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Abstract—Software is essential in modern systems, and reliable
testing of it is crucial due to the Oracle problem, which refers
to the difficulties in distinguishing correct software behavior.
Testing outputs from various inputs in online banking applica-
tions is complex and costly, making full automation necessary
for efficiency and cost reduction. Metamorphic Testing (MT)
addresses this by generating test inputs and evaluating outputs
based on Metamorphic Relations (MRs), which dictate output
changes with input modifications. However, identifying MRs
has traditionally been manual and time-consuming. This paper
presents an automated MT approach for online banking appli-
cations with vulnerabilities from the OWASP top 10. We created
a prediction model using graph representations to automate
MR detection, providing a catalog of 8 system-agnostic MRs
for enhanced security testing. Results indicate that most MRs
achieve prediction scores over 80%, demonstrating the practical
effectiveness of this approach for improving online banking
security through automated metamorphic testing.

Index Terms—Metamorphic Testing, Metamorphic Relation,
Vulnerabilities, Classification.

I. INTRODUCTION

Recent advances in science and technology have trans-
formed the software industry, increasing the demand for re-
liable software systems, especially for complex calculations
and online functionality. Everyday software, including web
applications, is a critical component of economic growth
and is characterized by continuous evolution and increasing
complexity [1]. Development and testing are vital stages in
the software development lifecycle (SDLC) [3], requiring
effective validation techniques to ensure reliability, security,
and reusability. The complexity of modern software and web
applications often involving intricate designs and sensitive data
poses significant challenges in testing, with potential gaps
leading to serious issues such as data breaches and fraud [34].
Web systems, essential for e-commerce and banking, must
undergo rigorous security testing to identify vulnerabilities

[6]. Despite advancements in development, testing remains
costly and time-consuming, accounting for over 50% of total
software expenditures [8]. The testing process carries risks
of human error, and evaluating correctness can be complex,
especially in systems like banking software with intricate func-
tionalities [4]. Additionally, various input interfaces compli-
cate vulnerability detection, necessitating the use of automated
strategies for security testing to effectively cover diverse user
roles and inputs [5].

Metamorphic Testing (MT) is a technique that has proven
useful in certain situations to tackle the challenge of the oracle
problem [10]. The principle behind MT [9] is that it may
be easier to analyze the relationships between the results of
multiple test executions, referred to as Metamorphic Relations
(MRs), rather than specifying the input-output behavior of a
system [9]. MT utilizes MRs to determine system properties
by automatically transforming the initial test input into a
subsequent test input [9]. If the system fails to comply with
the MRs when tested with both the initial and subsequent
inputs, it is inferred that it is defective [9]. A considerable
amount of research has focused on developing MT methods
for specific domains such as computer graphics, web services,
and embedded systems [12]–[15], and the corresponding MRs
are essential for enhancing the efficiency of fault detection
in testing. Traditionally, pinpointing these relations involves
a labor-intensive, error-prone manual process, often requiring
input from domain experts, mainly when dealing with intricate
programs. Hence, developing automated techniques to identify
MRs is a promising avenue. Such automation has the potential
to significantly improve the efficiency and effectiveness of
MT, rendering it a more feasible and dependable method
for guaranteeing the reliability of any system. Therefore, we
wanted to use MT in the domain of online banking applications
to investigate its effectiveness in security vulnerability testing.



Our research goal is described as follows:

• RG: To apply MT to tackle the Test Oracle problem in
security vulnerability testing of online banking applica-
tions.

We systematically define MRs that capture properties (i.e.,
characteristics that are compromised when the system is at
risk) among the top 10 OWASP vulnerabilities found in online
banking applications and automate testing using these MRs
for such vulnerable-prone programs. These MRs serve as
guidelines or rules governing how the program should change
in response to different inputs or variations. They are crafted
to capture specific program characteristics that are particularly
vulnerable or compromised when the system is at risk. An
example of an MR to identify bypass authorization schema
vulnerabilities is a web system that should return different
responses for two users when the first user requests a URL
provided by the GUI (e.g., in HTML links). In other words,
a user should not be able to access URLs that are not
provided by the GUI directly. We have developed a technique
to automate the testing process by predicting these MRs.
Automating the testing process reduces the manual effort and
potential errors associated with traditional testing methods.

Here, we present an automated metamorphic testing ap-
proach that helps test engineers specify metamorphic relations
to capture security requirements of Web systems (i.e., online
banking) and automatically detect vulnerabilities (i.e., vio-
lations of security requirements) by predicting metamorphic
relations. Our approach is constructed on the following novel
contributions:

• A catalog of 8 MRs targeting the well-known top 10
OWASP’s security vulnerabilities commonly found in
online baking applications, and

• A framework that automatically predicts MRs for unseen
programs, that are prone to vulnerabilities, using a Graph-
based Convolutional Neural Network (GCNN) model.

We applied our approach to 679 vulnerable-prone programs
from different sources. The approach automatically detected
MRs with prediction scores greater than 80% for most MRs.
Considering these results and assessing the effort involved, our
approach is practical and effective in addressing the Oracle
issue of automatically testing online banking applications.

This paper is organized in the following manner. Section II
offers background information on MT and details the testing
process for baking applications. In Section III, we outline our
approach. Section IV explains the fundamental experimental
setup. Section V shares the paper’s findings. Finally, Section
VI addresses the threats to validity, leading to the conclusion
in Section VII.

II. BACKGROUND

This section introduces MT and its operation according to
the corresponding MRs. It also illustrates the challenges of
testing vulnerabilities for banking applications and how MT
can alleviate the issue.
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Fig. 1. Overview of the Metamorphic Testing (MT) Process

A. Metamorphic Testing

Metamorphic Testing (MT) is a technique designed to ad-
dress the well-known Test Oracle problem [10]. This problem
arises when it is difficult or impossible to determine the
correctness of individual program output. MT, developed by
Chen et al. [9], provides a solution by checking if a program
satisfies specific predefined properties called Metamorphic
Relations (MRs). These MRs describe how changes to a
program’s input should affect its output [9]. If the output
does not behave as expected according to these MRs, it may
indicate a fault in the program [9]. MT is particularly valuable
for identifying defects in programs where traditional Test
Oracles are unavailable or impractical [10]. By examining
the relationships between inputs and outputs across multiple
executions, MT can detect faults even when the correct result
of each execution is unknown [11].

The general steps for implementing MT are as follows
(Figure 1) [9]:

• Identify MRs: Define a set of MRs that the program
under test should satisfy.

• Create Initial Test Cases: Develop a set of test cases to
serve as the source inputs.

• Generate Follow-Up Test Cases: Apply input transfor-
mations specified by the MRs to create follow-up test
cases from the initial ones.

• Execute and Compare Outputs: Run both the initial
and follow-up test cases and check if the output changes
align with the expected behavior described by the MRs.
If a runtime violation of an MR occurs, it indicates a fault
in the program.

A simple and widely used example of MT is testing the
SINE function y = sin(x). According to its property, for any
input angle x, adding 2π to the input should not change the
output. This means y = sin(x) = sin(x + 2π), making it a
valid MR. Using this property, the function can be tested as
follows:

• Create a source test case with input x and output sin(x).
• Generate a follow-up test case by applying the trans-

formation x′ = x + 2π and calculate y = sin(x′) =
sin(x+ 2π).



• Compare the outputs. If sin(x′) ̸= sin(x), the MR is
violated, indicating a fault in the sine function’s imple-
mentation.

By systematically applying these steps, MT provides an
effective and efficient alternative to detect faults in the absence
of traditional Test Oracles [10].

B. Testing Banking Applications

Banking applications handle sensitive financial and personal
data, making their security critical. Vulnerabilities, such as
weak authentication, injection flaws, insecure communica-
tion, and business logic errors, can lead to severe conse-
quences, including financial fraud and reputational damage
[5]. These vulnerabilities often arise from the complexity of
banking systems, which include intricate workflows, multiple
user roles, and diverse input interfaces such as web pages,
forms, and cookies [5]. Common vulnerabilities in banking
applications include authentication and authorization issues,
injection attacks, cross-site scripting (XSS), business logic
flaws, insecure communication, and third-party dependencies
[5]. Several testing techniques are commonly employed to
detect vulnerabilities in banking applications, including the
use of static application security testing (SAST) [17], dynamic
application security testing (DAST) [18], penetration testing,
fuzz testing, risk-based testing [5], and manual code reviews
[5]. These methods often face challenges, such as restricted
test coverage, proneness to human error, and difficulties in
addressing dynamic behaviors, commonly called the Oracle
Problem [16]. Frequent configuration changes and diverse
input parameters in banking applications further complicate
the testing process.

MT addresses these gaps by leveraging MRs. Unlike tra-
ditional methods, MT does not require precise expected re-
sults, making it particularly useful in scenarios where Test
Oracles are unavailable or impractical [10]. MT resolves the
Oracle Problem by focusing on input-output relationships.
Additionally, it automates test case generation and validation,
reducing human error and systematically covering complex
input combinations to improve test coverage [10]. For instance,
SQL injection is a common vulnerability in banking appli-
cations. Attackers can manipulate input fields, such as login
forms or search bars, to execute unauthorized SQL queries.
If user inputs are not properly validated, an attacker could
bypass authentication by submitting crafted inputs and gaining
unauthorized access to sensitive user data. This vulnerability
allows attackers to manipulate or delete records, steal financial
information, and perform fraudulent transactions. MT can
verify the system’s behavior by testing transformed inputs to
ensure proper handling and validation, mitigating such risks.
As banking systems grow in complexity, MT offers a scalable
and practical approach to ensure their security and reliability.
By addressing the limitations of traditional testing methods,
MT enhances the efficiency and effectiveness of vulnerability
detection in banking applications.

III. APPROACH

In this section, we introduce a new approach to automating
the MT technique. We predict MRs for vulnerable-prone
programs commonly found in banking applications, which fall
under OWASP’s Top 10 vulnerabilities. The proposed method,
illustrated in Figure 2, consists of three key steps:

1) identifying MRs for vulnerabilities related to banking
applications among OWASP’s Top 10 vulnerabilities,
making our method directly applicable to real-world
scenarios,

2) generating control flow graphs that capture the execution
behavior of vulnerable-prone Java programs, and

3) applying a graph-based model to analyze CFG datasets
for MR prediction, ensuring a comprehensive and accu-
rate assessment.

In the first step, we define MRs based on the characteristics
and behaviors of vulnerabilities that can be tested using MT
in Java-based banking applications. In the second step, we
construct CFG representations from Java source code to model
program execution flows. The generated CFGs provide a struc-
tured, graphical representation of program behavior, essential
for further analysis. In the final step, we employ graph-based
classification models to analyze the CFGs. Specifically, we in-
troduce a graph convolutional neural network to automatically
learn predictive patterns from CFG data, enabling efficient
and accurate vulnerability testing in banking applications by
predicting MRs.

A. Metamorphic Relations (step 1)
The first task is to identify MRs. We developed 8 MRs from

the OWASP’s Top 10 (2021) list. To identify the MRs, we
focused on properties related to vulnerabilities found in online
banking web applications. Among the top 10, we identified
MRs for only 8, as these are the most common. We named the
MRs by numbering them from 1 to 8 (e.g., MR1, MR2, etc.),
and we retained the numbering (e.g., A01, A02, etc.) from
the original list in case of vulnerabilities. The descriptions for
each MR are as follows:

• MR 1 (A01: Broken Access Control: Authorization-
Based Access Control): Let Ua represent an authorized
user and Uu represent an unauthorized user. Let R denote
a restricted resource. If f(Ua, R) −→ access granted,
then f(Uu, R) −→ access denied.

• MR 2 (A02: Cryptographic Failures: HTTPS vs.
HTTP Transmission): Let P represent plaintext data
(e.g., credentials or transaction details) and T de-
note the transmission protocol. If T (HTTPS, P ) −→
encrypted, then T (HTTP, P ) ̸= encrypted.

• MR 3 (A03: SQL Injection: Authentication
Bypass): Let Iv represent a valid login input
and Im denote a malicious SQL payload. If
DB query(Iv) −→ valid response, then
DB query(Im) ̸= valid response.

• MR 4 (A04: Insecure Design: Password Reset To-
ken Exposure): Let Ts represent a securely gener-
ated token, and Tu represent an unsecured token. If
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Fig. 2. Overview of the proposed approach for automating metamorphic testing (MT) to predict MRs for vulnerabilities in banking applications. The method
consists of three main steps: (1) identifying metamorphic relations (MRs) for vulnerabilities from OWASP’s Top 10 list related to banking applications, (2)
generating control flow graphs (CFGs) from Java source code to capture execution behavior, and (3) applying a graph convolutional neural network (GCNN)
to analyze the CFGs for MR prediction.

V alidate(Ts) −→ valid reset, then V alidate(Tu) ̸=
valid reset.

• MR 5 (A05: Security Misconfiguration: Default
Credentials Exposure): Let Cu represent a user-
defined credential and Cd denote a default credential.
If Auth(Cu) −→ secure login, then Auth(Cd) ̸=
secure login.

• MR 6 (A07: Authentication Failures: Session Expire):
Let Sv represent a session within its valid time frame,
and Se denote an expired session. If Auth(Sv) −→
access granted, then Auth(Se) −→ access denied.

• MR 7 (A08: Software and Data Integrity Failures:
Checked vs. Unchecked Transactions): Let Tc denote
a transaction that includes checksum validation, while Tu

represents a transaction that does not include checksum
validation. If Process(Tc) −→ valid transaction, then
Process(Tu) ̸= valid transaction.

• MR 8 (A10: Server-Side Request Forgery (SSRF):
Allowlisted vs. Denylisted URLs): Let Ua represent an
allowlisted URL and Ud represent a denylisted URL.
If Request(Ua) −→ allowed, then Request(Ud) −→
blocked.

B. Function Representation using Control Flow Graphs
(CFG) (step 2)

The next step in this approach involves converting a function
into its Control Flow Graph (CFG). This representation is
chosen because it facilitates the extraction of information
regarding the sequence of operations within a control flow
path, which directly corresponds to the MRs satisfied by a
given function [20].

A CFG is a directed graph, Gf = (V,E), representing a
function f. Each node vx ∈ V corresponds to a statement x in
f, with the operation performed in x labeled as label(vx). If x
and y are statements in f, and y executes immediately after x,
an edge e = (vx, vy) ∈ E is established. The control flow of f
is defined by all edges in the graph, while the entry and exit
points are represented by nodes vstart and vexit, respectively
[20].

To construct the CFGs, we utilize the Soot1 framework.
This tool generates CFGs in Jimple, a typed three-address
intermediate representation of Java code, where each CFG
node represents an atomic operation [21]. After generating the
CFGs, we refine them by labeling each node according to the
operation it performs. Additionally, we annotate all method
call nodes with their return types.

1https://www.sable.mcgill.ca/soot/



This study aims to develop a technique for identifying MRs
from vulnerable characteristics in Java source code. In this
context, CFGs produced as intermediate representations of
compiled source code serve as inputs for prediction models
to detect MRs to test vulnerable programs. Prior research has
demonstrated the successful application of CFGs in various
fields, including malware analysis [22], [23] and software
plagiarism detection [24], [25]. Since semantic errors often
become apparent only at runtime, analyzing execution flows
can be valuable in distinguishing faulty patterns from correct
ones.

C. Prediction Model (step 3)

We used a graph model to predict MRs for vulnerable-
prone programs. The Graph Convolutional Network (GCN) is
a dynamic graphical model that processes large-scale graphs
with intricate structural relationships [26]. Unlike simple node-
based representations, a vertex in the GCNN framework is not
merely a token but it encapsulates a rich set of features derived
from its connectivity within the graph [26]. For instance, in
a CFG context, each vertex signifies an operation that may
consist of multiple attributes, including the instruction type
and operands. In the GCNN model, the first layer is called
the embedding layer [26], where each vertex is mapped to
a real-valued vector corresponding to its feature represen-
tation. Next, we apply two graph convolutional layers [26]
that iteratively update the node embeddings by aggregating
information from neighboring nodes. These layers capture
local graph structures and enhance feature representations at
multiple levels. The network has batch normalization layers to
stabilize training and improve convergence. A ReLU activation
function [26] is applied after each convolutional operation
to introduce non-linearity. After the convolutional layers, a
global mean pooling layer is used to extract a unified feature
representation of the entire graph. Unlike standard CNNs
with fixed input dimensions, graphs feature varying sizes,
resulting in inconsistencies in feature extraction [26]. Pooling
addresses this by consolidating the learned node features into
a single vector representation. Ultimately, the feature vector
is processed through a fully connected layer and an output
layer, where categorical distributions for classification tasks
are generated. In this manner, a graph-based model automates
vulnerability testing in Java programs by predicting MRs and
capturing execution flow characteristics.

IV. EXPERIMENTS

We experimented with a dataset of programs prone to
vulnerabilities commonly found in banking applications. Our
aim was to generate a graph-based model to predict MRs for
those programs. This section provides a detailed description of
the dataset, the experimental setup, and the evaluation metrics
used.

A. Dataset

We constructed a dataset of 679 Java programs prone to
vulnerabilities in online banking applications. This dataset is

curated based on the OWASP Top 10 vulnerabilities, which
represent the most critical security issues for web applications.
We built the dataset by collecting Java programs from the
following sources:

• AI-generated vulnerable programs: Similar code sam-
ples were generated using ChatGPT (265) and Meta
AI LLaMA (265), focusing on the OWASP Top 10
vulnerabilities.

• Open-source repositories: Vulnerable Java applications
sourced from open-source projects on GitHub (98).

• Manually curated examples: Additional vulnerable
samples are chosen to ensure diversity (51).

Each program contains security flaws such as SQL in-
jection, broken access control, authentication failures, and
other OWASP vulnerabilities. Figure 3 is an example of
a vulnerable-prone Java program generated from ChatGPT.
Once the Java programs are collected, they are converted into
CFGs representing the program’s execution flow. The CFGs
are generated using static analysis tools called Soot (a Java
optimization framework). It extracts control flow structures
from Java bytecode. The generated CFGs represent nodes as
instructions or basic blocks, while edges indicate execution
flow between these instructions. Each CFG is stored in DOT
file format [27], which provides a graphical representation of
program execution.

B. Experimental Setup

The experiment aimed to analyze and predict MRs for
vulnerable-prone Java programs by leveraging CFGs and pre-
diction models. Each node in the CFG is assigned a label based
on its operation (e.g., ASSIGNMENT, IF CONDITIONS).
These labels were converted into unique 16-dimensional bi-
nary vectors, which serve as node features in the graph
representation. For example, all the nodes with the same type
of operations have the same 16-dimensional binary vectors.
Graph nodes were assigned unique features based on their
operations, and edges were structured as adjacency matrices.
The dataset was split into training and test sets to evaluate the
model’s performance. These splits were done based on three
categories. They were:

1) train with ChatGPT, Open-source repositories, and man-
ually crafted data. Test with Meta AILLaMa data,

2) train with Meta AILLaMa, Open-source repositories,
and manually crafted data. Test with ChatGPT data, and

3) train with Meta AILLaMa and ChatGPT data. Test with
Open-source repositories and manually crafted data.

Also, binary class labels were supplied to train the models
for each MR.

To ensure a comprehensive evaluation, we compare the
effectiveness of Graph Neural Networks (GNNs) against tradi-
tional prediction models. A two-layer GCNN model followed
by a fully connected layer is used to predict vulnerability
classes. We used Support Vector Machine (SVM) approaches
with two feature extraction types developed in previous studies
[28], [29]. One is random kernel-based SVM [28] and SVM



Fig. 3. Simplified Access Control Method Implementing Basic Role-Based
Authorization. This method checks if a user with a specific role is allowed
to access a restricted resource. Only users with the ”ADMIN” role are
granted access to restricted resources, while others are denied. The output
clearly indicates whether access is granted or denied based on the user’s
role. Metamorphic Relation 1 (MR1) for Authorization-Based Access Control
(RBAC) Violation can be used to test this method, ensuring that privileged
users are granted access while non-privileged users are correctly denied.

with Bag-of-Words (BoW) [29]. We also used the multi-layer
perceptron (MLP), which is a fully connected feedforward
neural network trained on the same dataset [30]. The results
show the average prediction scores for all the categories of
train tests split together.

C. Evaluation Measures

The approaches are evaluated using two widely recognized
performance metrics: the area under the receiver operating
characteristic (ROC) curve (AUC) and accuracy.

The AUC (Area Under the Curve) provides a more compre-
hensive evaluation of the model’s performance [31]. It assesses
the classifier’s ability to distinguish between two classes by
quantifying the area under the ROC curve, which plots the
true positive rate (TPR) against the false positive rate (FPR)
at different classification thresholds [31]. The comprehensive
nature of AUC evaluation provides reassurance and confidence
in the model’s performance, especially when class distributions
are imbalanced [31]. A classifier with an AUC of 1.0 perfectly
distinguishes between the two classes, while an AUC of 0.5
indicates no better performance than random guessing [31].

Accuracy measures the proportion of correctly classified
instances among all predictions and is a fundamental metric
for evaluating classification models [32]. Accuracy, while a
fundamental metric for evaluating classification models, can
be misleading when class imbalances exist. In such cases,
where one class has significantly fewer samples than the
other, a model biased toward the majority class may achieve
high accuracy but perform poorly in detecting minority-class
instances. [32].

V. RESULTS AND DISCUSSION

The performance of four classification models—Support
Vector Machine (SVM) with Random Walk kernel, SVM
with Bag of Words (BoW), Multilayer Perceptron (MLP), and
Graph Convolutional Neural Network (GCNN) was assessed
using two key performance metrics, the Area Under the
Receiver Operating Characteristic Curve (AUC) and accuracy.
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This evaluation was conducted to determine the effectiveness
of the models in predicting MRs for vulnerable-prone Java
programs in banking applications.

The GCNN consistently outperformed the other models,
achieving the highest AUC scores across most MRs. Figure
4 shows GCNN achieved AUC scores of 0.95 (MR1), 0.92
(MR3), 0.92 (MR5), and 0.94 (MR7). It indicates its capability
to capture complex structural patterns from the CFGs of
the programs. The SVM with Random Walk kernel also
demonstrated strong performance, particularly for MR2 (0.83)
and MR3 (0.85). In contrast, the MLP model showed relatively
lower AUC scores. Here, the performance declined notably
for MR5 (0.6) and MR3 (0.66). It illustrates its limitations in
addressing structural graph data compared to GCNN. SVM-
BoW showed average performance, with scores ranging from
0.7 to 0.81. It reflects its dependency on text-based feature
representation, which may not fully capture the complex
program behaviors.

The accuracy results further confirm the AUC findings, em-
phasizing the robustness of GCNN in predictive performance.
Figure 5 shows that GCNN achieved the highest accuracy for



MR6 (0.91), MR3 (0.89), and MR8 (0.87), demonstrating its
robustness in accurately classifying MRs. SVM with Random
Walk kernel upheld competitive accuracy, particularly in MR4
(0.89) and MR5 (0.83). However, its performance slightly
varied across different MRs. The MLP model lagged, with
the lowest MR2 (0.62) and MR6 (0.63) accuracy, reflecting
its struggles with feature extraction from complex graph data.
SVM-BoW performed relatively well. It achieved accuracy
scores of 0.81 (MR7) and 0.8 (MR8) but did not match the
consistency observed with GCNN.

The results emphasize the advantage of leveraging graph-
based models, particularly GCNN, in analyzing control flow
graphs for MR prediction. The AUC and accuracy scores of
GCNN can be attributed to its ability to learn hierarchical
feature representations from graph-structured data, which tra-
ditional models like SVM and MLP cannot fully manage. The
relatively strong performance of SVM with Random Walk
kernel suggests that kernel-based approaches still hold value,
especially when dealing with graph structure data. However,
the lower performance of MLP highlights the challenges neural
networks face, such as the lack of specialized architectures
for graph data. Overall, the findings validate the advantage
of leveraging graph-based models for MR prediction for
vulnerable-prone Java programs, particularly in domains where
program structure plays a crucial role.

VI. THREATS TO VALIDITY

External validity [33] is concerned with the generalizability
of the findings beyond the specific dataset and experimental
setup used in this study. The study was conducted on a dataset
that does not represent all real-world applications. The results
may not generalize to datasets with different characteristics,
such as varying feature distributions, noise levels, or larger
sample sizes. While the models perform well on the given
dataset, their scalability to large-scale real-world applications
remains uncertain. The effectiveness of GCNNs depends on
the graph structure of the data. If the dataset does not naturally
fit into a graph representation, the performance of GCNNs
might be inferior to traditional models like SVM or MLP. This
limits the generalization of GCNNs to various classification
tasks.

Internal validity [33], which refers to potential biases, errors,
or confounding factors affecting the experimental results, is
critical. The study relies on widely used frameworks such
as Soot, Scikit-learn, TensorFlow, and Graph Neural Network
(GNN) libraries like PyTorch-Geometric. However, while pop-
ular, these frameworks may still contain undocumented bugs
or implementation inconsistencies that could impact the ex-
perimental outcomes. Therefore, further validation on more
extensive and diverse datasets is necessary to confirm the
robustness of the findings and to ensure the ongoing relevance
of this research.

VII. CONCLUSION

Our research goal was To apply MT to tackle the Test Oracle
problem in security vulnerability testing of online banking

applications.
We evaluate the effectiveness of automatically predicting

MRs using graph models for vulnerable-prone Java programs
commonly found in banking applications. MT is a testing
technique for programs lacking a suitable Test Oracle. Man-
ually identifying such MRs for various applications poses
challenges for testers. In prior work, we developed a graph
kernel-based machine learning approach for predicting MRs
using supervised learning and control flow graph features
tailored for complex scientific programs. Results indicate that
utilizing control flow graph features to compute the graph
kernel of a testing program for training a machine learning
model enhances MR prediction. This research evaluates the
effectiveness of using graph representations directly to train
graph models of vulnerable-prone Java programs. Graph Con-
volutional Neural Networks (GCNNs) are evaluated using a
control flow graph of vulnerable-prone programs in online
banking applications. Eight types of metamorphic relations
are manually identified for predicting MRs that cover the
properties of vulnerabilities among the top 10 OWASP vul-
nerabilities. These MRs are predicted on Graph Convolutional
Neural Networks (GCNNs), MLP, random kernel-based SVM,
and SVM with bag-of-words. The result shows the advantage
of leveraging graph-based models, particularly GCNN, in
analyzing control flow graphs for MR prediction. GCNN
consistently shows the highest AUC scores across most MRs,
with values ranging from 0.76 to 0.95, indicating its ability to
discriminate between classes.

The proposed method has several potential extensions.
Firstly, to enhance external validity, utilizing a larger dataset
with various functions can improve accuracy. Currently, the
method focuses on predicting a single metamorphic relation,
relying on a binary classification system to train predictive
models. However, it can be adapted to predict metamorphic
relations using multi-class models. Additionally, this approach
could be expanded to include datasets from other programming
languages, such as Python, C, and Fortran, which would be
advantageous for the scientific community.
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