
 Comparison of JSON and XML Data Interchange Formats: A Case Study

 Nurzhan Nurseitov, Michael Paulson, Randall Reynolds, Clemente Izurieta

Department of Computer Science
Montana State University – Bozeman

Bozeman, Montana, 59715, USA
{nurseitov@cs.montana.edu, mpaulson@cs.montana.edu,

 rreynolds@cs.montana.edu, clemente.izurieta@cs.montana.edu}

Abstract

 This paper compares two data interchange formats
currently used by industry applications; XML and
JSON. The choice of an adequate data interchange
format can have significant consequences on data
transmission rates and performance. We describe the
language specifications and their respective setting of
use. A case study is then conducted to compare the
resource utilization and the relative performance of
applications that use the interchange formats. We find
that JSON is significantly faster than XML and we
further record other resource-related metrics in our
results.

1. INTRODUCTION

 Data interchange formats evolved from being mark-
up and display-oriented to further support the encoding
of meta-data that describes the structural attributes of
the information. The requirements to support data
interchange of Java applications led to the development
of standard data interchange formats [2]. JSON and
XML are two data interchange formats with unique
purposes. Sections two and three provide background
for JSON and XML. Section four describes the case
study and methodology used to compare speed and
resource utilizations. Section five describes results and
section six identifies the threats to the validity of this
study. We conclude in section seven and provide
directions for possible refinements to this study.

2. XML

 The Extensible Markup Language (XML) [3] is a
subset of the Standard Generalized Markup Language
(SGML) [8] and evolved as a result of the complexity
of SGML. XML is considered the 'holy grail' of
computing due to its universal data representation
format [1]. The intent of an XML document is self
evident and embedded in its structure. The
fundamental design considerations of XML include
simplicity and human readability. Amongst the design
goals of XML, the W3C specifies that “XML shall be
straightforwardly usable over the Internet” and “XML
documents should be human-legible and reasonably
clear.” [3]

The primary uses for XML are Remote Procedure
Calls (RPC) [4] and object serialization for transfer of
data between applications. XML is a language used
for creating user-defined markups to documents and
encoding schemes. XML does not have predefined tag
sets and each valid tag is defined by either a user or
through another automated scheme. Vast numbers of
tutorials and user forums provide wide support for
XML and have helped create a broad user base. XML
is a user-defined hierarchical data format. An example
of an object encoded in XML is provided in figure 1.

Figure 1: A hierarchical structure describing the
encoding of a name

3. JSON

 JSON [6] is designed to be a data exchange language
which is human readable and easy for computers to
parse and use. JSON is directly supported inside
JavaScript [7] and is best suited for JavaScript
applications; thus providing significant performance
gains over XML, which requires extra libraries to
retrieve data from Document Object Model (DOM)
[12] objects. JSON is estimated to parse up to one
hundred times faster than XML [6] in modern
browsers, but despite its claims of noteworthy
performance, arguments against JSON include lack of
namespace support, lack of input validation and
extensibility drawbacks. Crockford [6] addresses such
arguments by claiming that “every object is a
namespace. Its set of keys is independent of all other
objects, even exclusive of nesting. Also, JSON uses
context to avoid ambiguity, just as programming
languages do,” that validation of inputs is the
responsibility of individual domain applications, and
that the lack of extensibility claims is addressed by the
flexibility of JSON constructs.
 JSON’s syntax is human readable. Figure 2
describes an example where JSON is used to encode a
firstname and a lastname.

 {

"firstname" : "John",

"lastname" : "Smith"

}

Figure 2: A simple JSON construct describing the
encoding of a name

4. METHODOLOGY

 This case study measures transmission times and
resource utilizations. The null hypothesis states that
there is no difference in transmission times and
resource utilization between JSON and XML. The
operational environment for this case study consists of
a client/server program. The client is setup in isolation
and sends JSON and XML objects to the server in
order to measure performance and resource utilization.
We find significant evidence to support rejecting the
null hypothesis.

4.1. Client/Server Program

 Our test cases use a simple network client program
to transmit XML-encoded and JSON-encoded Java
objects to a server. The client and server initiate
TCP/IP based connections where the server listens on
a port and the client connects on that port. Similar
coding techniques are used by both the client and
server. To simulate realistic servers and potentially
run stress tests, the server is multi-threaded. The
server decodes the JSON or XML text upon receipt
and then discards the text.

4.2. Environment

 The client program sends JSON and XML encoded
data in an isolated workbench environment. The
hardware consists of two workstations interconnected
by a switch. Software firewall services are disabled.
Since data interchange does not involve reading and
writing to secondary storage, disk read/write capability
is not important to these workstations. The
workstations have a CentOS 5.2 [14] minimal
installation with additional software packages to record
various system measures. The workstations are
connected to an isolated local area network. The
switch supports gigabit connections and the
workstations have 10/100 megabit network interface
cards. Cat5e cables run between the workstations'
network interface cards and the switch, and the full
topology is arranged within close proximity (less than

10 meters). According to the network monitoring tool,
IPTraf [5], our isolated network does not show
frequent network broadcast traffic.

4.3. Measurements

 We choose to measure the following metrics:
number of objects sent, total time to send the number
of objects, average time per object transmission, user
CPU utilization, system CPU utilization, and memory
utilization. The total time per trial tells us how long it
takes for the server to receive every object from the
client. The average time per object describes how long
it takes (on average) for the server to receive one
object from the client. The user CPU utilization is the
percentage of time spent performing user processes
and the system CPU utilization is the percentage of
time spent performing system processes. According to
RedHat [9], high user CPU percentages tend to be
favorable while high system percentages tend to point
towards problems that will require further investigation
[13]. Memory utilization measures the percentage of
available and free memory on the system. Our metrics
are recorded to files using client/server software
developed in-house and System Activity Reporter
(SAR), a metric recording utility [11]. The
client/server program measures transmission time per-
object-transmission. SAR measures resource
utilizations per-time-duration.
 Timing measurements are computed as follows.
The client connects and sends a start command to the
server. When the server receives the start command, it
starts a timer and sends a ready message. The client
receives the ready message and begins the transmission
of objects. When the client is finished transmitting its
objects, it sends an end signal to the server and the
server turns off its timer and its log metrics. Metrics
are recorded into a file with a timestamp to indicate
when the trial completes.

4.4. Case Study Design

 Test cases are designed and implemented to
compare transmission times and resource utilizations
of JSON and XML. The first scenario consists of
running a single time-consuming transmission of a
large quantity of objects in order to achieve accurate
average measurements. The second scenario consists
of running a series of test cases with increasingly
higher number of objects. Its purpose is to determine
if JSON or XML differ statistically as the number of
encoded objects sent to the server increases. The
number of objects transmitted to the server is treated as
an independent variable. By increasing the number of
objects sent to the server at equally spaced discrete
intervals, we add variance to the distributions of the
measurements for the mean-comparison t-test.
Additionally, we compare the impact of transmitting a

high number of objects with the impact of transmitting
a low number of objects by observing what happens to
measurements at varying degrees of granularity.
 The first scenario consists of a client sending one
million objects to a server using both JSON encoding
and XML encoding. The second scenario consists of a
client sending smaller quantities of objects to a server
in five separate intervals. The client sends 20,000,
40,000, 60,000, 80,000, and 100,000 encoded objects
to the server. We refer to these transmission intervals
as Trial 1, Trial 2, Trial 3, Trial 4, and Trial 5,
respectively.

5. RESULTS

 Results illustrate the differences between JSON and
XML encoding under varying transmission scenarios.
This section presents the metrics obtained for the
average measurements, compares the metrics of
transmitting high versus low number of encoded
objects, and determines whether JSON and XML are
statistically different for each of our measurements.
We present both scenarios' measurements and discuss
their implications.

5.1. Scenario 1

 Scenario 1 is a time-consuming transmission of a
large quantity of objects. Large numbers of objects are
used in order to achieve accurate average
measurements. The client sends one million encoded
objects to the server for both JSON and XML. We
measure timing and resource utilizations. Tables 1 and
2 list the measurements and respective values obtained
from this trial:

 Table 1: Scenario 1 JSON vs. XML Timing

 JSON XML

Number
Of Objects

1000000 1000000

Total
Time (ms)

78257.9 4546694.78

Average
Time (ms)

0.08 4.55

Table 2: Scenario 1 JSON vs. XML CPU/Mem

 Average %
User CPU
Utilization

Average %
System
CPU

Utilization

Average %
Memory

Utilization

JSON 86.13 13.08 27.37
XML 54.59 45.41 29.69

5.2. Scenario 2

 Scenario 2 is comprised of a series of smaller trials
that determine whether JSON and XML are
statistically different according to each of our
measures. The mean-comparison t-test is used. We
send 20,000, 40,000, 60,000, 80,000, and 100,000
encoded objects to the server and collect metrics for
each case. Tables 3, 4 and 5 display the metrics
obtained from these trials:

Table 3: Scenario 2 JSON Vs XML Timing

 JSON XML
Trial 1 Number Of Objects 20000 20000
Trial 1 Total Time (ms) 2213.15 61333.68
Trial 1 Average Time (ms) 0.11 3.07
Trial 2 Number Of Objects 40000 40000
Trial 2 Total Time (ms) 3127.99 123854.59
Trial 2 Average Time (ms) 0.08 3.10
Trial 3 Number Of Objects 60000 60000
Trial 3 Total Time (ms) 4552.38 185936.27
Trial 3 Average Time (ms) 0.08 3.10
Trial 4 Number Of Objects 80000 80000
Trial 4 Total Time (ms) 6006.72 247639.81
Trial 4 Average Time (ms) 0.08 3.10
Trial 5 Number Of Objects 100000 100000
Trial 5 Total Time (ms) 7497.36 310017.47
Trial 5 Average Time (ms) 0.07 3.10

Table 4: Scenario 2 JSON CPU/Mem

Trial Average %
User CPU
Utilization

Average %
System
CPU

Utilization

Average %
Memory

Utilization

1 29.07 14.80 67.97
2 83.84 15.84 68.07
3 88.01 11.99 68.06
4 88.65 11.36 68.06
5 88.70 11.30 68.06

Table 5: Scenario 2 XML CPU/Mem

Trial Average %
User CPU
Utilization

Average %
System
CPU

Utilization

Average %
Memory

Utilization

1 65.80 32.36 68.08
2 67.43 32.57 68.08
3 66.69 33.31 68.08
4 67.24 32.76 68.11
5 66.64 36 68.79

 Figure 3 illustrates JSON's average CPU and
memory utilizations per trial. Figure 4 illustrates
XML's average CPU and memory utilizations per trial.
Figure 5 illustrates the differences between JSON's
resource utilizations and XML's resource utilizations
by plotting Figure 3 and Figure 4 on the same graph.
Figures 3-5 indicate that XML appears to use less user
CPU utilization than JSON. JSON and XML encoded
transmissions use nearly the same amount of memory
on the server.

1 2 3 4 5

0

20

40

60

80

100

JSON Resource Utilizations

Average %
User CPU
Utilization

Average %
System CPU
Utilization

Average %
Memory Util-
ization

 Figure 3: Scenario 2 JSON Resource
Utilizations

1 2 3 4 5

0

20

40

60

80

100

XML Resource Utilizations

Average %
User CPU
Utilization

Average %
System CPU
Utilization

Average %
Memory Util-
ization

 Figure 4: Scenario 2 XML Resource
Utilizations

1 2 3 4 5

0

10

20

30

40

50

60

70

80

90

100

JSON Vs XML Resource Utilizations

JSON Average %
User CPU Utiliza-
tion

JSON Average %
System CPU Util-
ization

JSON Average %
Memory Utilization

XML Average %
User CPU Utiliza-
tion

XML Average %
System CPU Util-
ization

XML Average %
Memory Utilization

Figure 5: Scenario 2 JSON Vs XML Resource
Utilizations

5.3. Discussion

 To analyze our results we make high-level
qualitative observations and further analyze each
measure’s significance using statistical tests. This
section explains the observed differences using a
traditional t-test.

High-level qualitative observations between JSON
and XML are observed from both test scenarios.
Scenario 1 illustrates accurate average measurements
because of the high number of encoded object
transmissions. Scenario 2 provides fine grained
observations of the impacts of fewer transmissions for
each measurement. Table 6 lists the differences
between JSON and XML based on the observations
and the results of each scenario.

The average values of measurements from scenario
1 indicate that sending data in JSON encoding is in
general faster than using XML encoding. The average
time and total time measures provide an indication that
JSON's speed outperforms XML's speed. In addition,
JSON uses more user CPU resources than XML in
scenario 1. Memory is dependent on the state of the
systems before a scenario or trial execution; however,
usage is similar between JSON and XML. According
to our observations and the metrics obtained from both
scenarios, the transmission times of XML are lower
when fewer objects are transmitted and the
transmission times of JSON are the same when fewer
objects are transmitted. The transmission of a lower
quantity of JSON-encoded objects does not appear to

impact the user CPU utilization measure when
compared to the transmission of a higher quantity of
objects.

Table 6: High-Level Results and Observations

Scenario/Measure JSON XML
Scenario 1 Total

Time
78.26

seconds
75.77 minutes

Scenario 1
Average Time Per

Object

0.08 ms 4.55 ms

Scenario 1
Average User

CPU Utilization

86% 55%

Scenario 1
Average System
CPU Utilization

13% 45%

Scenario 1
Average Memory

Utilization

27% 29%

Scenario 2 Total
Time for 100,000

Objects

7.5 seconds 310 seconds

Scenario 2
Average Time Per

Object

0.08 ms 3.1 ms

Scenario 2
Average User

CPU Utilization

83-88% 65-67%

Scenario 2
Average System
CPU Utilization

11-14% 32-33%

Scenario 2
Average Memory

Utilization

68% 68%

The t-test is a way to compare the means of two
distributions and determine whether they are
statistically different. We run a two-sided unpaired t-
test on the results of scenario 2 to compare JSON and
XML with respect to each measure. The level of
significance is set at α = 0.05 [10]. The distribution of
each measure is the set comprising all five
observations that come from each of the five trials in
scenario 2. We make the null hypothesis assumption
that JSON and XML have the same means for each
measure distribution. Then, we use the t-test to
calculate the probability that would provide evidence
to support an alternate hypothesis. Table 7 lists the
sample distributions used in the t-tests to compare each
measure. The distribution values come from tables 3,
4 and 5. Table 8 lists the probabilities (p-values) that
we would have come to our results under the null
hypothesis assumption.

Table 7: JSON and XML sample populations used
in the t-test

Measure JSON
Distribution

XML Distribution

Total Time
(ms)

{2213.1,
3127.99,
4552.38,
6006.72,
7497.36}

{61333.68,
123854.59,
185936.27,
247639.81,
310017.47}

Average
Time Per

Object (ms)

{0.11, 0.08,
0.08, 0.08,

0.07}

{3.07, 3.10, 3.10,
3.10, 3.10}

Average %
User CPU

{29.07, 83.84,
88.01, 88.65,

88.70}

{65.80, 67.43,
66.69, 67.24,

66.64}
Average %

System
CPU

{14.80, 15.84,
11.99, 11.36,

11.30}

{32.36, 32,57,
33,31, 32,76,

33.36}
Average %
Memory

{67.97, 68.07,
68.06, 68.06,

68.06}

{68.08, 68.08,
68.08, 68.11,

68.79}

Table 8: JSON and XML t-test p-values with α = 0.05

Measure p-value
Total Time (ms) 0.0033

Average Time Per Object (ms) ≤ 0.0001
Average % User CPU 0.47

Average % System CPU 0.0038
Average % Memory 0.23

T-test results show that JSON and XML have

statistically different total time per trial, average time
per trial, and average system CPU utilization per trial.

6. THREATS TO VALIDITY

Case studies are subject to validity threats,
specifically, internal validity, external validity,
construct validity and content validity. We use
measures that adequately represent notions of
performance and resource utilization as described in
section 4.3, thus providing meaningful metrics of
construct validity. The setup of our test scenarios
where the client and server programs are isolated from
broadcast traffic in a network provide for additional
confidence that our metrics are not confounded by
additional variables. Various measures are used to
understand differences between JSON and XML; thus
increasing the content validity of the study.

Internal validity refers to the relationship that exists
between independent and dependent variables. The
measures described in section 4.3 represent the
dependent variables of our study, and the only
independent variables are the test case programs
running under scenarios 1 or 2. The homogeneity and
isolation of test cases running under JSON or XML
increases the internal validity of the study.

External validity refers to the ability to generalize
results from this case study. Clearly this is not
possible as additional test cases would be necessary to
account for different operating systems, content of
data, package sizes transmitted over the network, etc.
This case study serves as a single data point to
demonstrate performance and resource utilization
differences between JSON and XML for the given
specific test cases.

7. CONCLUSION

 This case study compared the differences between
two current data interchange formats. Results indicate
that JSON is faster and uses fewer resources than its
XML counterpart; thus providing significant evidence
to refute the null hypothesis.

JSON and XML provide unique strengths, but the
importance of performance and resource utilization
must be understood when making decisions between
data interchange formats. This case study has
provided a clear benchmark that can be used to
compare these formats when selecting a transport
mechanism. We intend to continue and improve our
investigations as follows: 1) eliminate the potential
network bottleneck in our test scenarios by using
gigabit network cards. Gigabit network cards give us
the ability to perform stress-based cases to see which
data interchange format handles multiple connections
more effectively. Gigabit network cards also give us
the ability to obtain case metrics while the server is
under heavy load, and 2) perform a survey to compare
the learning times of JSON and XML to see which
format has a steeper learning curve.

8. REFERENCES

[1] T. Anderson, 2004.
http://www.itwriting.com/xmlintro.php

[2] J. Bosak, “Xml, java, and the future of the web,”
World Wide Web Journal, 2(4):219-227, 1997.

[3] Extensible markup language (xml) 1.0 (fourth
edition). W3C, 2006.
http://www.w3.org/TR/2006/REC-xml-20060816

[4] U. Hilger, “Article: Client/server with java and
xml-rpc,” 2005.
http://articles.lightdev.com/csjxml/csjxml_article.p
df.

[5] G. P. Java. Iptraf - an ip network monitor. IPTraf,
2001. http://iptraf.seul.org

[6] JSON. json.org. http://www.json.org
[7] S. Klarr, “Javascript: What is json?,” 2007.

http://www.scottklarr.com/topic/18/javascript-
what-isjson

[8] J. F. E. v. d. V. D. A. J. D. A. W. L. M. David
Hunter, Jeff Rafter, “Beginning xml,” 4th edition,
pp. 6-8, 2007.

[9] Redhat.com — the world’s open source leader.
redhat.com, 2009. http://www.redhat.com

[10] Student’s t-tests. physics.csbsju.edu, 2009.
http://www.physics.csbsju.edu/stats/t-test.html

[11] System activity reporter (SAR). Softpanorama,
2009.
http://www.softpanorama.org/Admin/Monitoring/s
ar.html

[12] W3C Document Object Model. W3C, 2005.
http://www.w3.org/DOM

[13] “What to monitor? Red Hat Linux 9: Red Hat
Linux System Administration Primer,” 2003.
http://www.redhat.com/docs/manuals/linux/RHL-
9-Manual/admin-primer/s1-resource-what-to-
monitor.html

[14] www.centos.org - the community enterprise
operating system, CentOS, 2005.
http://www.centos.org

