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Abstract—One of the advantages of using unsupervised ma-
chine learning algorithms is that they don’t need labeled data;
thus, ultimately saving higher labeling costs for an organization.
However, the computational complexity and large input space
put these algorithms into the category of non-testable programs,
which also suffer from the oracle problem. One popular testing
approach, borrowed from the Software Engineering (SE) domain
is the Metamorphic Testing (MT) technique that has been proven
to be an effective approach in alleviating the oracle problem
in testing such non-testable programs. We take advantage of
this MT approach to make some insightful contributions that
include: i) proposing a broader set of 22 Metamorphic Relations
(MRs) for assessing the behavior of the K-means clustering
algorithm (a prototype-based approach) and the Agglomerative
clustering algorithm (a hierarchy-based approach), provided by
the leading scikit-learn Python library, ii) providing a detailed
analysis/reasoning to show how the proposed MRs can be used to
target both the verification and validation aspects of testing the
clustering algorithms under investigation, and iii) showing that
verification of MRs using multiple criteria is more beneficial than
relying on using just a single criterion (i.e., clusters assigned).
We further applied the proposed approach to test an open source
customer segmentation application and the results obtained show
that, i) 10 MRs have been violated for both the K-means
and Agglomerative clustering algorithms, and ii) in comparison
to K-means, the Agglomerative clustering algorithm is highly
susceptible to small changes in inputs and may not offer a better
alternative to scenarios captured by the violated MRs.

Index Terms—Software Engineering, Machine Learning, Clus-
tering, Unsupervised learning, Metamorphic Testing, Metamor-
phic Relations, Verification, Validation, Oracle problem

I. INTRODUCTION

Machine Learning (ML) can broadly be classified into

supervised and unsupervised machine learning algorithms.

Supervised machine learning learns patterns from the la-

beled data, whereas, there is no class label available for

the data points when the problem under investigation falls

under the unsupervised machine learning category. Some of

the widely used unsupervised machine learning algorithms

include K-means clustering (a prototype-based approach) and

Agglomerative clustering (a hierarchy-based approach). These

algorithms can be used to address a wide range of real

world problems i.e., customer segmentation, document clus-

tering, clustering DNA patterns, recommendation systems, and

anomaly detection. It is thus important that such applications

are tested properly to ensure their quality before moving

them to production environments. Further, one should also be

aware of the possible changes in clustering results when the

data itself undergoes changes in the future. However, similar

to supervised ML algorithms, one of the challenges faced

in testing unsupervised ML algorithms is their complexity

and their exposure to the oracle problem. The oracle is a

mechanism that a software tester uses to verify the output of

the program under test. When the oracle is not available (or is

available but infeasible to apply) we call a program suffering

from the oracle problem.

Software Engineering for Machine Learning (SE4ML) is an

emerging research area that focuses on applying SE best prac-

tices and methods for better development, testing, operation,

and maintenance of ML-based systems [1] [2] [3] [4]. Our

focus in this work is on the testing aspect of unsupervised ML

algorithms and how a traditional software testing approach i.e.,

Metamorphic Testing (MT) can be utilized to perform better

quality assurance from both the verification and validation

perspective.

MT is considered an effective testing strategy in alleviating

the oracle problem in testing both type of supervised and

unsupervised ML algorithms. In MT, Metamorphic Relations

(MRs) are proposed to test the program under test. Each

MR is composed of a source test case and a follow-up test

case. An MR is said to be violated if the result obtained

for the source test case is different from the follow-up test

case. The MRs can be used to target either i) the necessary

characteristics (related to implementation), or ii) expected

characteristics (related to user expectations) of the program

under test. MT is different from using the classical evaluation

methods i.e., residual sum-of-squares, silhouette coefficient,

Davies–Bouldin index, etc. (frequently used to evaluate the

clustering results of different algorithms) in the sense that MT

is a testing technique, whereas, these evaluation methods aim

to identify the algorithm more suitable for the problem under

investigation. It is important to note that much of the research

work has focused on utilizing the power of MT for testing su-

pervised ML algorithms [5] [6] [7] [8] [9] but much less work

has been done in using MT for testing unsupervised algorithms

[10] [11]. Prior work (related to testing unsupervised ML
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algorithms) uses MT to test clustering algorithms (provided

by the WEKA tool [13]) only from the validation perspective.

This motivates us to take MT one step further and utilize its

power to test some widely used clustering algorithms (i.e., K-

means clustering and Agglomerative clustering), provided by

a popular and widely used Python library i.e., scikit-learn [12]

from both the verification and validation perspective.

The following presents the main contributions made in this

paper:

• We propose an MT based approach for verification and

validation of two popular clustering algorithms, provided

by the leading Python library known as scikit-learn. These

includes K-means (a prototype-based approach) and Ag-

glomerative clustering (a hierarchy-based approach) al-

gorithms.

• We propose 22 MRs to assess the behaviour (from both

the user’s and developer’s/implementation perspective) of

the clustering algorithms under test.

• The proposed MRs are further analyzed, necessary rea-

soning is provided, and MRs are then categorized to show

whether each of those MRs targets the verification or

the validation aspect of testing the two algorithms under

investigation.

• The effectiveness of the proposed approach is demon-

strated by applying it to testing an open source customer

segmentation application 1. The results show that among

the proposed MRs, 10 MRs are violated for both the K-

means and the Agglomerative clustering algorithm.

The rest of the paper is organized as follows. Section II

presents related work, whereas, Section III presents the Goal

Question Metric (GQM) approach to frame the research work.

Next, the proposed approach and the contributions made are

presented in Section IV. Section V presents the results obtained

by showing the effectiveness of the proposed approach. Lastly,

in Section VI, conclusions are made along with potential future

work.

II. RELATED WORK

The MT technique has been shown to be an effective

approach in alleviating the oracle problem in computationally

complex machine learning based classifiers [5] [6] [7] [8]

[9]. To the best of our knowledge we are able to find only

two research papers in which MT has been utilized to test

unsupervised clustering algorithms [10] [11], which is equally

the motivator for this work and for making some beneficial

research contributions. Yang et al. [10] proposed 7 MRs to

test the K-means algorithm (in WEKA tool) that target the

algorithm’s correctness from a user perspective (validation)

to check whether the user expectations from the algorithm

are satisfied or not. Their results show that two of the MRs

are violated but this does not necessarily mean that there

is some implementation defect in the algorithm under test.

Xie et al. [11] proposed 11 generic MRs that assess and

validate the characteristics of different clustering algorithms

1https://github.com/matifkhattak/MT4UML

from a user perspective. The authors conducted an experiment

to test 6 clustering algorithms (provided by WEKA) and

compared them using the proposed MRs. This research helps

end-users (non-technical users) coming from diverse fields

such as bioinformatics, finance, and electrical engineering to

choose a specific type of algorithm from a large set of available

algorithms that can best fit their needs. However, the following

are the limitations we have found in their work:

• The proposed approaches only serve validation purposes,

and only check whether the algorithms under test meet

the user expectations.

• The proposed MRs only target the algorithms provided by

the WEKA tool. It is equally worth exploring to test the

behavior of other notable clustering algorithms provided

by widely used Python libraries i.e., Scikit-learn. It will

not only help the end-users in choosing the most suitable

clustering algorithm but it will also help in selecting the

right ML library for their problem under investigation.

• The proposed approaches use synthetic 2D data (i.e., not

real data). It is worth exploring whether the proposed

MRs are effective in testing the models that use multi-

dimensional real-world data sets as well.

III. GQM

The GQM (Goal Question Metric) is a goal oriented ap-

proach [15] that we have used to frame the research work. As

shown in Fig. 1, in the GQM approach, a set of goal(s) are

identified, each of them is further refined using the questions
to address the corresponding research goal, and then the

metrics are outlined to answer the research questions in a

quantifiable manner.

Fig. 1. GQM Approach [15]

Research Goal (RG): To investigate the MT technique for

testing unsupervised algorithms for the purpose of
improving their quality from the perspective of both the end

user and a developer in the context of testing K-means and

Agglomerative clustering algorithms.

Research Question 1 (RQ1): How effective are the pro-

posed MRs in testing the clustering algorithms under test?

Research Question 2 (RQ2): Which algorithm is more

stable for performing clustering-related tasks?

Research Metrics (RM): The following metrics are used to

answer the above raised research questions.

RM1: Number of violated MRs - A count of the number of

MRs that are violated by the algorithms under test.
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RM2: Violation Rate - Percentage of instances for which

the programs show inconsistent behaviour.

IV. OUR APPROACH

Our approach for testing the K-means and Agglomerative

clustering algorithms is based on the Metamorphic Testing

(MT) technique [14]. In K-means algorithm, the following

equation is used for calculation of new centroids [11], in which

c
(t+1)
i represents the ith new centroid found, and xj represents

the jth instance (where j = 1, 2, ..., n) belonging to the cluster

Ci.

c
(t+1)
i = 1

|C(t)
i |

∑n
j=1 xj (1)

In Agglomerative clustering, the following equation rep-

resents the average linkage method used to merge two similar

clusters [11]:

d(Ci, Cj) =
1

|Ci||Cj |
∑

xr∈Ci

∑
xs∈Cj

d(xr, xs) (2)

where, d(Ci, Cj) represents the distance between cluster Ci

and cluster Cj , xr represents the rth data point (where r =

1,2,...,n) belonging to the cluster Ci, and xs represents the

sth data point (where s = 1,2,...,n) belonging to the cluster

Cj .

In the rest of this section, we define the proposed MRs along

with the analysis/reasoning to show how the proposed MRs

target both the verification and validation aspect of testing the

clustering algorithms under investigation.

A. Proposed Metamorphic Relations for Unsupervised Algo-
rithms

We provide a set of 22 MRs that can be broadly classified

into 14 categories. Each of the proposed MRs either targets the

verification or the validation aspect of testing the clustering

algorithms under test. The MRs targeting the verification
aspect aim to check whether the algorithms under test adhere

to the necessary characteristics (from the implementation

perspective) expected from the algorithms, whereas, the MRs

targeting the validation aspect aim to check whether the

algorithms under test meet the general user expectations or

not. This large set of MRs are not just limited to the two

algorithms under investigation (provided by the scikit-learn

library), instead, they can also be used by naive users, develop-

ers and professionals to assess any clustering algorithm(s) they

are interested in using for their respective problems. For better

support and guidance, as shown in Tables I and II, we further

provide the verification and validation analysis and reasoning

for the proposed MRs. This analysis gives users a better idea in

understanding the algorithms and in choosing the appropriate

solution that best fits their needs.

MR1 - Duplication of Data Instance(s):

MR1.1 - Duplication of single instance: For a given source

input s, with associated data instances assigned to clusters ci
(where i = 1, 2, 3, ..., n), we denote the output as Os. If we

duplicate a single instance in the follow-up input f, the output

Of should remain consistent i.e., Os = Of .

MR1.2 - Duplication of multiple instances: For a given

source input s, with associated data instances assigned to

clusters ci (where i = 1, 2, 3, ..., n), we denote the output

as Os. If we duplicate multiple instances (i.e., each belonging

to a different cluster) in the follow-up input, the output Of

should remain unchanged i.e., Os = Of .

MR1.3 - Duplication of cluster centroids: For a given

source input s, we denote a set of centroids found as ti (where

i = 1, 2, 3, ..., n). If we duplicate these centroids in the follow-

up input, the output Of should remain unchanged i.e., Os =

Of .

MR2 - Data Standardization: If the existing standardized

data is once again standardized, the output for both the

source and follow-up inputs should remain the same i.e., Os

= Of .

MR3 - Duplication of Features: For a given source input s,

we denote the output as Os. For the follow-up input, if new

features are added by duplicating existing features, the

output Of should remain unchanged i.e., Os = Of .

MR4 - Removal of Instance(s):

MR4.1 - Removal of instance from one cluster: For a

given source input s, we denote the result as Os. If an instance

from a cluster ci is removed for the follow-up input, it should

not have any effect on changing the results for the remaining

inputs, so the output Of should remain the same i.e., Os =

Of .

MR4.2 - Removal of instance from different clusters: For

the follow-up input, if an instance from each of the clusters ci
(found during the source execution, where i = 1, 2, 3, ..., n) is

removed, the output should remain consistent.

MR4.3 - Removal of multiple instances from a single
cluster: For the follow-up input, if some random number of

n instances are removed from a single cluster ci, it should

not have any effect on changing the results for the remaining

inputs.

MR5 - Addition of Uninformative Attribute: For the

follow-up input, if a new uninformative feature (i.e., a

feature having the same value for all the instances) is added,

the output should remain unchanged.

MR6 - Deterministic Output Across Multiple Runs: If a

new data point is added, it should be assigned to the same

cluster no matter how many times the algorithm under test is

executed, i.e., the output for the execution at time timei
(where i = 1, 2, 3, ..., n) and timei+1 should remain

consistent for both the source and follow-up inputs.

MR7 - Shifting Features With constant k: For the

follow-up input, if the feature(s) for all the instances are

shifted with some constant k, the output should remain the

same for both the source and follow-up inputs.
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TABLE I
K-MEANS ALGORITHM: VERIFICATION (VR) AND VALIDATION (VD) ANALYSIS FOR THE PROPOSED MRS

# VR? VD? Reasoning
MR1 × � For the follow-up input, if we add a duplicate instance(s) to any of the clusters, this will result in different cluster centroid(s)

(calculated using Equation 1) which may cause the original data points to get assigned to different clusters; thus, changing the output
for the follow-up input. It is important to note that this is how (as shown in Equation 1) the centroid/mean calculation is implemented
in the K-means algorithm under test, which ultimately means that the violation of this MR can not be characterized as violating the
necessary characteristics (related to implementation) of the algorithm under test. Therefore, this MR can not be used for verification
purposes (because its violation can not be characterized as the bug in the implementation) but can be used for validation purposes
(because this is what the user’s general expectation would be from this algorithm).
Note: Readers can use the same reasoning for the verification and validation aspect of testing the algorithms under test for rest of
the proposed MRs.

MR2 � � For the follow-up input, if we re-apply the standardization step, i) it will not change the mean and variance of the data points, and
ii) it will maintain the same distance among the data points (similar to the source-input); thus, it should not not change the results.

MR3 × � For the follow-up intput, if we add a duplicate attribute(s) to the original data points, they may have a strong influence on changing
the distance between the data points and their existing centroids; thus, assigning the data points to different clusters. An example is
provided (inside excel sheet available in GitHub repo), where, a violation of this MR can be seen.

MR4 × � For the follow-up input, if we remove any instance(s), Equation 1 will result in the calculation of different centroids which ultimately
may lead to changing the final output i.e., data points assigned to different clusters. Since this violation can not be characterized to
the wrong implementation, it can only be used for validation purposes.

MR5 � � The addition of uninformative attributes (e.g., 0 or some other constant) will not change the existing relationship between the data
points and will also maintain the same relationship between the data points and the initial centroids. Therefore, the output for the
follow-up input should remain the same.

MR6 � � Running the algorithm at different times (keeping the initial centroids the same) should not have any effect on how the centroids
are calculated. Further, as there is no change made in the data points, the output should remain the same. If the output changes, it
means that there is some implementation bug in the algorithm under test.

MR7 � � If we shift all the features with some constant k, it will maintain the same distance between the data instances. So, Equation 1 will
produce the same centroids as the one found during source execution; thus, not changing the final output. Let x be the centroid, y be
the data point and the distance d (x, y) found between them during source execution is z. Now, if we shift the features of both x and

y with some constant (i.e., k) then the distance between them would be d (x, y) =
√

((x+ c)− (y + c))2 =>
√

(x− y)2 =>
x− y => z (i.e., will remain the same). Therefore, the output for both the source and follow-up inputs should remain consistent.

MR8 � � If we scale all the features with some constant k, it will maintain the same relationship between the data points and the centroids.
Let x and y be the two data points and during the source execution their relationship to the centroid c is x− c < y− c. During the
follow-up execution, after scaling the features with constant k i.e., k(x− c) < k(y − c) => x− c < y − c, the relationship (i.e.,
greater than, less than, and equal) remains the same. Therefore, if the output for the follow-up input changes, that would suggest
that there is some bug in the algorithm under test.

MR9 × � If we replace any of the instances with some other instance (belonging to the same cluster), it may result in the calculation of
different centroids (as per Equation 1); thus an instance xi (where i = 1, 2, .., n) may get assigned to a different cluster.

MR10 � � For the follow-up input, if we change the location of features, it will not have any affect on the relationship between the data points
and calculation of centroids (using Equation 1). So, the output should remain the same.

MR11 × � For the follow-up input, if we add an informative attribute to each of the clusters instances, it may result in changing the centroids
that can assign the instances to different clusters; thus, leading to a different final output.

MR12 � � For the follow-up input, if we change the order of rows/data points, it will not have any affect on existing relationship between the
data point s and will lead to the calculation of same centroids (similar to the one found during source execution). Thus, the output
for the source and follow-up inputs should remain consistent.

MR13 � � For the follow-input, if we apply reflection transformation, the distance between the data points will remain the same thus leading
to the calculation of same centroids (using Equation 1). This should result in consistent output for both the source and follow-up
inputs.

MR14 × � If we add a new instance(s) to any of the clusters, this addition of new instance(s) may result in the change of centroids (different
from the one found during source execution); thus, changing the final output.

MR8 - Scaling Features With Constant k: If the feature(s)

for all the instances are scaled with some constant k, the

output should remain unchanged for both the source and

follow-up inputs.

MR9 - Replacement of Instance(s):

MR9.1 - Replacement of single instance: If a single

instance belonging to a cluster ci is replaced with some other

instance x (belonging to the same cluster ci), it should not

have any impact on changing the clustering results i.e., the

output Of should remain the same for both the source and

follow-up inputs.

MR9.2 - Replacement of multiple instances: If multiple

instances belonging to a cluster ci are replaced with some

other instance x (belonging to the same cluster), the output

Of should remain consistent for both the source and follow-

up inputs.

MR9.3 - Replacement of all instances: If all the instances

belonging to a cluster ci are replaced with some other instance

x (belonging to the same cluster), the output Of should remain

consistent for both the source and follow-up inputs.

MR10 - Changing the Location of Features: If we change

the order of features, the clustering result should remain

unchanged for both the source and follow-up inputs.

MR11 - Adding an Informative Attribute: For a given

source input s, we denote the identified set of clusters as

C={c1, c2, ..., cn}. For the follow-up input, if a new attribute
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TABLE II
AGGLOMERATIVE CLUSTERING ALGORITHM: VERIFICATION (VR) AND VALIDATION (VD) ANALYSIS FOR THE PROPOSED MRS

# VR? VD? Reasoning
MR1 × � For the follow-up input, if we add a duplicate instance(s) to any of the clusters, this may change the average distance between the

two clusters (calculated using Equation 2), thus ending up with changing the clusters for the original data points. For understanding
purposes, suppose in Fig. 2, the dendogram for the source input is cut to obtain the two clusters. The data points 7,6,6,10 will be
assigned to one cluster, whereas, the data points 2,3 will be assigned to a second cluster. Now, if we duplicate the data point 3 and
cut the dendogram to obtain the two clusters, it can be seen in Fig. 3 that the original data points 7,6,6,2,3 are now assigned to one
cluster, whereas, the data point 10 is assigned to the second cluster; thus, changing the output for the follow-up inputs.

MR2 � � Same reasoning as provided for MR2 in Table I
MR3 × � For the follow-up intput, if we add a duplicate attribute(s) to the original data points, they may have a strong influence on changing

the average distance between the clusters; thus, changing the overall result. An example is provided (inside excel sheet available in
GitHub repo), where, a violation of this MR can be seen.

MR4 × � For the follow-up input, if we remove an instance(s), Equation 2 will result in changing the average distance between the clusters.
As an example, in Fig. 2, if we remove the data point ‘2’, the data point ‘3’ (instead of data point ‘10’) will get assigned to the
cluster ‘7,6,6’ . Now, if the dendogram is cut to obtain the two clusters, one cluster will have data points ‘7,6,6,3’, whereas, the
second one will have only ‘10‘, thus changing the clustering result for the follow-up inputs.

MR5 � � The addition of uninformative attribute (e.g., 0 or some other constant) will neither change the existing relationship between the data
points nor the average distance between the clusters. Therefore, the output for the follow-up input should remain the same.

MR6 � � Running the algorithm at different times should not have any affect on how the average distance between the clusters is calculated.
Apart from that, as there is no change made in the data points, so the output should remain consistent.

MR7 � � If we shift all the features with some constant k, it will maintain the same distance between all the data instances. So, Equation
2 will result in merging the same clusters that were merged during the source execution. As an example, let x and y be the two
data-points merged together during the source execution. Now, if we shift the features of both the x and y with some constant

‘c’ then the distance between them i.e., d (x, y) =
√

((x+ c)− (y + c))2 =>
√

(x− y)2 , would remain similar to the one

calculated during the source execution. Therefore, the output for both the source and follow-up inputs should remain the same.
MR8 � � If we scale all the features with some constant k, it will maintain the same relationship (i.e., greater than, less than, and equal)

between the data points. As an example, let suppose that we have three data points x, y, and z that we are interested to group them
into two clusters. During the source execution, let x and y are merged together to form one cluster, and z in another cluster. The
current relationship between them is x − y < z − y. During the follow-up execution, after scaling the features with a constant k
i.e., k(x − y) < k(z − y) => x − y < y − z, the relationship remains the same. Therefore, the output should remain consistent
for both the source and follow-up executions.

MR9 × � For the follow-up input, if we replace any of the instances with some other instance (that belongs to the same cluster), it may change
the average distance between them (calculated using Equation 2) which can result in assigning the original input to different clusters.
As an example, as shown in Fig. 2, if in cluster#2 (which contain data points 2 and 3), we replace the instance 2 with instance 3, it
will assign them to the cluster#1 which contains the data points 7,6,6. Now if the dendogram is cut to obtain the two clusters, one
cluster will have the data-points 7,6,6,3,3, whereas, the other will have only 10; thus, the original data-point (which is 3) has been
assigned to the cluster#1 (instead of cluster#2). This will result in violation of this MR.

MR10 � � For the follow-up input, if we change the location of features, it will not have any affect on the relationship between the data points
and calculation of average distance between the clusters (calculated using Equation 1). So, the output should remain unchanged for
both the source and follow-up executions.

MR11 � � If we add an informative attribute such that it is strongly associated with each of the clusters, it will not change the existing relationship
between the data points assigned to each clusters. As an example, let suppose that the dendogram for the source execution (as shown
in Fig. 2) is cut to form two clusters, one cluster will have the data points 7,6,6,10, whereas, the other cluster will have the data
points 2,3. Now, for the follow-up execution, if we add a new informative attribute which has the value 3 for all the instances in
cluster#1 i.e., (7,3),(6,3),(6,3),(10,3) and value 4 for all the instances in cluster#2 i.e., (2,4),(3,4), it will not change the existing
relationship between the clusters; thus, the output should remain the same.

MR12 � � For the follow-up input, if we change the order of rows/data instances, it will not have any affect on the way the calculation is made
(using Equation 2) to merge the two clusters. Thus, the output for both the source and follow-up inputs should remain the same.

MR13 � � For the follow-input, if we apply reflection transformation to all data points, the distance between them will remain the same; thus,
leading to the identification of the same clusters found during source execution.

MR14 × � If we add a new instance(s) to any of the clusters, this addition of new instance(s) may result in change of average distance between
the clusters; thus, changing the final output. An example is provided (inside excel sheet available in GitHub repo), where, a violation
of this MR can be seen.

whose value is strongly associated with each of the clusters

i.e., value x1 with c1, x2 with c2,..., and xn with cn, is added

to the original data instances, the clustering result should

remain the same for both the source and follow-up inputs.

MR12 - Rows Transformation:

MR12.1 - Reversing the order: If we reverse the order of

data points/rows, the clustering result should remain consistent

for both the source and follow-up inputs.

MR12.2 - Random shuffling: If we randomly shuffle the

order of data points/rows, the clustering result should remain

unchanged for both the source and follow-up inputs.

MR13 - Reflection Transformation: For a given source

input s, we denote the output as Os. For the follow-up input,

if we multiply all the features with -1 (performing the data

reflection), the output Of should remain the same i.e., Os =

Of .

MR14 - Addition of New Instance(s):

MR14.1 - Addition of instance with informative at-
tributes: If we increase the cluster ci density by adding a

new data-point(s) in the middle of two existing data points
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TABLE III
RESULTS OF TESTING K-MEANS AND AGGLOMERATIVE CLUSTERING ALGORITHMS

K-Means Agglomerative Clustering
MR# Same cluster as-

signed?
Centroids
same?

Nearest point to cen-
troid(s) same?

Violation?
(Violation rate)

Same cluster
assigned?

Violation?
(Violation rate)

1.1 × × � �(0.12%) × �(0.05%)
1.2 × × � �(0.10%) × �(98.53%)
1.3 � � � × N/A N/A
2 � � � × � ×
3 � � � × � ×
4.1 × × � �(0.14%) × �(0.09%)
4.2 × × � �(0.23%) × �(0.23%)
4.3 × × × �(57.82%) × �(93.40%)
5 � � � × � ×
6 � � � × � ×
7 � � � × � ×
8 � � � × � ×
9.1 � × � � × �(2.14%)
9.2 � � � × × �(98.07%)
9.3 × × � �(0.02%) × �(99.28%)
10 � � � × � ×
11 � × × � � ×
12.1 � � � × � ×
12.2 � � � × � ×
13 � � � × � ×
14.1 × × � �(0.05%) × �(0.28)
14.2 � × × � × �(94.90%)

Fig. 2. Agglomerative Clustering Example

Fig. 3. MR1 for agglomerative clustering: Added 3 as a duplicate instance

(i.e., instance x and y belonging to the same cluster ci), it

should not have any effect on changing clustering results, i.e.,

the output should remain consistent for both the source and

follow-up inputs i.e., Os = Of .

MR14.2 - Addition of instance with uninformative at-
tributes: If we increase the cluster ci density by adding a new

data-point(s) such that all the features have 0 values in them,

it should not have any effect on the clustering results, i.e.,

the output should remain consistent for both the source and

follow-up inputs.

V. EXPERIMENTATION AND EVALUATION

To check the effectiveness of the proposed approach, we

have selected an open source customer segmentation appli-

cation that uses a real world multi-dimensional data-set 2.

The selected application uses K-means and Agglomerative

clustering algorithms, provided by the leading Python library

known as scikit-learn. It is worth mentioning that the proposed

MRs are not just limited to this single application, instead, they

can be used to test clustering algorithms in other domains as

well (i.e., document clustering, clustering DNA patterns, and

anomaly detection) in which the term ‘data point/data instance’

will represent either the document instance, DNA sequence,

or the network traffic instance respectively.

In K-means, if the centroids are selected randomly, it

will produce different results which can not be characterized

as a violation of the MR. Therefore, we initialized the K-

means algorithm with fixed centroids to make sure that it is

converging to the same point for multiple iterations; thus, the

focus is placed on testing the characteristics of the algorithms

under test using the proposed MRs.

Table III summarizes the results obtained for both clustering

algorithms under test. For testing the K-means algorithm, we

present the results and verify the proposed MRs using multiple

criteria e.g., whether the i) clusters, ii) centroids, and iii)

nearest point to each centroid, are the same for both the source

and follow-up inputs. This is beneficial, because if we are

unlucky in identifying the violation(s) for MRs using the first

criterion, we hope to uncover them using the other criteria.

For example, in Table III, it can be seen that for some of the

MRs e.g., MR9.1, MR11, and MR14.2, the clusters assigned

2https://github.com/matifkhattak/MT4UML
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to data instances are the same for both the source and follow-

up executions (thus, if only the first criterion is used, the MR

is said to be satisfied) but those MRs were violated for the

other criteria (e.g., verifying the centroids, and the nearest

point to each of the centroids), thus showing the usefulness

of using multiple criteria to verify the MRs. This also opens

a new research direction for researchers to explore the type

of different criteria that can be used for verification of MRs

(for different clustering algorithms) instead of relying only on

comparing the final output (i.e., clusters assigned), which may

mislead the results.

The results presented in Table III show the violated MRs

and their comparison for both algorithms under investigation.

Each of the violated MRs either implies the implementation

faults in the algorithm (verification), or its deviation from

the user expectations (validation). For both the K-means and

Agglomerative clustering alogrithms, 10 (out of 22) MRs

(which quantifies RM1) have been violated. We also show

the violation rate (i.e., RM2) for each of the violated MRs,

and it can be seen that the K-means algorithm shows a

higher violation rate for MR4.3, whereas, the Agglomerative

clustering algorithm has a higher violation rate for MR1.2,

MR4.3, MR9.2, MR9.3, and MR14.2. This answers our first
RQ that the proposed MRs are effective in testing the
clustering algorithms under test. To answer the second RQ,

it can be seen that both of the algorithms under investigation

show the violations for the same number of MRs. However,

agglomerative clustering seems to be more sensitive to smaller

changes because a small change is causing a higher violation

rate among the violated MRs. Therefore, we conclude that
in comparison to agglomerative clustering, the K-means
algorithm is more stable for the scenarios captured in the
proposed MRs, which answers RQ2.

VI. CONCLUSION AND FUTURE WORK

Similar to supervised ML algorithms, one of the challenges

faced in testing unsupervised algorithms is that they also

suffer from the Oracle problem. Software Engineering for

Machine Learning (SE4ML) is an emerging research area that

focuses on applying SE best practices and methods for better

development, testing, operation, and maintenance of ML-based

systems. Our contribution in this work focuses on testing

some popular unsupervised ML algorithms (i.e., K-means

and Agglomerative clustering algorithms, provided by the

leading Python library ‘scikit-learn’) and investigate how the

traditional software testing approach i.e., Metamorphic Testing

(MT) can be utilized to perform better quality assurance from

both the verification and validation perspective. We propose a

broader set of 22 MRs that both researchers and practitioners

can take advantage of to assess the behaviour of the clustering

algorithms under test from both the user’s general expectation

(validation) and from the implementation perspective (verifi-

cation). For testing the K-means algorithm, we also propose

multiple criteria that can be used for verification of the MRs.

Our results show that both the algorithms under test exhibit

violations (from the validation perspective) for 10 MRs, which

implies that the behaviour of the algorithms deviates from the

general user expectations. Further, in comparison to K-means,

the Agglomerative clustering algorithm is highly susceptible to

small changes in inputs and may not offer a better alternative

to scenarios captured by the violated MRs.

In the future, and to improve the testing of agglomerative

clustering based applications, we intend to develop new criteria

that can be used to verify MRs, and which will ultimately help

in building trust in using critical application algorithms. Sec-

ond, to show the general applicability of the proposed MRs,

we intend to utilize the proposed approach by testing a broad

range of other clustering algorithms that are popular among

both researchers and practitioners of the ML community.
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