in 5
out of 9 causes. Non-adoption of good practices had the highest number of
citations for refactoring (9 citations), followed by lack of qualified profes-
sionals (5 citations). On the other hand, not effective project management
had the lowest number of citations for refactoring (1 citation). Other
practices cited for this cause are: improve testing, incremental payment,
and improve communication. This means that dealing with problems at
the management level requires a different set of practices to fix the
problem.

Refactoring shares the number of citations for the following causes:
producing more with no quality, inadequate choice of technology/tool
/platform, deadline, and not effective project management. With respect

to these first three causes, the other practices cited are: improve design



Information and Software Technology 140 (2021) 106692B. Pérez et al.
Fig. 3. Practices related to TD payment vs. the most cited causes.
Table 4
Top 9 practices to prevent TD occurrence.

Preventive practice # %

Well-defined architecture/design 14 13.6%
Well-defined scope/requirements 12 11.7%
Code evaluation/standardization 12 11.7%
TD awareness/management 10 9.7%
Adoption of good practices 9 8.7%
Better project management 8 7.8%
Improving tests/coverage 7 6.8%
Good communication on team 6 5.8%
Training (code review/refactoring) 4 3.9%

and code reviewing. Improve design is the second most cited practice for
TD payment among all presented causes. This practice has the highest
number of citations (after refactoring) for inappropriate planning and
producing more with no quality.

Although we can observe some interesting behaviors in Fig. 3, over-
all, results allow us to conclude that refactoring is the main payment
practice of development teams to pay off the debt no matter what
caused it to be injected.

4.5. From a software architect’s point of view, what practices have been
performed to prevent TD occurrence? (RQ2)

To answer this RQ we used the answers for question Q28. Most
participants cited multiple preventive practices when answering this
question. For example, an experienced software architect answered
‘‘adoption of good practices and available documentation’’. In these
cases, the researchers analyzed each practice separately and mapped
them to their corresponding code.

After the coding process (described in Section 3.3), we identified
25 TD preventive practices, which sum up to 103 citations. Based on
this list, we selected the practices with four or more citations and
present them in Table 4. These 9 practices represent almost 80% of
the set of all identified practices. Table 4 presents the TD preventive
practice, the total number (i.e., count) of times the practice (#CP)
was cited, and the percentage of #CP concerning the total of all cited
practices (%CP). We can observe that well-defined architecture/design,
well-defined scope/requirements, and code evaluation/standardization are
the most cited preventive practices performed by software architects to
minimize the occurrence of TD.

Well-defined architecture/design is the most frequently cited practice
with 14 citations. In the context of this study, well-defined architec-
ture/design is related to the appropriate use of architectural/design pat-
terns, architecture review, and good practices in architecture design, as
8

stated by the respondents. A good architecture would imply a reduction
of TD in the system. Also, a well-defined architecture would depend
on having enough understanding of the requirements and the business.
This is the main input with which the architect must work. Therefore,
the second most cited practice (well-defined scope/requirements) could
be considered a precursor of good architecture and also, a real practice
to prevent TD occurrence.

The third practice cited by the architects is code evaluation/
standardization. This practice shares the same amount of citations as
well-defined scope/requirements with 12 citations (11.7%). This practice
can go hand in hand with the use of tools to perform a continuous
inspection of the code quality to detect bugs, code smells, and security
vulnerabilities.

TD awareness/management is the fourth most cited practice with 10
citations (9.7%). This practice encompasses the following sub-practices:
information about extra effort due to TD, use of tools for TD identification,
awareness of TD, training on TD management, and implementation of a
TD management strategy. Being aware of the TD concept could support
architects to be more cautious about whether or not to allow the debt
to be injected.

Adoption of good practices with 9 citations (8.7%) is related to code
development and covers the following sub-practices: following a well-
defined development standards and adoption of pair programming. Better
project management with 8 citations (7.8%) is the first non-technical
practice in the list of practices presented in Table 4. This practice
encompasses the following sub-practices: well planned deadlines, project
manager participation, adding time to estimate task, among others. Having
this practice in the sixth position indicates that software architects focus
more on technical practices to prevent TD occurrence.

Improving tests/coverage with 7 citations (6.8%) is in seventh posi-
tion. This practice is related to the improvement of the tests designed
to check source code. This practice encompasses the following: creation
of automated tests and appropriate test coverage. Good communication on
team with 6 citations (5.8%) is the second non-technical practice to
prevent TD occurrence. This practice is related with good communication
among stakeholders, improving of internal communication, and discussion
about project improvements. This practice implies having a role capable
of communicating with the business side and with the technical side.
Finally, training (code review/refactoring) with 4 citations (3.9%) is in
ninth position. Training on code reviews could be useful to reduce
TD occurrence. On the other hand, training on refactoring is more
related to TD payment practices. However, both pieces of training were
grouped.

The full list of preventive practices includes quality control (3 ci-
tations; 2.9%), well-defined/available documentation (3 citations; 2.9%),
using continuous integration (2 citations; 1.9%), monitoring of the
process (2 citations; 1.9%), and 11 more practices with 1 citation.



Information and Software Technology 140 (2021) 106692B. Pérez et al.

w
T
t

4
f

t
a
T
d
t

a
c
T
r
t
t
p

i
p

n
s
n
d
a

Table 5
Top 3 most cited practices for TD prevention by level of architectural experience.

Experience Action for TD prevention #CR %CR

Expert
Well-defined scope/requirements 8 25.0%
TD awareness/management 5 15.6%
Better project management 4 12.5%

Proficient
Code evaluation/standardization 7 18.4%
Well-defined architecture/design 5 13.2%
TD awareness/management 5 13.2%

Competent
Well-defined architecture/design 4 19.0%
Improving tests/coverage 3 14.3%
Good communication on team 3 14.3%

Beginner Well-defined architecture/design 2 18.2%
Code evaluation/standardization 2 18.2%

4.6. Does the software architect’s level of expertise influence the preventive
practices performed by them? (RQ2.1)

To answer this RQ, we analyzed the relationship between the level
of experience (via the answers to question Q7) and the preventive
practices. Table 5 presents the most cited TD preventive practices
as performed by expert, proficient, competent, and beginner software
architects. The expert group consists of 18 architects, the proficient
group consists of 22 architects, the competent group consists of 11
architects and the beginner group consists of 5 architects. The novice
group was excluded because only one respondent was part of this
group. Table 5 presents the name of TD preventive practice, the total
number (i.e., count) of times the practice (#CP) was cited, and the
percentage of #CP in relation to the total of all cited practices by group
(%CP).

The first thing to note in Table 5 is the difference among all levels of
experiences, each one having a different most cited TD preventive prac-
tice. The expert group has the most cited preventive practice among all
groups: well-defined scope/requirements (8 citations). This group under-
stands the importance of having clearly defined requirements to build a
strong architecture. Well-defined scope/requirements was cited twice by
the proficient group and once by both competent and beginner groups.

Well-defined architecture/design was cited by all groups. The ex-
pert group cited three times this practice. All groups understand that
good architecture could prevent the presence of TD. However, only
experts were clear about the importance of requirements. TD aware-
ness/management was cited only by expert and proficient groups. These
groups understand the importance of including a TD management
strategy during the software development process.

Code evaluation/standardization was cited by all groups. The expert
group cited this practice one time, in contrast to the proficient group
which had seven citations for this practice. Better project management
was cited four times by the expert group. Proficient and competent
groups cited this practice twice. The beginner group cited it only once.
Finally, good communication on team was cited three times by both
expert and competent groups, and only once by the proficient group.

4.6.1. RBO analysis
We decided to use RBO to measure quantitatively how similar the

TD preventive practices among the level of experience of software
architects are. Fig. 4 depicts the pairwise RBO comparisons among the
four lists of preventive practices (one line for each pair of levels of
experience). Overall, although the RBO value tends upwards, the result
of the analysis indicates that there are differences in how software
architects with different levels of experience perceive the prevention
of TD items.

Fig. 4 presents interesting results. TD preventive practices for
Beginner–Proficient pair are the most similar among all groups. This
similarity keeps the highest from 𝑝 = 0.5 (𝑅𝐵𝑂 = 0.79) to 𝑝 = 0.97
(𝑅𝐵𝑂 = 0.69). This means that the preventive practices performed
9

Table 6
Consolidated top 5 practices to prevent TD occurrence by role.

Preventive practice SA EN MA

Well-defined architecture/design 14 (1st) 19 (4th) 5
Well-defined scope/requirements 12 (2nd) 14 4
Code evaluation/standardization 12 15 3
TD awareness/management 10 (4th) 24 (3rd) 10 (2nd)
Adoption of good practices 9 (5th) 31 (1st) 6 (5th)
Better project management 8 28 (2nd) 11 (1st)
Good communication on team 6 18 (5th) 7 (4th)
Qualified professionals 2 1 8 (3rd)

by both groups are similar in the first two elements and keeps some
similarity as more practices are included to compare. On the other
hand, the Beginner–Expert pair exhibits the lowest similarity for 𝑝 =
0.5 (𝑅𝐵𝑂 = 0.045). This means that the beginner group is closer to
the proficient group but not to the expert group. However, the more
practices are compared, the greater the similarity of this pair. At 𝑝 =
0.97, the similarity increase to 𝑅𝐵𝑂 = 0.6.

Another interesting result is the lack of similarity of the preventive
practices performed by the expert group and the proficient group. When
only two practices are compared the similarity is 𝑅𝐵𝑂 = 0.21, and

hen all practices are compared, the similarity increase to 𝑅𝐵𝑂 = 0.58.
his means that when all practices are compared, only a little more
han half of the practices are shared between these two groups.

.7. Are preventive practices performed by software architects different
rom the ones performed by other software development roles? (RQ2.2)

To answer this RQ, we took the roles selected in Q6 and codified
hem into three big groups: management roles (manager, project man-
ger, business analyst, QA manager, product owner, process analyst,
I manager), engineering roles (developer, tester, software engineer,
atabase administrator, requirements analyst, infrastructure analyst,
echnical leader, data analyst), and software architects.

Table 6 presents the list of the 5 most cited TD preventive practices
ccording to each of the three roles. It also shows the number of
itations by each role and the relative position of the practice per role.
he first 5 practices of the table belong to software architect (SA)
oles and were extracted from Table 4 (Section 4.5). The following
wo practices (better project management and good communication on
eam) belongs to engineer roles (EN), and the last practice (qualified
rofessionals) belongs to management roles (MA).

We can see that all three roles share this list of practices, but not
n the same order. Even more, none of the practices share the same
osition in two or more roles, except by adoption of good practices,

which share the 5th position in software architects and management
roles.

Three of the top 5 practices are shared between software archi-
tects and engineer roles: well-defined architecture/design, TD aware-
ess/management, and adoption of good practices. Only two practices are
hared between software architects and management roles: TD aware-
ess/management and adoption of good practices. However, things look
ifferent between engineer roles and management roles. Four practices
re shared between these groups: TD awareness/management, adoption
of good practices, better project management, and good communication on
team.

Considering the number of citations of the preventive practices for
all three roles, the practice better project management is the most cited
one with 47 citations, closely followed by adoption of good practices (46
citations) and TD awareness/management (44 citations).

Although there are some similarities between the three groups, it is
also possible to see specific practices for each role. For example, the
practice qualified professionals seems to be important for management
roles with eight citations (3rd position). However, this same practice

was less cited by software architects (two citations) and technical roles



Information and Software Technology 140 (2021) 106692B. Pérez et al.
Fig. 4. RBO of practices related to TD prevention ranks per level of experience of software architects.
(one citation). On the other side, code evaluation/standardization was
well cited by software architects and engineer roles and barely cited
by management roles.

4.7.1. RBO analysis
Table 6 presented the top 5 most cited TD preventive practices

per role, which seems similar for all three roles. From this list, we
can conjecture that engineer roles and management roles are the most
similar ones. However, there is a necessity to go deeper into this
comparison by measuring quantitatively how similar all the cited TD
preventive practices are among the three groups. Fig. 5 depicts the
pairwise RBO comparisons among the three lists of TD preventive
practices (one line for each pair of practices).

The first thing to note in Fig. 5 is that, at 𝑝 = 0.5, the management–
architect pair and architect–engineer pair had both an RBO value of
0.046 and 0.075, respectively. This means that the list of preventive
practices from management roles and software architects has no com-
mon practices in their first two positions (approximately). The same
happens for software architects and engineer roles. On the other hand,
the management–engineer pair has an RBO value of 0.29 at 𝑝 = 0.5,
which is higher, but still small as a comparison value. This value occurs
because the engineer and management roles share the practice better
project management in their first two positions (see Table 6).

The second thing to note is that, at 𝑝 = 0.97, the management–
engineer pair and architect–engineer pair had both an RBO value of
0.64. This means that preventive practices from management roles
and engineer roles share more than 50% of their practices. The same
thing happens for software architects and engineer roles. management–
architect had an RBO value of 0.56.

Overall, all three roles were different in their first 5 most cited
practices. This means that every role has its worries and focuses on
different strategies to reduce TD’s presence in the software.

5. Discussion

This section discusses the results and presents their implications for
both practitioners and researchers.

5.1. RQ1: From a software architect’s point of view, what are the practices
related to TD payment used by software development teams?

As presented in Section 4.2, refactoring is the most cited TD pay-
ment practice. As stated by Fowler [33], refactoring is a technique
for improving the design of an existing code base through a series
of small behavior-preserving transformations. On the other hand, a
10
software team can opt to just write new code altogether, in other words,
do the rewriting. This distinction is important because our survey
artifact did not allow us to know if respondents were aware of the
differences between these two practices to pay off TD. However, some
respondents gave us some hints, for example: ‘‘Redoing the software’’.
Other respondents were somehow ambiguous: ‘‘Through refactoring
and APIs analysis’’. It was not clear which specific refactoring activities
were performed during TD payment. It would be worthwhile to have a
deeper codification scheme, however, the lack of deeper explanations
by the respondents, dismiss this possibility.

According to Ernst et al. in [7], architectural decisions are the
most common source of TD. The debt introduced early in the software
(such as in the architecture), persists throughout the whole software
lifecycle, becoming a major concern. Improving the architecture should
be at least one of the first two practices to pay off the TD. Improve
design ranks as one of the first practices (second) described by software
architects as a practice implemented by software teams to remove the
debt.

There are payment-related practices that would require a deeper
analysis, for example, budget increase. Increasing the budget of the
project will also mean that the software team would have to include
new functionalities and not only pay off the debt. No client will pay for
fixing code issues that the user will not see. It is important to remark
that TD consequences are related to maintainability and evolvability.
Also, increasing the budget will require practitioners to consider some
tradeoffs: how much would it cost to pay off the debt? vs. how much
does it cost to maintain the debt? According to Martini and Bosch [34],
it could be more profitable to delay the refactoring, i.e. continue paying
interest, but this will be a decision made by software teams.

After reviewing the list of TD payment practices (Table 2), some
of the cited practices do not allow the elimination of TD items, such
as adoption of good practices and improve testing. TD payment-related
practices encompass practices associated with TD payment, prevention,
and the creation of a favorable scenario for paying off debt items.
This situation could be explained considering the context of the survey,
where respondents could or could not, be part of the implementation
of the payment practice. Therefore, they could go from a general (and
maybe abstract) idea of how it was paid off, to a full understanding of
the payment activity carried out.

5.1.1. RQ1.1: Is it possible to find similarities of the TD payment practices
according to the TD type associated with them?

A comparison of the TD payment practices used in cases of code
debt, test debt, and design debt was performed and presented in Fig. 2.
Software architects, in the context of our study, have in mind more



Information and Software Technology 140 (2021) 106692B. Pérez et al.
Fig. 5. RBO of TD preventive practices per software development role.
cases of code debt, than cases of design debt or test debt. This could
be an indicator of what software architects consider as the root of TD
injection in software projects.

This comparison showed that the practices used in the cases of code
debt and design debt were the most similar. This could be considered
evident given the close relationship between code and design during
software development. The pair test debt-code debt shows an increasing
similarity as many practices were compared. Unfortunately, there were
only five cases of test debt and therefore, no more items could be
included in the comparison. Code and test are related and it could be
expected some increasing similarity between practices used to pay off
TD in these two types of debts.

Also, based on Table 3, it is possible to note that only three practices
are shared among the three TD types: refactoring, improve design, and
improve testing, which are also in the top 5 TD payment practices
(Table 2). So, there is a common agreement in what the main practices
related to TD payment for all three TD types are.

5.1.2. RQ1.2: Is it possible to establish an association between main causes
leading to TD occurrence and main practices related to TD payment?

Fig. 3 gave us the opportunity to understand what practices are
used according to what caused the TD injection. For example, the cause
producing more without quality directly affects the decisions that ended
in the code. If the code works, it goes to production. Then, it is expected
to have refactoring and improve design as the main practices used to
pay off TD. This same happened for the cause inappropriate planning.
Bad planning leads to deadlines, and deadlines lead to producing code
without the expected quality. So, from this point of view, producing
more without quality could be a consequence or effect of inappropriate
planning.

Another cause, inadequate choice of technology/tool/platform, has
refactoring and code reviewing as main payment practices. This could
be more related to architectural decisions. If the team chooses some
technology and then they decide that it was not the best choice, then
the best choice could be a change in the platform or tool. However, this
could be expensive in some cases, and therefore, small improvements
in the code should be the only possible actions to take.

Refactoring is also the main practice to pay off the TD injected by
team overload of work. It seems there is not much of a relationship
between this cause and this payment practice. However, if the prac-
titioner has a lot of work to do, they will try to work as fast as possible
(maybe injecting all kind of debt). As a consequence, there will be a
code without the expected quality.

Further research should be undertaken to investigate the types of
refactoring and the process of carrying it out. Also, it is mandatory
11
to go further in measuring the true amount of TD types in software
projects, and also, which quality attributes are most likely to inject TD.
This information could not be deduced from the answers in the survey.

5.2. RQ2: From a software architect’s point of view, what practices have
been performed to prevent TD occurrence?

TD preventive practices allow software practitioners to curb the
presence of TD in their software systems. It is important to mention
that Q28 asks participants to report the practices performed to prevent
TD. From this question it is possible to establish that practices reported
were success at some level because they were used to prevent TD
injection. It is not clear, however, if each practice worked by itself or
it was the joint effort of the reported practices.

From the point of view of software architects, the most cited prac-
tice is well-defined architecture/design, followed by well-defined scope/
requirements, and code evaluation/standardization. Architectural deci-
sions are the main source of TD, and therefore, a good architecture
design would imply a reduction of TD in the system. However, this
would only reduce deliberately injected TD. Inadvertently injected TD
is inevitable. As a result, the TD trickles down in the development
process reaching the code. It is also relevant to understand what makes
architecture good.

The architect, from his perspective, could be sure that the archi-
tecture is correct. If detailed evaluations of the architecture could be
carried out in all cases, then architects would be aware of existing TD
items and deliberate trade-offs made during design sessions. Also, TD
injected as a consequence of architectural decisions can also be intro-
duced without anyone’s fault. Sometimes, decisions made by architects
are made in the context of a specific time, and it may have been the best
decision at that point. Later, as new requirements and the environment
surrounding the system changes, the decision made in the past now
becomes a problem. Unfortunately, this is an open issue. In the practice,
it is not pragmatic to constantly revisit past decisions when designing
new software. If software architects were to do this, then the ‘‘revisits’’
actions would become a burden in it of itself.

Having a well-defined architecture looks more like a goal to reduce
the presence of TD, than a practice to prevent TD occurrence. A well-
defined architecture would depend on having enough understanding
of the requirements and the business. This is the main input with
which the architect must work. However, this is not feasible all the
time. Software architects make decisions under conditions of time
pressure, high stakes, uncertainty, and with too little information [35].
Software architects must work under these conditions, and iterate as



Information and Software Technology 140 (2021) 106692B. Pérez et al.

i
t
t
s
i

5
p

a
c
m
T
c

p
A
e
o
p
c
r
a

a
g
o
f
T
d
i

5
d

m
T
t
T
t
c
b
b
o
T
w

c
e
c
b

s
w
r
s

5

u
p
d
p
t
t
n
t
o

l
i
e
a
w
h
p

i
p
o
b
o

6

p
s
s
a
s
d
c
i
a

v
a
s
I
p
o
c
T
c
r
a

c
a
g
m
T
s
a
o

they go along. Despite this, we acknowledged that the second most
cited practice (well-defined scope/requirements) could be considered a
precursor of good architecture and also, a real practice to prevent TD
occurrence.

The first two TD preventive practices are strongly related to the
software architecture stage. The third practice, (code evaluation/stan-
dardization), is related to the development stage. It is important to note
that software architects acknowledge the importance of having clearly
defined the software requirements in order to have a well-defined
architecture. Then, as the code begins to be developed, the changes
to take care of, in the code base to avoid TD injection, are apparent.
Software architects are aware that TD injection can be prevented by
focusing on the architecture and then on the source code.

This list of preventive practices is focused on technical practices.
The only practice out of this trend is better project management. This
s unexpected considering that 4 out of 9 causes of TD injection (Sec-
ion 4.4) have a management inkling. Software architects acknowledge
hat the majority of TD items are actually related to technical aspects of
oftware development, no matter external aspects such as management
ssues.

.2.1. RQ2.1: Does the software architect’s level of expertise influence the
reventive practices performed by them?

In Section 5.2, it was stated that well-defined scope/requirements is
practice for TD prevention and cited 2nd in the list of the most

ited TD preventive practices. This practice was recognized as the
ost important one (most citations) for the expert group (8 citations).
his practice was also cited by proficient (2 citations), competent (1
itation), and beginner group (1 citation).
Well-defined architecture/design was acknowledged by all groups (ex-

ert: 3 citations). This is expected considering the role of respondents.
ll groups understand that good architecture could prevent the pres-
nce of TD. However, only experts were clear about the importance
f requirements. Code evaluation/standardization was mainly cited by
roficient (7 citations) and beginner (2 citations) groups. It was also
ited by expert (1 citation) and competent (2 citations) groups. This
esult indicates that source code is still a concern for software architects
s a means of preventing TD injection.
TD awareness/management was mainly and only cited by expert

nd proficient groups. This result marks a separation line between
roups with a high level of experience and groups with a low level
f experience. Lastly, this result brings an interesting opportunity to go
urther to understand how being aware of the TD concept could be a
D preventive practice. We believe that tracking TD items as part of the
aily activities of a software team can make the team more proactive
n terms of avoiding the occurrence of new debt items.

.2.2. RQ2.2: Are preventive practices performed by software architects
ifferent from the ones performed by other software development roles?

At first sight (Table 6) it is possible to think that engineer and
anagement roles have performed similar TD preventive practices.
hese two roles shared 4 out of their first 5 most cited practices. This is
ruly unexpected considering the differences between these two roles.
his could be related to the general idea about TD and source code. But
he shared practices are not only about technical concerns, they also
ited preventive practices about management concerns and soft skills:
etter project management and good communication on team. So, at least,
oth roles understand the importance of having good management
f the software projects and to have good communication channels.
his latter could be done through the best meeting spaces and a good
orking environment.

Also, it was possible to note that none of the roles shared a most
ited practice. Software architects cited well-defined architecture/design,
ngineer roles cited adoption of good practices and management roles
ited better project management. All three roles share this list of practices,
12

ut not in the same order. Even more, none of the practices share the o
ame position in two or more roles, except by adoption of good practices,
hich share the 5th position in software architects and management

oles. This means that every role has its worries and focuses on different
trategies to reduce TD presence in the software.

.3. Implications to researchers and practitioners

Software practitioners can benefit from the results of this study by
sing the list of the most cited TD causes and practices related to TD
ayment used in industry to support initial efforts to understand their
ebt and to pay it off from their software projects. However, this list of
ayment practices by itself is not quite enough. It becomes necessary
o analyze the differences among these practices in order to understand
he nature of the required changes (improvements) and the resources
eeded, such as the frequency of the payment practice, the cost related
o the debt, among others. In the end, the success of the implementation
f any practice will depend on the software team.

Also, in response to RQ2, software practitioners could review the
ist of TD preventive practices as a guide to include TD prevention
nto their software development process, according to their level of
xperience. Or they can go deeper on practices provided by experts
nd find a way to include them in the development process. A lot of
ork could be required to have a full implementation of these practices,
owever, even a small change can have a impact on the development
rocess.

For researchers, our results support future research by providing
nsights into software architects’ perspectives on practices related to TD
ayment and TD prevention. Finally, the global family of surveys not
nly allows researchers to reproduce the results and their interpretation
ut also allows practitioners to evaluate their own TD situation against
verall industrial trends.

. Related work

There are studies related to payment practices described by software
ractitioners. In [1], Yli-Huumo et al. conducted an exploratory case
tudy method to collect and analyze empirical data by performing
emi-structured interviews to 25 software practitioners (11 software
rchitects) from eight (8) software development teams in one large
oftware company. Related to TD prevention, the vast majority of
evelopment teams used coding standards to prevent TD, along with
ode reviews, and the definition of done. These results were also found
n [36] where software teams used coding standards/guides to prevent
nd reduce TD.

Several other studies focused on the software practitioners’ in-
olvement with TD through empirical methods such as interviews
nd questionnaires. In [7], Ernst et al. focused on the relationship of
oftware architecture and TD, and the use of tools for TD management.
n [8], Rios et al. focused on understanding causes and conditions to
revent TD injection. They found that preventive strategies depend
n causes of TD. In [37], Codabux et al. focused on TD definition,
haracterization, consequences, benefits, and how it is communicated.
hey found that allocating developer time to address TD is the most
ommon practice to manage the debt. In [38], Codabux and Williams
eported automating manual tests and fixing defects in their own code
s practices to reduce TD presence.

In [11], Rios et al. presented a tertiary study to investigate the
urrent state of research on TD. They analyzed 13 secondary studies
nd reported a TD management landscape, including activities, strate-
ies, and tools. In this landscape, they reported four TD management
acro activities: prevention, identification, monitoring and payment.
hey found that no strategies and/or tools have been identified to
upport TD prevention activity. Finally, in [10], Li et al. performed
systematic mapping study to obtain a comprehensive understanding

n the TD concept and an overview on the current state of research

n TDM. In this study, they identified nine TD management activities.



Information and Software Technology 140 (2021) 106692B. Pérez et al.

s
o
c
o
S
t
T
p
s
q
s
c
a
e
p
s
w
T
t
T
i
a
a

m
i
t
a
a
b
i
r

e
T
w
s
n
d
s
n
t
w
t
H
e
b
t
w
t
p
c

I
t
e
c
o
t
h
l
o
t
p
L
o
s
t
a
p
T
a
o
g

a
t
s
T
c
t
R
a

For TD prevention, they established four approaches: development
process improvement, architecture decision making support, lifecycle
cost planning, and human factors analysis.

In the context of the InsighTD project, a lot of research is already
done leveraging the project data. This work is part of InsighTD, but,
unlike its previous works, we aim to study the practices related to
TD payment and actions to prevent TD injection, from the software
architect’s point of view. Fig. 6 presents the timeline of studies done
using the project data. As shown, there has been a lot of studies with
different focuses or populations:

• TD concept. This subject is covered in questions Q9 to Q11 by
asking about the familiarity with the TD concept and comparing
his/her understanding of TD with the concept presented in Mc-
Conell [29]. Studies focusing on this subject are: P1 [13], P4 [17],
P8 [5] and P11 [39].

• TD causes and/or effects. These subjects are covered in questions
Q16 to Q21 by asking about causes and effects related to the case
presented in Q13. Studies focused on these subjects are: P1 [13],
P2 [16], P3 [20], P4 [17], P7 [18], P8 [5] and P10 [40]

• TD prevention. This subject is covered in questions Q22 and
Q28. Question 22 asks about preventive practices to be used in
the example case presented in Q13. Question 28 ask about gen-
eral practices performed by respondents to prevent TD injection.
Currently, only one study has focused on this subject: P6 [9].

• TD Repayment. This subject is covered in questions Q26 and Q27
by asking participants about practices used in the case presented
in Q13 to pay off the debt in their systems. Studies focusing on
this subject are: P5 [30] and P9 [12].

• TD monitoring. This subject is covered in questions Q24 and Q25.
Currently, no studies (within InsighTD context) have covered this
subject.

There are several of these studies with which our work shares
ome similarities. Freire et al. [9] investigated, from the point of view
f software practitioners, the preventive actions that can be used to
urb the occurrence of TD and the impediments that hamper the use
f those actions. This study used data from Brazil and the United
tates. They presented results about the team capacity to prevent
he occurrence of TD, and the top 10 most cited preventive actions.
his study includes the preventive practices that could be used to
revent the TD described in the example case (Question 13) of InsighTD
urvey. Results include preventive practices from question Q23 and
uestion Q28. Our study includes only answers to Q28. This way, our
tudy is not focused on preventive practices proposed for a specific
ase, but in the general preventive practices performed by software
rchitects. This leads to differences in the practices employed, for
xample, in [9], the most cited practices used are: following project
lanning, adoption of good practices, well-defined requirements. In our
tudy, the most cited practices are: well-defined architecture/design,
ell-defined scope/requirements and Code evaluation/standardization.
hese differences are related not only to the exclusion of Q23 but also
o the population used. More recently, Pérez et al. [42] focused on
D causes as described by software architects from Colombia. Authors

ncluded a list of the top 7 most cited causes of TD injection, and
n RBO analysis of the comparison of the causes cited by software
rchitects, developers, and management.

Thus, although significant analysis has already been conducted,
uch still remains to be studied. In particular, a noticeably absent and

mportant perspective is the one on TD payment and preventive prac-
ices from the architect’s point of view. Decisions that affect software
rtifacts and TD are typically made earlier in the lifecycle, and software
rchitects play a critical role in this space. Thus, the major difference
etween these studies and our study is that our study focused on
ndustry practitioners (software architects). Besides, this work includes
13

esults from four replications of InsighTD (72 responses), which give r
us a broader spectrum of analysis. Our study focuses on TD payment
practices, their similarities according to their corresponding TD type
(RQ1.1) and their possible relationship among the causes leading to
TD occurrence (RQ1.2). Lastly, our study includes an analysis of the
preventive actions according to the experience of software architects
(RQ2.1), and its comparison with engineer roles and management roles
(RQ2.2).

7. Threats to validity

There are threats to validity in this study that we attempt to mitigate
and remove when possible. The main threats regarding this study
are [43]: external validity, internal validity, construct validity, and
reliability.

External validity. Respondents are well distributed based on their
xperience, software project participation, company size, and country.
hus, by achieving a diversity of participants who answered the survey
e look to reduced this threat. These results cannot be generalized, con-

idering the small number of software architects. Also, the anonymous
ature of the survey could reduce the possibility of characterizing 72
ifferent TD cases because one or more respondent could describe the
ame TD case example (Q13). However, it can be argued that a more
arrow definition of external validity (ecological validity), the extent
o which these findings approximate similar situations in other real
orld environments, is likely to hold. We expect that software archi-

ects outside our study are very likely to encounter similar situations.
awthorne effects, which implies behavior changes in subjects of an
xperimental study because they are being studied, were mitigated by
oth the online and anonymous nature of the survey. Finally, another
hreat to this study is related to the level of architect’s experience. There
ere not a way to get to know if the level of experience selected by

he architects are actually the real one. However, considering that no
ressure was done by the survey nor prizes given for their answers, we
ould expect truly honest answers.
Internal validity. One limitation of this study was maturation.

t implies that the participants can react differently if the survey is
oo long, for example, if respondents were tired or bored during the
xperiment [43]. This threat is also related to history, where results
ould be affected by answer the survey on the first day after a holiday
r on a normal day. These two threats were not possible to handle due
o the online nature of the survey. Respondents could answer the survey
aving a good mood or maybe after some boring meeting. Another
imitation was mortality, and it implies to get to know if the number
f persons who drop out from the experiment are representative of the
otal sample. This threat was not raised considering that all partici-
ants answered the whole questionnaire. Related to selection bias, the
inkedIn platform was used to contact to participants from a variety
f roles and cities within a country. First, an invitation to connect was
ent, and after their acceptance, a second message with the invitation
o participate in the survey was sent. Also, related to the software
rchitect role used for this study, respondents were asked to select their
roject role or to enter a not listed project role through question Q6.
his way we were able to select only those who identified themselves
s software architects. Finally, because all interpretations are tentative
nes, it is not possible to support causality, but only report trends and
eneral beliefs in the state-of-practice.
Construct validity. To prevent hypothesis guessing and evaluation

pprehension [43], the goal of the study was explained in the invi-
ation to the survey. Also, we requested respondents to answer the
urvey by relying on their background. We provided the definition of
D according to McConnell [29] to make sure the respondents were
onsidering the same interpretation of TD. However, a definition of
he main practices of TD payment was missing as a part of the survey.
espondents may have mistaken the differences between refactoring
nd rewriting, and differences among types of refactoring. Not all

efactoring is at the code level, as stated in the literature [10,33].



Information and Software Technology 140 (2021) 106692B. Pérez et al.
Fig. 6. The InsighTD publication map [41].
Reliability. To mitigate this threat and to avoid potential cod-
ing process dependencies on the researcher’s subjective criteria, the
coding activity was performed separately and independently by two
researchers, and then, discussed until an agreement was reached. A ref-
eree was required in some cases to help resolve disagreements in codes
identified. Another threat related to reliability is random irrelevancies
in experimental setting, where elements outside the experimental setting
may disturb the results, such as noise outside the room or a sudden
interrupt in the experiment. This threat was not possible to handle
due the online and self-paced nature of the survey. Respondents could
answer the survey in their homes or in their offices, having all kinds of
working or personal distractions.

8. Conclusions

This study focused on understanding how TD is perceive form the
point of view of a software architect. This perception was studied by
analyzing what TD payment practices were used by software teams as
reported by the architects, and the TD preventive practices performed
by them to avoid or reduce debt presence in software projects.

The contributions of this work are two-fold. First, an analysis of the
most used TD payment-related practices is presented. Based on the 16
TD payment-related practices, we found that refactoring and improve
design were the most cited TD payment practices used by software
teams, as reported by software architects. This was relevant considering
that both practices are intertwined.

As part of this first contribution, a comparison of the similarity of
the payment practices according to the three major TD types cases
(code debt, test debt, design debt) was presented. We found that soft-
ware architects, in the context of our study, have in mind more cases
of code debt than cases of design debt or test debt. This comparison
showed that the practices used in the cases of code debt and design
debt were the most similar. A last part of this first contribution was the
building of a heatmap of the most cited TD payment-related practices
against the most cited TD causes reported by software architects. From
this, we identified that more causes cited by architects have technical
14
inkling, and that refactoring was used in 5 out of 9 causes leading to TD
occurrence: non-adoption of good practices, inappropriate planning, lack
of qualified professionals, change of requirements, and team overload. We
also found that causes related to TD injection were mostly related to
the lack of good practices and unskilled developers.

In the second contribution of this study, an analysis of the most
frequently performed TD preventive practices was presented. We found
that well-defined architecture/design and well defined scope/requirements
were the most cited preventive practices. Software architects were
aware of the relevance of their practice within the software develop-
ment process. We reviewed these practices according to the level of
experience of the architects. We found that expert and proficient groups
have their own most cited practice: well defined scope/requirements and
well-defined architecture/design. Expert software architects understand
that a well-defined architecture as a goal will require a well-defined
scope and requirements. Finally, when comparing preventive practices
among the three major roles derived from the survey (software archi-
tects, engineer roles, and management roles), we found that none of
the roles shared the most cited practice, meaning that each role had its
worries and focus on different strategies to reduce TD’s presence in the
software.

TD payment and TD prevention are important because they are
related to each other. Debt prevention can be better and cheaper for the
development team than incurring debt and paying it off later. On the
other side, incurring TD items is quite expected and even necessary dur-
ing software development projects, leading to the necessity of seeking
the balance between preventing their occurrence and paying them off.
Further research should be undertaken to go deeper in understanding
this relationship. In the context of the InsighTD project, we intend to
go further into this topic by the means of interviews and focus groups,
and also, by including more data from other replications of InsighTD.
Finally, additional work is necessary to understand how the findings of
this work correlate with success factors.



Information and Software Technology 140 (2021) 106692B. Pérez et al.

R

D

c
i

R

CRediT authorship contribution statement

Boris Pérez: Conceptualization, Formal analysis, Investigation, Writ-
ing – original draft. Camilo Castellanos: Formal analysis. Darío Cor-
real: Writing – review & editing. Nicolli Rios: Methodology, Re-
sources. Sávio Freire: Methodology, Resources. Rodrigo Spínola:
Methodology, Resources, Writing – review & editing. Carolyn Sea-
man: Methodology, Resources. Clemente Izurieta: Conceptualization,

esources, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

eferences

[1] J. Yli-Huumo, A. Maglyas, K. Smolander, How do software development
teams manage technical debt? – an empirical study, J. Syst. Softw. 120
(2016) 195–218, http://dx.doi.org/10.1016/j.jss.2016.05.018, URL http://www.
sciencedirect.com/science/article/pii/S016412121630053X.

[2] L. Leite, C. Rocha, F. Kon, D. Milojicic, P. Meirelles, A survey of devops concepts
and challenges, ACM Comput. Surv. 52 (6) (2019) http://dx.doi.org/10.1145/
3359981.

[3] P. Kruchten, R.L. Nord, I. Ozkaya, Technical debt: From metaphor to theory and
practice, Ieee Softw. 29 (6) (2012) 18–21.

[4] C. Seaman, Y. Guo, Measuring and monitoring technical debt, in: Advances in
Computers, Vol. 82, Elsevier, 2011, pp. 25–46.

[5] N. Rios, R.O. Spínola, M. Mendonça, C. Seaman, The practitioners’ point of view
on the concept of technical debt and its causes and consequences: a design for a
global family of industrial surveys and its first results from brazil, Empir. Softw.
Eng. (2020) 1–72.

[6] A. Martini, J. Bosch, M. Chaudron, Architecture technical debt: Understanding
causes and a qualitative model, in: 2014 40th EUROMICRO Conference on
Software Engineering and Advanced Applications, 2014, pp. 85–92, http://dx.
doi.org/10.1109/SEAA.2014.65.

[7] N.A. Ernst, S. Bellomo, I. Ozkaya, R.L. Nord, I. Gorton, Measure it? manage it?
ignore it? software practitioners and technical debt, in: Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, in: ESEC/FSE 2015,
ACM, New York, NY, USA, 2015, pp. 50–60.

[8] N. Rios, R. Oliveira Spinola, M.G. de Mendonça Neto, C. Seaman, A study of
factors that lead development teams to incur technical debt in software projects,
in: 2018 44th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), 2018, pp. 429–436.

[9] S. Freire, M. Mendonça, D. Falessi, C. Seaman, C. Izurieta, R.O. Spínola, Actions
and impediments for technical debt prevention: Results from a global family of
industrial surveys, in: The Proceedings of the 35th ACM/SIGAPP Symposium on
Applied Computing, ACM, 2020, http://dx.doi.org/10.1145/3341105.3373912.

[10] Z. Li, P. Avgeriou, P. Liang, A systematic mapping study on technical debt and
its management, J. Syst. Softw. 101 (2015) 193–220.

[11] N. Rios, M.G. de Mendonça Neto, R.O. Spínola, A tertiary study on technical
debt: Types, management strategies, research trends, and base information for
practitioners, Inf. Softw. Technol. 102 (2018) 117–145, http://dx.doi.org/10.
1016/j.infsof.2018.05.010.

[12] B. Pérez, C. Castellanos, D. Correal, N. Rios, S. Freire, R. Spínola, C. Seaman,
What are the practices used by software practitioners on technical debt payment?
Results from an international family of surveys, in: Proceedings of the IEEE/ACM
International Conference on Technical Debt (TechDebt), 2020.

[13] N. Rios, R.O. Spínola, M. Mendonça, C. Seaman, The most common causes and
effects of technical debt: first results from a global family of industrial surveys,
in: Proceedings of the 12th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, ACM, 2018, p. 39.

[14] J. Yli-Huumo, A. Maglyas, K. Smolander, The sources and approaches to
management of technical debt: a case study of two product lines in a middle-
size finnish software company, in: International Conference on Product-Focused
Software Process Improvement, Springer, 2014, pp. 93–107.

[15] N.S. Alves, T.S. Mendes, M.G. de Mendonça, R.O. Spínola, F. Shull, C.
Seaman, Identification and management of technical debt: A systematic map-
ping study, Inf. Softw. Technol. 70 (2016) 100–121, http://dx.doi.org/10.
1016/j.infsof.2015.10.008, URL http://www.sciencedirect.com/science/article/
pii/S0950584915001743.

[16] N. Rios, M.G. Mendonça, C. Seaman, R.O. Spinola, Causes and effects of the
presence of technical debt in agile software projects, 2019.
15
[17] B. Pérez, J.P. Brito, H. Astudillo, D. Correal, N. Rios, R.O. Spínola, M. Mendonça,
C. Seaman, Familiarity, causes and reactions of software practitioners to the
presence of technical debt: A replicated study in the chilean software industry,
in: 38th International Conference of the Chilean Computer Science Society, IEEE,
2019.

[18] N. Rios, L. Mendes, C. Cerdeiral, A.P.F. Magalhães, B. Perez, D. Correal,
H. Astudillo, C. Seaman, C. Izurieta, G. Santos, R. Oliveira Spínola, Hearing
the voice of software practitioners on causes, effects, and practices to deal
with documentation debt, in: N. Madhavji, L. Pasquale, A. Ferrari, S. Gnesi
(Eds.), Requirements Engineering: Foundation for Software Quality, Springer
International Publishing, Cham, 2020, pp. 55–70.

[19] A. Pacheco, G. Marín-Raventós, G. López, Technical debt in costa rica: An
insightd survey replication, in: International Conference on Product-Focused
Software Process Improvement, Springer, 2019, pp. 236–243.

[20] N. Rios, R.O. Spínola, M.G. de Mendonça Neto, C. Seaman, Supporting analysis
of technical debt causes and effects with cross-company probabilistic cause-effect
diagrams, in: Proceedings of the Second International Conference on Technical
Debt, IEEE Press, 2019, pp. 3–12.

[21] P. Avgeriou, P. Kruchten, I. Ozkaya, C. Seaman, Managing technical debt in
software engineering (dagstuhl seminar 16162), in: Dagstuhl Reports, Vol. 4,
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[22] S. McConnell, Code Complete, Pearson Education, 2004.
[23] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A.

MacCormack, R. Nord, I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan, N.
Zazworka, Managing technical debt in software-reliant systems, in: Proceedings
of the FSE/SDP Workshop on Future of Software Engineering Research, in: FoSER
’10, ACM, New York, NY, USA, 2010, pp. 47–52, http://dx.doi.org/10.1145/
1882362.1882373, URL http://doi.acm.org/10.1145/1882362.1882373.

[24] A. Martini, T. Besker, J. Bosch, The introduction of technical debt tracking in
large companies, in: 2016 23rd Asia-Pacific Software Engineering Conference
(APSEC), 2016, pp. 161–168, http://dx.doi.org/10.1109/APSEC.2016.032.

[25] T. Besker, A. Martini, J. Bosch, Managing architectural technical debt: A unified
model and systematic literature review, J. Syst. Softw. 135 (2018) 1–16.

[26] V.L. Johannes Holvitie, S. Hyrynsalmi, Technical debt and the effect of agile
software development practices on it - an industry practitioner survey, in: 2014
Sixth International Workshop on Managing Technical Debt, 0000.

[27] F. Team, 3 types of survey research, when to use them, and how they
can benefit your organization!, 2014, URL http://fluidsurveys.com/university/3-
types-survey-research-use-can-benefit-organization/.

[28] B.A. Kitchenham, S.L. Pfleeger, Principles of survey research part 2: Designing a
survey, SIGSOFT Softw. Eng. Notes 27 (1) (2002) 18–20, http://dx.doi.org/10.
1145/566493.566495, URL http://doi.acm.org/10.1145/566493.566495.

[29] S. McConnell, Technical debt, 2007, URL http://www.construx.com/10x_
Software_Development/Technical_Debt/.

[30] S. Freire, N. Rios, B. Gutierrez, D. Torres, M. Mendonça, C. Izurieta, C. Seaman,
R.O. Spínola, Surveying software practitioners on technical debt payment prac-
tices and reasons for not paying off debt items, in: Proceedings of the Evaluation
and Assessment in Software Engineering, in: EASE ’20, Association for Computing
Machinery, New York, NY, USA, 2020, pp. 210–219, http://dx.doi.org/10.1145/
3383219.3383241.

[31] C. Izurieta, A. Vetrò, N. Zazworka, Y. Cai, C. Seaman, F. Shull, Organizing the
technical debt landscape, in: 2012 Third International Workshop on Managing
Technical Debt (MTD), 2012, pp. 23–26, http://dx.doi.org/10.1109/MTD.2012.
6225995.

[32] W. Webber, A. Moffat, J. Zobel, A similarity measure for indefinite rankings,
ACM Trans. Inf. Syst. 28 (4) (2010) 20:1–20:38.

[33] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley
Professional, 2018.

[34] A. Martini, J. Bosch, M. Chaudron, Investigating architectural technical debt
accumulation and refactoring over time, Inf. Softw. Technol. 67 (C) (2015)
237–253, http://dx.doi.org/10.1016/j.infsof.2015.07.005.

[35] K. Power, R. Wirfs-Brock, An exploratory study of naturalistic decision making
in complex software architecture environments, in: T. Bures, L. Duchien, P.
Inverardi (Eds.), Software Architecture, Springer International Publishing, Cham,
2019, pp. 55–70.

[36] J. Yli-Huumo, A. Maglyas, K. Smolander, The sources and approaches to
management of technical debt: A case study of two product lines in a middle-
size finnish software company, in: A. Jedlitschka, P. Kuvaja, M. Kuhrmann, T.
Männistö, J. Münch, M. Raatikainen (Eds.), Product-Focused Software Process
Improvement, Springer International Publishing, Cham, 2014, pp. 93–107.

[37] Z. Codabux, B.J. Williams, G.L. Bradshaw, M. Cantor, An empirical assessment
of technical debt practices in industry, J. Softw.: Evol. Process. 29 (10)
(2017) e1894, http://dx.doi.org/10.1002/smr.1894, arXiv:https://onlinelibrary.
wiley.com/doi/pdf/10.1002/smr.1894 URL https://onlinelibrary.wiley.com/doi/
abs/10.1002/smr.1894, e1894 JSME-16-0113.R2.

[38] Z. Codabux, B. Williams, Managing technical debt: An industrial case study, in:
2013 4th International Workshop on Managing Technical Debt (MTD), 2013, pp.
8–15.

http://dx.doi.org/10.1016/j.jss.2016.05.018
http://www.sciencedirect.com/science/article/pii/S016412121630053X
http://www.sciencedirect.com/science/article/pii/S016412121630053X
http://www.sciencedirect.com/science/article/pii/S016412121630053X
http://dx.doi.org/10.1145/3359981
http://dx.doi.org/10.1145/3359981
http://dx.doi.org/10.1145/3359981
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb3
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb3
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb3
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb4
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb4
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb4
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb5
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb5
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb5
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb5
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb5
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb5
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb5
http://dx.doi.org/10.1109/SEAA.2014.65
http://dx.doi.org/10.1109/SEAA.2014.65
http://dx.doi.org/10.1109/SEAA.2014.65
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb7
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb7
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb7
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb7
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb7
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb7
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb7
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb8
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb8
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb8
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb8
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb8
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb8
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb8
http://dx.doi.org/10.1145/3341105.3373912
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb10
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb10
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb10
http://dx.doi.org/10.1016/j.infsof.2018.05.010
http://dx.doi.org/10.1016/j.infsof.2018.05.010
http://dx.doi.org/10.1016/j.infsof.2018.05.010
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb13
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb13
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb13
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb13
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb13
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb13
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb13
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb14
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb14
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb14
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb14
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb14
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb14
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb14
http://dx.doi.org/10.1016/j.infsof.2015.10.008
http://dx.doi.org/10.1016/j.infsof.2015.10.008
http://dx.doi.org/10.1016/j.infsof.2015.10.008
http://www.sciencedirect.com/science/article/pii/S0950584915001743
http://www.sciencedirect.com/science/article/pii/S0950584915001743
http://www.sciencedirect.com/science/article/pii/S0950584915001743
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb16
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb16
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb16
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb17
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb17
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb17
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb17
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb17
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb17
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb17
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb17
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb17
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb18
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb18
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb18
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb18
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb18
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb18
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb18
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb18
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb18
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb18
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb18
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb19
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb19
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb19
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb19
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb19
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb20
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb20
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb20
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb20
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb20
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb20
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb20
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb21
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb21
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb21
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb21
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb21
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb22
http://dx.doi.org/10.1145/1882362.1882373
http://dx.doi.org/10.1145/1882362.1882373
http://dx.doi.org/10.1145/1882362.1882373
http://doi.acm.org/10.1145/1882362.1882373
http://dx.doi.org/10.1109/APSEC.2016.032
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb25
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb25
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb25
http://fluidsurveys.com/university/3-types-survey-research-use-can-benefit-organization/
http://fluidsurveys.com/university/3-types-survey-research-use-can-benefit-organization/
http://fluidsurveys.com/university/3-types-survey-research-use-can-benefit-organization/
http://dx.doi.org/10.1145/566493.566495
http://dx.doi.org/10.1145/566493.566495
http://dx.doi.org/10.1145/566493.566495
http://doi.acm.org/10.1145/566493.566495
http://www.construx.com/10x_Software_Development/Technical_Debt/
http://www.construx.com/10x_Software_Development/Technical_Debt/
http://www.construx.com/10x_Software_Development/Technical_Debt/
http://dx.doi.org/10.1145/3383219.3383241
http://dx.doi.org/10.1145/3383219.3383241
http://dx.doi.org/10.1145/3383219.3383241
http://dx.doi.org/10.1109/MTD.2012.6225995
http://dx.doi.org/10.1109/MTD.2012.6225995
http://dx.doi.org/10.1109/MTD.2012.6225995
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb32
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb32
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb32
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb33
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb33
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb33
http://dx.doi.org/10.1016/j.infsof.2015.07.005
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb35
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb35
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb35
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb35
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb35
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb35
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb35
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb36
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb36
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb36
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb36
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb36
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb36
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb36
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb36
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb36
http://dx.doi.org/10.1002/smr.1894
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1894
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1894
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1894
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1894
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1894
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1894
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb38
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb38
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb38
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb38
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb38


Information and Software Technology 140 (2021) 106692B. Pérez et al.
[39] L. Souza, S. Freire, V. Rocha, N. Rios, R.O. Spínola, M. Mendonça, Using surveys
to build-up empirical evidence on test-related technical debt, in: Proceedings of
the 34th Brazilian Symposium on Software Engineering, in: SBES ’20, Association
for Computing Machinery, New York, NY, USA, 2020, pp. 750–759, http://dx.
doi.org/10.1145/3422392.3422430.

[40] R. Ramac, V. Mandic, N. Taušan, N. Rios, M. Mendonça, C. Seaman, R.O.
Spínola, Common causes and effects of technical debt in serbian it: Insightd
survey replication, in: The Proceedings of the Euromicro Conference Series on
Software Engineering and Advanced Applications (SEAA), ACM, 2020, http:
//dx.doi.org/10.1109/SEAA51224.2020.00065.
16
[41] InsighTD, Publications, 2020, URL http://www.td-survey.com/publication-map/.
[42] B. Pérez, D. Correal, F.H. Vera-Rivera, How do software architects perceive

technical debt in colombian industry? an analysis of technical debt causes, J.
Phys. Conf. Ser. 1513 (2020) 012003, http://dx.doi.org/10.1088/1742-6596/
1513/1/012003.

[43] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén, Ex-
perimentation in Software Engineering, Springer Science & Business Media,
2012.

http://dx.doi.org/10.1145/3422392.3422430
http://dx.doi.org/10.1145/3422392.3422430
http://dx.doi.org/10.1145/3422392.3422430
http://dx.doi.org/10.1109/SEAA51224.2020.00065
http://dx.doi.org/10.1109/SEAA51224.2020.00065
http://dx.doi.org/10.1109/SEAA51224.2020.00065
http://www.td-survey.com/publication-map/
http://dx.doi.org/10.1088/1742-6596/1513/1/012003
http://dx.doi.org/10.1088/1742-6596/1513/1/012003
http://dx.doi.org/10.1088/1742-6596/1513/1/012003
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb43
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb43
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb43
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb43
http://refhub.elsevier.com/S0950-5849(21)00147-6/sb43

	Technical debt payment and prevention through the lenses of software architects
	Introduction
	Background
	InsighTD project
	Technical debt (TD)

	Research method
	Research questions
	Data collection
	Instrument validation
	Selection of participants

	Data analysis

	Results
	Characterization of the respondents
	From a software architect's point of view, what are the practices related to TD payment used by software development teams? (RQ1)
	Is it possible to find similarities of the TD payment practices according to the TD type associated with them? (RQ1.1)
	Is it possible to establish an association between main causes leading to TD occurrence and main practices related to TD payment? (RQ1.2)
	From a software architect's point of view, what practices have been performed to prevent TD occurrence? (RQ2)
	Does the software architect's level of expertise influence the preventive practices performed by them? (RQ2.1)
	RBO analysis

	Are preventive practices performed by software architects different from the ones performed by other software development roles? (RQ2.2)
	RBO analysis


	Discussion
	RQ1: From a software architect's point of view, what are the practices related to TD payment used by software development teams?
	RQ1.1: Is it possible to find similarities of the TD payment practices according to the TD type associated with them?
	RQ1.2: Is it possible to establish an association between main causes leading to TD occurrence and main practices related to TD payment?

	RQ2: From a software architect's point of view, what practices have been performed to prevent TD occurrence?
	RQ2.1: Does the software architect's level of expertise influence the preventive practices performed by them?
	RQ2.2: Are preventive practices performed by software architects different from the ones performed by other software development roles?

	Implications to researchers and practitioners

	Related work
	Threats to validity
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	References


