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Abstract—Classifier models have successfully been applied to
the task of detecting and predicting defects in software projects.
These models work by learning patterns between attributes of the
software and a corresponding binary label that indicates whether
or not a defect exists. In this study, we evaluate the performance
of five different classifiers in the context of software defect
detection – naı̈ve Bayes, neural networks, support vector ma-
chines, logistic regression, and k-nearest neighbor. We measure
performance using both accuracy and F1-score, and use ANOVA
to test for significance. Each classifier was run on five datasets
from NASA’s metrics data program repository. Results show
that all models can detect software defects using static software
features with a relatively high degree of certainty, although naive
Bayes and support vector machines were outperformed by the
remaining algorithms for some datasets.

I. INTRODUCTION

Detection and prediction of software defects is an important
problem in the software engineering community. Without an
accurate method for detecting defects in software, a product
may be released in an unsatisfactory condition. In addition,
a method for predicting the occurrence of defects in software
may actually prevent the degradation of software by suggesting
corrective development that may avoid future problems.

One method for performing software defect detection is to
construct a classification model of the software system. These
models, which in the machine learning community are often
just called “classifiers”, typically consist of several attribute
variables and a single class variable. These learned models
capture the relationships between various software features and
how they influence the class label, which in this case is a
binary variable indicating that there is or is not a defect. Once
learned, the model is able to predict whether or not a defect
has occurred given a specific state instantiation to the features.

In addition to providing a means to detect and predict
defects, models can help to better understand the underlying
software features and how they affect the defect rate. For
example, a model may indicate that features A and E have
very little influence on software defects, while C may be
extremely important. In addition, more complex relationships
may arise where B and D may be important when considered
together, but alone are poor indications of defects. This infor-
mation can be extremely useful, and may suggest an area of
focus for software design companies. Software companies are
continuously improving and maturing existing code. If certain
components are found to be defect-prone or likely to contain a
fault in the near future, this may provide guidance as to where
development efforts should be directed.

II. RELATED WORK

Machine learning techniques have been applied to the
software engineering domain in the past. One such work
by Menzies et al. attempted to perform defect detection by
making use of classifier models [1]. Specifically, the authors
evaluate naı̈ve Bayes (described in section III-A1, J48 (which
is a decision tree model that builds prediction rules based
on attribute values), and OneR (which can be viewed as a
decision tree with only one level. Various modifications to
the algorithms and preprocessing techniques were considered
during the comparison. Performance was measured in terms
of true positives and false negatives, which in this context
equates to detect rates and false alarm rates respectively.
The data chosen for experimentation was taken from NASA’s
metrics data program (MDP) repository. Results showed that
in general, naı̈ve Bayes tended to perform the best.

Challagulla et al. build on this work by analyzing a larger
collection of machine learning techniques for the purpose of
software defect detection [2]. The models studied by these
authors are decision trees, naı̈ve Bayesian networks, logistic
regression, nearest neighbor, 1-rule, and neural networks. Here
again, the data was taken from NASA’s MDP repository.
Results showed that naı̈ve Bayes typically performed best,
followed by neural networks.

Guo et al. use random forests to detect fault prone C
and C++ modules [3]. These random forests consist of many
decision trees constructed using subsets of the data. The
datasets chosen were the same as those used in Challagulla
et al.. The random forest was compared to 12 other classifiers
taken from the WEKA, as well as to ROCKY, which is a defect
detector toolset for NASA that consists of many singleton
rules comparing attributes to a static threshold. Results showed
that random forests generally outperformed other methods, and
did not focus on comparison of the WEKA implementations
against one another.

In similar work, Khoshgoftaar et al. use a Classification
And Regression Trees (CART) algorithm to predict fault-
prone modules [4]. The goal of their work is to reduce the
number of misclassified fault-prone modules at the expense of
a higher misclassification of modules that are not fault-prone.
The logic is that a false alarm about a fault-prone module may
be acceptable, but failing to detect a faulty model may have a
more negative impact on a software company.

Finally, Zhou et al. use linear regression to detect varying
degrees of software defects [5]. More specifically, the authors
attempt to detect high-severity or low-severity faults, if such



a fault exists at all. This study again uses NASA datasets,
but in this case the authors focus on object oriented design
metrics. Interestingly enough, results show that the metrics
that describe the software allow logistic regression to predict
low-severity faults better than high-severity faults.

Similar to previous work, we compare naı̈ve Bayesian
networks, logistic regression, nearest neighbor and neural net-
works. We also use datasets from the NASA MDP repository
– PC1, PC2, PC3, PC4 and PC5. We distinguish our work
by including support vector machines, and by implementing
our own versions of each of the algorithms. These unique
implementations avoid the concern of biasing the WEKA
implementations for each algorithm, which are the versions
used by all previous studies [6]. Our work is therefore a
pseudoreplication study, where we intend to verify some of
the results presented by Challagulla et al., but also modify the
study to explore new classifiers as well.

III. APPROACH

The goal of this research is to determine whether or not
the choice of classifier makes a difference when attempting to
perform defect detection and prediction in software systems.
To test this, we implement a variety of classifier models and
compare their performance when applied to defect detection
datasets. Throughout this study, we attempt to generally follow
the framework proposed by Lessmann et al. [7]. In particular,
we try to avoid implementation bias by writing our own
algorithms, and use sufficient statistical testing procedures to
verify our empirical findings.

A. Algorithms

For our experiments we implemented five different classi-
fiers from machine learning and compared their performance
in terms of their ability to detect software defects. These
classifiers were chosen in an attempt to achieve diversity.
The models make use of probabilities, connectionist methods,
quadratic programming, regression and instance-based learn-
ing. In this way, we are able to explore a wide variety of
possible classifier models using a representative subset. The
implementations for each of these five algorithms are available
on a publicly hosted on a GitHub repository [8]. A brief
description for each algorithm is provided in this section.

1) Naı̈ve Bayes: A Bayesian network is a probabilistic
graphical model that compactly represents a joint probability
distribution over a set of discrete random variables [9]. The
model uses a directed acyclic graph where nodes represent
variables and edges encode conditional independencies be-
tween these variables. Each node is said to be conditionally
independent of all non-descendant nodes given its parents in
the graph. An example of this is shown in Figure 1 [10].

Naı̈ve Bayesian classifiers are a specialization of the model
that work by imposing a specific network structure to the
graph, where the class node is the sole parent to every
feature node, and the class node has no parents of its own
[11]. This corresponds to the assumption that every feature
is conditionally independent of all other features given the

Fig. 1: A class node C with n attributes

Fig. 2: An artificial neural network with a 4 node input layer,
5 node hidden layer, and 1 node output layer

class node. This structure allows the inference to be done very
efficiently, since calculation of the class probability is simply
a product of probabilities corresponding to each feature. If
this assumption is not made, the number of values necessary
to represent the probability distribution over binary variables
becomes 2n+1. This assumption gives the classifier the ‘naı̈ve’
qualifier. While this would seem to be a strong assumption,
empirical tests have shown that these models still perform very
well in practice.

2) Neural Network: Neural networks are models inspired
by biological neural networks consisting of neurons and
synapses. The model represents neurons as nodes in a graph-
ical network, while the synapses become weighted edges
between the nodes. Conceptually, the neurons act as processing
units while the synapses pass information between neurons. It
is this concept that inspires the mathematical model and the
mechanics of the artificial neural network (ANN) classifiers,
and perceptrons [12]. A fully-connected feed-forward ANN
is comprised of layers, where the nodes in each layer are
not connected, but the nodes between each layer are fully
connected. An example of this type of graphical representation
is shown in Figure 2.

These connections represent series of incoming weighted
links that in the simplest case are considered to be “high” or



Fig. 3: A computed hyperplane (dark line) shown with a soft
margin (area between dotted lines) separating the data points

“low” values produced by a step function. These incoming
weighted values are summed and passed to the node’s activa-
tion function as input. Typically, an ANN has an input layer,
a hidden layer, and output layer, which in combination are
capable of modeling complex functions. In practice, the step
function is simulated using a differentiable sigmoid function,
which allows the error gradient to be computed for learning.
For classification, the last layer usually consists of binary class
nodes, whose value is ultimately determined based on the
inputs to the network. Backpropagation is the most common
technique for learning edge weights, which works by adjusting
values according to the gradient of error [13]. Effectively, this
captures how the weights affect the “downstream” behavior
of a node’s input. Here, error is determined by incorrect
classification produced in the output layer.

3) Support Vector Machine: A Support Vector Machine
(SVM) aims to split data into two different spaces using a
hyperplane [14]. When applied to classification, the goal is
to find a hyperplane that provides a maximal margin between
datapoints in different classes, as shown in Figure 3. The data
points that support the position of the hyperplane are known
as the support vectors. The problem of deciding these points
is typically solving using Quadratic Programming.

SVM’s are linear classifiers, meaning that it is unable
to handle cases where class data overlaps. To account for
this, Cortes and Vapnik introduced a Soft-Margin Hyperplane,
which allows for class overlap by introducing a penalty for
how far a particular data point breaches the hyperplane into the
other class’s feature space [15]. The penalty is captured more
formally by introducing a slack variables to the Quadratic
Programming formulation. Another way to handle non-linearly
separable problems is to perform what is known as the “kernel
trick”, which lifts the data into a higher dimensional space by
applying a transformation to the data [16]. Our research uses
this method by applying a radial basis function as the kernel,
which is the most popular choice of kernel for SVMs.

Fig. 4: A decision boundary found using Logistic Regression

4) Logistic Regression: Another very popular classifier that
deals with decision boundaries is Logistic Regression [17].
The main point of this model is to make decisions about
the data. This is done by constructing a decision boundary
(literally a curve or surface) among the data in order to,
in our case, classify an example in one of two classes.
Logistic Regressions is a probability model that captures the
relationship between a set of independent variables and a
dependent variable that represents the class. The coefficients
of the logistic function need to be optimized in order to
produce the decision boundary. Figure 4 shows an example
of a decision boundary found using logistic regression [18].

Two popular methods exist for training a logistic regression
model. The first is gradient descent (GD), which optimizes
using a simple hill-climbing approach [19]. Second is the
Newton-Raphson method (NR), which is more commonly used
for multiclass regression but can still be used in the binary case
[20]. This method is similar to gradient descent, but computes
roots of the gradient function and follows a path to the root.
In this work, we make use of the NR method.

5) K-Nearest Neighbor: K-Nearest Neighbor (k-NN) is a
lazy learning method, meaning that there is no real learning
phase of the algorithm [21]. A model is constructed by simply
adding training examples. At any point during the addition
of the training examples, the model is technically ready for
testing examples. Classification occurs by first measuring the
distance between the test point and all other points in the
data set. Any distance metric can be used for this process, but
Euclidean distance is a natural choice for many domains. The
k nearest neighboring points to the test point are then selected,
and the class is determined to be the one most common among
this set of points.

A k-NN algorithm can be implemented a various ways. The
most common data structure used for classification is the kd-
tree [22]. A kd-tree works be dividing the space into a an
d-dimensional tree. By traversing this tree, a point, xi, can be
said to be close to another point, xj , if the point, xi, exists



Fig. 5: Nearest Neighbor construction approximation using
k = 3 and k = 7 for the data point represented by a star.

within divided space of the point, xj . Another reason for such
a representation is speed and efficiency. Traversing a kd-tree
is often times much faster than brute force. For classification,
a kd-tree becomes inefficient when the dimensionality of the
feature-space becomes very large 1. An example of how k-NN
might work is shown in Figure 5 [23].

B. Data

The datasets used in this study were gathered from the tera-
PROMISE Software Engineering Repository, which contains
code for several [24]. This repository is an updated version of
the PROMISE repository [25]. This study specifically focuses
on datasets designed for defect detection, where each datapoint
represents a snapshot of code. The attributes for each datapoint
are intended to provide an indication of whether or not
the code is defective. Attributes are represented with either
discrete or continuous values, which may be simple measure-
ments or more complex metrics. Several of the classifiers we
use are not naturally suited for continuous variables, and we
are therefore required to discretize the space. The achieve
this, we performed equal-width binning with three bins for
all attributes with a continuous state space.

One possible concern is that a classifier that makes use
of poorly defined attributes will be difficult to interpret and
reproduce in another setting. For this reason, the datasets
chosen for this study are restricted to only those that have
clearly defined metrics for attributes. Specifically, we look
at datasets that make use of Halstead [26] and McCabe
[27] metrics. Both McCabe and Halstead metrics consist of
well defined measurements and calculations that are easily
reproducible [28]. These specific metrics are a natural choice
due to the fact that they have previously been used for software
defect prediction [29].

1For this research, the dimensionality of feature-space becomes large when
20 or more attributes/features are used for classification.

TABLE I: Dataset Information

Dataset Attributes Pos. Examples Neg. Examples Total
PC1 38 61 644 705
PC2 37 16 729 745
PC3 38 134 943 1077
PC4 38 178 1280 1458
PC5 39 58 1826 1884

Five datasets were chosen from the tera-PROMISE reposi-
tory, denoted throughout the remainder of this paper as PC1,
PC2, PC3, PC4 and PC5. These datasets are also available
at the NASA’s MDP repository, although the corresponding
versions are not identical [30]. PC1, PC3, and PC4 contain
information about flight software written for an Earth orbiting
satellite [31], [32]. PC2 describes a dynamic simulator for an
altitude control system, and PC5 is for a safety enhancement
to a cockpit upgrade system. Although similar, the datasets
vary slightly in structure. All datasets are associated with code
written in the C Programming Language, with the exception of
PC5 which was written in C++. The attribute count and class
statistics are shown in Table I. For more information regarding
the specific attributes contained in each dataset, refer to the
corresponding attribute-relation file format (ARFF) files in the
tera-PROMISE repository.

IV. EXPERIMENTAL DESIGN

There is some debate in the machine learning community
about which metric best describes the classification capabilities
of a model. Although a variety of metrics exist, the two most
widely used include accuracy and the F1 measure. Accuracy
is the number of correctly classified instances divided by the
total number of classified instances. Precision measures only
the correctly classified positive examples divided by the total
number of positive examples. Alternatively, recall measures
the fraction of true positives divided by true positives and false
negatives. The F1 measure is defined as the harmonic mean
of both precision and recall as shown in the equation below.
The primary difference between accuracy and F1 is that F1

ensures that heavily imbalanced classes are not ignored.

F1 = 2 · precision · recall
precision+ recall

To avoid biasing a single metric, we run two sets of
experiments in parallel, each of which makes use of a different
metric. For the accuracy experiments, the null hypothesis states
that there is no difference between the choice of classifier
with respect to classification accuracy. Similarly, for the F1

experiments, the null hypothesis is that there is no difference
between classifiers with respect to the F1 measure. These
hypotheses are designed to answer the question of which
(if any) classifier is the correct choice for performing defect
prediction in software systems. Note that the only difference
between these hypotheses is the choice of response variable.

We ran experiments in a 10-fold cross validation scheme.
Here, 90% of the data is used for training and the remaining



10% is used for testing. The data is then “rotated” so that a
new 10% is chosen for testing. This is done 10 times (or folds)
so that all data has been tested once. We repeat this procedure
for every dataset, and do this for every classifier. All of this
is repeated twice, once for each choice of response variable.

Most of the classifiers used in this study had a variety of
hyperparameters that influenced its performance. The degree
to which these parameters effect the resulting model’s behavior
varies for each classifier in that some are more sensitive
to parameter changes than others. The parameters for each
of these models was adjusted manually based on empirical
evidence in an attempt to maximize performance for each
model individually. Specifically, we reserved 25 examples
from each dataset to use for manual testing when adjusting the
algorithm parameters. The tuning process was accomplished
by choosing a parameter and incrementally varying its value
until performance is optimal for the 25 examples. This process
is repeated for each of the parameters in turn, which assumes
the parameters can be optimized individually. A more robust
tuning process may consider all combinations of parameter
values at once, but this is exponential in the number of
possibilities. Cross validation was then performed on the
remaining examples in the dataset. Once set, the parameters
were kept constant throughout the varying folds and datasets.

V. ANALYSIS

To get an initial idea of how each algorithm performs, we
show the accuracy for each model on each of the datasets
with 95% confidence bounds in Table II. Similar results
are shown by Table III, except that the response variable
is the F1 measure instead of accuracy. These bounds were
calculated based on standard error, and have been rounded
to the nearest percent. In addition, we plot the accuracy
and F1 measure averaged over each of the folds and each
of the datasets. This plot is shown in figure 6. The most
immediately noticeable aspect of the data is the slight decrease
in performance for the naı̈ve Bayes model, especially for the
accuracy response variable. The remaining algorithms appear
fairly consistent. The difference between the using accuracy
and F1 as a response variable seems minimal in all cases.
Although this information is interesting, no conclusions can be
drawn that are not based on intuition. We investigate further
by running significance tests. For our analysis, we follow the
guidelines described by Juristo et al. [33]. Note that throughout
this section, we abbreviate the classifiers as Naı̈ve Bayes
(NB), Neural Network (NN), Support Vector Machine (SVM),
Logistic Regression (LR), and K-Nearest Neighbor (KNN).

In our experiments, we are dealing with a one-factor, k-
alternative design. The factor in question depends on the
experiment we are running. In the first set of experiments,
we use accuracy as a response variable. The second set of
experiments uses the F1 metric. The k alternatives in this case
refer to the six different classifiers. It is our belief that there
are no significant blocking variables to consider. The linear
model we use to describe this system is show below. Here,
µ represents the grand mean of all variables, αj is the mean

Fig. 6: Mean classifier performance over all datasets

for the jth model, and eij is the error associated with the ith

fold and the jth model. yij is either the accuracy or the F1

measure of the model, depending on the experiment.

yij = µ+ αj + eij (1)

To validate this model, we ensure that the data is normal in-
dependent and identically distributed (n.i.i.d.), which involves
checking for both normality and independence. To perform
the normality check, we ensure that the residuals generally
follow a normal distribution. The residuals are calculated by
subtracting each observation from its expected value, which is
simply the mean for the alternative. The plot of the residuals
for the PC5 dataset is shown in figure 7. We have performed
this check for all datasets with similar results but omit all
figures due to space constraints. To check for independence,
the residuals are plotted as a function of the expected observa-
tion values. If there is no discernible trend in the graph, then
the residuals can be assumed to be independent. The residual
plot is omitted due to space constraints, however there was no
observable trends in the charts, regardless of the dataset.

We performed an ANOVA test to compare the six alterna-
tives. As normality and independence assumptions have been
validated, we are justified in choosing an ANOVA test. A test
was run for each of the five datasets, and for each of the
response variables for a total of 10 tests. The results of these
tests are summarized in table IV, which provides the resulting
p-values. In every case, the difference in the response variable
is significant, even at a 0.001 significance level.

One concern is that the ANOVA test does not explain
which of the classifiers specifically makes the most differ-
ence. Instead we run a Tukey’s test to determine which of
the classifier models are causing significant differences. This
test compares each combination of alternatives in a pairwise
manor, which we do for each of the datasets. To display this
information compactly, we include the dataset name in each
cell where the alternatives differs at a 0.05 significance level.
This information is displayed as upper triangular matrices in
tables V and VI for accuracy and F1 respectively.

The results from the Tukey test are somewhat more infor-
mative than the ANOVA test alone. Specifically, we see that
regardless of the response variable, naı̈ve Bayes is significantly



TABLE II: Confidence Interval for Accuracy in percentages

PC1 PC2 PC3 PC4 PC5
NB 0.84± 0.02 0.93± 0.01 0.83± 0.01 0.83± 0.01 0.96± 0.01
NN 0.91± 0.01 0.98± 0.01 0.88± 0.01 0.79± 0.09 0.95± 0.01

SVM 0.91± 0.01 0.98± 0.01 0.88± 0.02 0.87± 0.01 0.94± 0.01
LR 0.91± 0.01 0.98± 0.01 0.88± 0.02 0.88± 0.01 0.97± 0.00

KNN 0.91± 0.01 0.98± 0.01 0.86± 0.02 0.87± 0.01 0.97± 0.00

TABLE III: Confidence Interval for F1 in percentages

PC1 PC2 PC3 PC4 PC5
NB 0.91± 0.01 0.96± 0.04 0.91± 0.01 0.90± 0.01 0.98± 0.00
NN 0.95± 0.00 0.99± 0.00 0.93± 0.01 0.84± 0.09 0.98± 0.01

SVM 0.95± 0.01 0.99± 0.00 0.93± 0.01 0.93± 0.00 0.97± 0.01
LR 0.95± 0.01 0.99± 0.00 0.93± 0.01 0.93± 0.00 0.98± 0.00

KNN 0.95± 0.00 0.99± 0.00 0.92± 0.01 0.93± 0.00 0.98± 0.00

(a) Accuracy metric (b) F1 metric

Fig. 7: Normality check for the PC5 dataset

TABLE IV: p-values for the ANOVA tests

PC1 PC2 PC3 PC4 PC5
Accuracy < 0.000 < 0.000 0.138 0.004 0.039

F1 < 0.000 < 0.000 0.086 < 0.000 0.035

TABLE V: Tukey significant accuracy differences

NN SVM LR KNN

NB PC1, PC2,
PC4

PC1, PC2,
PC4

PC1, PC2,
PC4 PC1, PC2

NN 0 0 0
SVM PC5 PC5
LR 0

KNN

different from all other classifiers for PC1 and PC2. This is
also true for the PC4 dataset, except in the case of k-nearest
neighbor when using accuracy as a response variable. Next
we see that SVMs are significantly different from logistic
regression and k-nearest neighbor classifiers on the PC5

TABLE VI: Tukey significant F1 differences

NN SVM LR KNN

NB PC1, PC2,
PC4

PC1, PC2,
PC4

PC1, PC2,
PC4

PC1, PC2,
PC4

NN 0 0 0
SVM PC5 PC5
LR 0

KNN

dataset with respect to both accuracy and the F1 measure.
Neural networks, logistic regression, and k-nearest neighbor
do not show significant differences between one another.

VI. DISCUSSION

The results from the ANOVA tests verify that the choice
of classifier does in fact influence both response variables at
a significance level of 0.05 for datasets PC1, PC2, PC4,
and PC5. This indicates that for these datasets, the change
observed in the response variables due to the choice of
classifier is very unlikely to occur by chance. This means



we can safely reject both of the null hypotheses listed above.
The PC3 dataset does not show any differences between the
algorithms unless we consider a 0.1 significance level, and
even then is only significant when using the F1 measure
as a response variable. The implication is that some care
needs to be dedicated to researching and choosing a proper
classification model in order to improve the ability to predict
defects in software.

In addition, the Tukey results show that using naı̈ve Bayes
generally has a significant effect on the overall classification
performance, and the same is true for SVMs on the PC5
dataset. By looking at the performances from tables II and III,
we see that in the cases where these classifiers differ, their
performance is lower than the competitors. This somewhat
contradicts the results presented by Challagulla et al., which
indicates that naı̈ve Bayes typically performs better [2].

Since the performance degradation seen by naı̈ve Bayes and
SVM is known to be significant, the obvious choice is to
avoid using these classifiers for the task of defect detection
for related projects. This general recommendation is based
on the notion that naı̈ve Bayes and SVM performed worse
in some situations, and never performed better. Interestingly
enough however, we did not observe a classifier that performs
worse over all five datasets. Given that these datasets describe
similar projects all written in the C Programming Language,
it may seem surprising that classifiers do not behave similarly
between projects. This difference suggests that a classifier
must be chosen on a project-by-project basis. It also may
indicate that a mixture of classifiers that considers the results
from a set of classifiers may be more effective than a single
classifier on its own.

A. Threats to Validity

One threat to the validity of this study is the choice of
metric used for the response variable. Although widely used
in the machine learning community, accuracy and F1 measures
may not be the best choice for representing the effectiveness
of software defect classifiers. Some other commonly used
alternatives include an F2 measure, which weights recall
higher than precision, and F0.5, which does the exact opposite.
Another popular choice is to measure the area under the
receiver operating characteristic (ROC) curve, which plots the
true positive rate against the false positive rate. Finally, another
option may be to use precision or recall as a measure on
its own. We believe reasonable attempts have been made to
avoid this construction threat, but acknowledge that additional
response variable metrics would improve our results.

Another potential problem is that all experiments were run
on similar datasets. Although there are differences between
the datasets that appear to have an impact on classifier
performance, all projects are also very similar in that they
are NASA software projects written in C or C++. To gain a
better understanding of how classifiers behave in the general
case, it would be best to diversify the type of datasets that
are used. One possible option is to look at software projects
written in another language like Java. Without doing so, the

results are not guaranteed to apply to scenarios outside of the
studied domain. With that said, a correct choice for a classifier
model can only be made in the context of a specific domain.
This stems from the “no free lunch” theorem in machine
learning, that states that any two classifiers are equivalent when
considered over all domains [34]. Our results support this
hypothesis, in that the differences between classifiers changed
depending on the considered dataset.

We personally implemented each of the six classifiers that
were compared in this study. Although we have tested these
algorithms on other problems with good results, there is the
potential that there exists bugs within our own software,
or that the implementations are sub-optimal in some way.
In addition, it may make reproducing our results somewhat
difficult. Other works have made use of WEKA, which is a
commonly used implementation of many classifiers that makes
comparison between works very simple. This may explain the
discrepancy between our work and Challagulla et al. regarding
naı̈ve Bayes. Although results obtained using WEKA are
easily reproducible, it may lead to research directions biased
toward the WEKA implementations of an algorithm. For
this reason, we believe it is important to study a variety of
algorithmic implementation so as not to optimize for one
standard implementation. In addition, we have stored our code
in a public repository to address the concern of reproducibility
when using personal implementations [8].

VII. CONCLUSION

We have implemented and tested five different classifiers
from the field of machine learning: naı̈ve Bayes, neural net-
works, support vector machines, logistic regression, k-nearest
neighbor. We applied these models to the task of defect
prediction, using NASA’s PC1, PC2, PC3, PC4 and PC5
datasets. Results show that there is in fact a difference in
the choice of classifier with respect to the model’s ability
to classify. More specifically, it is very likely that different
classifiers will produce different accuracy and F1 scores.
Moreover, we determined that our implementation of naı̈ve
Bayes was outperformed by the remaining algorithms in three
of the datasets, while SVM was outperformed by logistic
regression and k-nearest neighbor for one of the datasets.

These results are primarily exploratory. More research is
needed to make a truly informed decision on which classifier
is best suited for performing defect detection in software. We
have made recommendations on how to choose a classifier for
defect detection, and have argued for the infeasibility of choos-
ing a generally optimal classifier for all software projects.
Future work will analyze the performance of a mixture of
classifiers, which should smooth some of the differences in
classifier performance. We also hope to increase the number
of analyzed classifiers, as well as the number and variety
of datasets on which they are tested. In this way, we hope
to uncover an underlying structure of software projects that
consistently produces significant differences in the classifiers.
Although no single classifier can be chosen that performs



best in all scenarios, specific software project types may be
identified in which there is a correct choice of classifier.

Another potential avenue for future research is the continued
study of the work done by Challagulla et al. It is somewhat
surprising that our results do not coincide with their work, but
many aspects of the experiment were changed. We used per-
sonal implementations rather than WEKA, and used different
datasets as well (although there was some overlap). To account
for these changes, a separate study could be conducted in the
future that attempts to replicate Challagulla’s work as closely
as possible, and compare results in that fashion.

Our results support previous work in this area, showing that
classifiers can indeed be used to effectively predict defects
using static software features. The classifiers can be used to
identify defect-prone components in a software project, and
given the proper choice in classifier can do so with a relatively
high degree of certainty. The information we obtain from
these classifiers can be extremely effective for the continuous
improvement of software, in that it may direct code maturation
efforts. Alternatively, classifiers may help to avoid running unit
tests for an entire software project, which is often quite costly
with respect to time. Instead, a nightly test may only consider
components that are predicted to be faulty, and omit the rest.

Although it still seems to be an open question as to
which classifier is the optimal choice, it is certainly clear
that the choice of classifier does affect performance. Effective
defect prediction models are important for determining and
preventing problems with software. Our research shows that
when attempting to perform defect detection, attention must
be paid to which classifier is to be used. The choice of model
is a difficult problem that requires more research. Until this
area of research is more thoroughly developed, choosing defect
prediction models will be forced to rely on domain-specific
empirical testing to make the proper choice.
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