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ABSTRACT 
Context:  Managing technical debt (TD) associated with external 
cybersecurity attacks on an organization can significantly improve 
decisions made when prioritizing which security weaknesses 
require attention. Whilst source code vulnerabilities can be found 
using static analysis techniques, malicious external attacks expose 
the vulnerabilities of a system at runtime and can sometimes 
remain hidden for long periods of time. By mapping malicious 
attack tactics to the consequences of weaknesses (i.e. exploitable 
source code vulnerabilities) we can begin to understand and 
prioritize the refactoring of the source code vulnerabilities that 
cause the greatest amount of technical debt on a system. Goal: To 
establish an approach that maps common external attack tactics to 
system weaknesses.  The consequences of a weakness associated 
with a specific attack technique can then be used to determine the 
technical debt principal of said violation; which can be measured 
in terms of loss of business rather than source code maintenance. 
Method: We present a position study that uses Jaccard similarity 
scoring to examine how 11 malicious attack tactics can relate to 
Common Weakness Enumerations (CWEs).  Results: We conduct 
a study to simulate attacks, and generate dependency graphs 
between external attacks and the technical consequences 
associated with CWEs. Conclusion: The mapping of cyber 
security attacks to weaknesses allows operational staff 
(SecDevOps) to focus on deploying appropriate countermeasures 
and allows developers to focus on refactoring the vulnerabilities 
with the greatest potential for technical debt. 

CCS CONCEPTS 
• General and Reference Surveys and overviews • Software 
and its engineering 
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1 INTRODUCTION 
Various techniques have been used to quantify Technical 

Debt (TD); however, none have specifically focused on 
measuring the potential TD of live security attacks that affect 
systems. The growing number of cybersecurity attacks and their 
frequency are forcing organizations to pay significantly more 
attention to security threats. To address cyber-attacks, 
organizations (including federal government departments) are 
starting to rely on a SecDevOps [1] approach where operations 

(Ops) focuses on deploying countermeasures (manual and 
automatic) and developers (Dev) focus on refactoring those 
aspects of source code that minimize the technical debt associated 
with the vulnerabilities revealed by the malicious attacks. 
SecDevOps “(also known as DevSecOps and DevOpsSec) is the 
process of integrating secure development best practices and 
methodologies into development and deployment processes which 
DevOps makes possible.”1 

Many tools exist that provide metrics-based analysis in terms 
of the number of vulnerabilities found in a system; however, these 
tools are executed by developers independently of observations 
made by operations staff; thus, the prioritization of which 
vulnerabilities to address may be significantly different than if 
developers had a communication channel to first responders.  
Furthermore, operations staff are the first to effect 
countermeasures from live cyber-attacks.  Using a SecDevOps 
approach, this information can be made available to developers 
immediately.  The consequences of said attacks can be weighed 
against each other in terms of the technical debt affecting 
software maintainability but more importantly, in terms of the 
consequences to the business if a vulnerability is successfully 
exploited. “Repairing the damage can be very costly. The TD 
interest associated with such a weakness can grow significantly at 
the moment an attacker is successful.” [2] 

Enumerations of rules have been established by the greater 
community (i.e., CVE 2 , CWE 3 , and CERT 4 ) to explore 
vulnerabilities and weaknesses from different perspectives. These 
are most valuable to developers, not to operations staff.  MitreÒ’s 
Adversarial Tactics, Techniques, and Common Knowledge 
(ATT&CK)5 framework is a knowledge base of adversary tactics 
and techniques based on community contributions from real 
world observations.  It provides a perspective from the attacker’s 
point of view and focuses on describing the tactics and techniques 
employed in post compromise scenarios.  Tactics are subdivided 
into multiple techniques that describe specific ways in which an 
adversary can try to achieve a goal. This perspective is most 
useful to operations staff. 

Izurieta et al. [2] is working on ways to operationalize ISO 
[3][4] standards using Quamoco [5][7] and QATCH [6] to include 
the assessment of technical debt principal associated with security 

                                                             
1 https://blog.sqreen.io/secdevops/ 
2 https://cve.mitre.org/ 
3 https://cwe.mitre.org/ 
4 https://www.sei.cmu.edu/about/divisions/cert/index.cfm 
5 https://attack.mitre.org/ 
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weaknesses in more intuitive ways than by just providing 
vulnerability counts 6 .  In this position study, we propose 
extending this approach further by first mapping the techniques 
and tactics encountered by Ops from the ATT&CK framework to 
the CWE consequences thus linking attacks from Ops to Dev.  
The effects of this mapping will help developers prioritize the 
technical debt observed from live attacks to source code that is 
relevant to the attack.  In many cases these attacks are sleeping 
cells, but their discovery is a valuable asset when prioritizing 
which technical debt should be tackled first.  We map MitreÒ’s 
11 attack tactics to CWEs consequences.  This mapping reveals 
which attack tactics can be used to exploit one of eight technical 
impacts caused by CWEs (detectable using static analysis), which 
currently includes 18 different CWEs. Traversing between attack 
tactics and CWE technical impacts helps us prioritize source code 
vulnerabilities that need attention to minimize technical debt. 

1.1 Motivation and Research Objective 
Although the usage of agreed upon CWEs as a basis for 

quantifying TD associated with security issues is a step in the 
right direction when providing meaningful quantification, it is not 
enough in a highly dynamic SecDevOps environment where 
organizations are under constant attack. A solution that ties 
adversarial behaviors to root causes in source code (i.e. 
vulnerabilities) is needed before said vulnerabilities are exploited 
(i.e. become weaknesses) causing technical debt interest that is 
not recoverable. This is an important distinction because our 
objective is to address the vulnerability associated with the 
attacker’s behavior, not the results of static analysis tools usually 
executed out of context. 

Further, agile and iterative SecDevOps approaches are seeing 
quick adoption in government organizations. According to the 
Congressional National Defense Authorization Act (NDAA)7: 
“Not later than 30 days after the date of the enactment of this Act, 
the Secretary of Defense shall include the following systems for 
realignment under the pilot program to use agile or iterative 
development methods pursuant to section 873 of the National 
Defense Authorization Act for Fiscal Year 2018.”  This represents 
a significant cultural shift in how software development and 
acquisitions is done in the federal government that affects a large 
number of programs. The SecDevOps approach embraces the 
congressional act and is being promoted by the Defense 
Acquisitions University (DAU)8 with many trainings in place. 

1.2 Contribution 
Our position study provides the following contributions: i) a 

common link between the operational tactics employed by 
adversaries attempting to exploit a software system and the 
consequences of CWEs (i.e. technical impacts) and, ii) an 
approach to rank attack tactics used by adversaries based on how 
similar they are to an attack vector using the Jaccard Similarity 
                                                             
6 https://www.sonarqube.org/ 
7 NDAA Act, June 2018, section 891, sub section 873-874 
8 https://www.dau.mil/ 

Index ranking system [8]. The source code of the contribution is 
publicly available in a Github9 repository. 

2 BACKGROUND AND RELEVANT WORK 

2.1 Technical Debt Quantification 
A new definition for TD was presented by a group of 

academics and practitioners who participated in a Dagstuhl [9] in 
2016. The definition was repurposed to be more focused and to 
help steer our community. Specifically: 

“In software-intensive systems, technical debt is a collection 
of design or implementation constructs that are expedient in the 
short term, but set up a technical context that can make future 
changes more costly or impossible. Technical debt presents an 
actual or contingent liability whose impact is limited to internal 
system qualities, primarily maintainability and evolvability.” 

A comprehensive synthesis of all approaches used to classify 
and quantify TD in the literature is beyond the scope of this 
paper; however, herein we describe the more notable approaches.  

Tom et al. [10] identified many aspects of TD and classified 
them into five main components: code debt, design and 
architectural debt, environmental debt, knowledge distribution 
and documentation debt, and testing debt. The classification is 
broad but also abstract and allows for too many aspects to affect 
TD in a system.  Tamburri et al. [11] also attempted to include 
socio-technical aspects of organizations as a form of TD. 

Four prominent approaches to quantify TD are highlighted –
all differ in their quantification. It is important to note that to the 
best of the author’s knowledge, there are no approaches that 
quantify or prioritize TD as a result of behaviors observed by 
operations personnel such as cybersecurity first responders.  
SecDevOps environments would facilitate these observations thus 
allowing for quick turnaround and context relevant TD scoring. 

Nugroho et al. [12] propose a formula to measure TD 
connected to the maintainability of software. No implementation 
of this approach is found in the literature. The formula focuses on 
the maintainability of software and gives a measurement of how 
much effort will be needed in order to repair the amount of TD in 
the software. A five-star rating scale is used to describe the 
quality of the maintainability in the system with one star 
signifying the lowest quality and five stars signifying the highest 
quality.  TD is measured by multiplying a rework fraction and a 
rebuild value. The rework fraction is an estimated percentage of 
the number of lines in the code that contribute to the TD. The 
rebuild value is the estimated amount of time (in months) that 
needs to be spent fixing the TD.  

Letouzey and Ilkiewicz [13] use the SQALE method to 
estimate the amount of TD in a system based on an ISO quality 
model. The quality model uses a stack of eight quality features: 
testability, reliability, changeability, efficiency, security, 
maintainability, portability, and reusability. These features are 

                                                             
9 https://github.com/maryeprouty/attack-analysis 
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organized in a pyramidal hierarchy where testability is at the 
bottom and reusability at the top.  The idea is that concerns at 
lower levels need to be addressed first before tackling issues at 
higher levels.  This is necessary in order to effectively remediate 
issues.  For example, a part of the code that does not meet a 
condition that is associated with testability should be addressed 
before one that is associated with maintainability. 

The SonarQube6 tool is quite popular amongst the community 
because they offer a free download of their framework which is 
composed of multiple widgets. One widget implements the 
calculation of TD and reports it in terms of days or dollars (i.e. 
cost) necessary to repay the debt.   

Curtis et al. [14] introduced a way to measure TD that focuses 
on converting the amount of TD in code to a dollar amount. The 
formula used calculates TD principal by observing should-fix 
violations in the code, the estimated number of hours to fix the 
should-fix violations, and the estimated cost of labor to do so. 
Should-fix violations are classified to be either low-, medium-, or 
high-severity, and the formula assigns a higher weight to the 
higher severity violations and a lower weight to the lower severity 
violations in the formula. The principal is calculated by 
multiplying each level of severity by the number of violations that 
need to be fixed, the average number of hours it will take to fix 
them, and a dollar amount that represents the average cost per 
hour for work in IT organizations. A calculation is made for each 
level of severity to obtain three values, and the sum of the three 
values is used to calculate the TD principal. 

 

2.2 ATT@CK 
The Adversarial Tactics, Techniques, and Common 

Knowledge framework is a knowledge base and a model for 

capturing adversarial behaviors and it reflects all the phases of the 
adversary’s attack lifecycle.  It is under the auspices of the 
MitreÒ Corporation and aims to enumerate and categorize post-
compromise adversary tactics, techniques and procedures against 
various operating systems.  A tactic is at the core of the matrix 
and represents a high-level description of an attack behavior. 
Each tactic can be broken down into many techniques and 
procedures that an attacker may use to compromise a target 
system. The matrix has expanded to include other pre-
compromise behaviors as well as mobile devices.  It consists of 
three core components: i) 11 tactics (denoted by the columns in 
Fig. 1.  The full matrix can be found in MitreÒ’s website5), ii) 
219 techniques that describe specific approaches used to achieve 
a tactical goal, and iii) documented adversarial usage techniques. 

3    PILOT STUDY 
We perform an attack-analysis simulation study that explores 

the landscape of potential techniques used by attackers that can be 
observed by operations staff in a SecDevOps environment.  

 
Table 1: Attack tactic dependencies 

Tactic Dependency Explanation 
Persistence Credential Access This tactic is useful for attackers 

wishing to maintain their presence 
in the target network even in the 
face of loss of credentials 

Execution Initial Access 
Lateral Movement 

An initial foothold into the target 
is necessary before adversary-
controlled code and commands 
execution. In cases where the 
attacker cannot successfully 
compromise the system after 
initial access, the adversary will 
move across the network 

Privilege 
Escalation 

Lateral Movement When attackers cannot gain 
privileges within an entry point, 
lateral movement is required 

Exfiltration Collection An attacker will often need to be 
able to first gather the sensitive 
data in the system through 
“Collection” before it can be 
removed from the system 

Collection Discovery Adversaries must gain an 
understanding of the system before 
gathering sensitive data 

Command 
and Control 

Discovery Adversaries first employ discovery 
tactics to understand the system 
well enough to avoid detection 
during control activities 

Defense 
Evasion 

 Adversaries employ this tactic to 
remain undetected 

 
Specifically, we populate an attack vector 𝒂""⃗  from observed 

behaviors and explore how it can relate to MitreÒ’s CWEs.  
However, before computing a similarity score we performed an 
analysis of the various dependencies that exist between attack 
tactics. Due to the nature of MitreÒ’s attack tactics, a simple 
bipartite graph relating tactics to CWE technical impacts is not 
sufficient. By manually examining the relationships between 
tactics, a clearer understanding of why and how tactics are used to 
exploit CWEs can be drawn.  Many of the tactics depend on other 

Figure 1: A partial view of Mitre’s ATT@CK matrix 
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tactics and have temporal precedence before they can be 
employed by an attacker. For instance, Execution depends on 
Initial Access so that the attacker can gain an initial foothold into 
the target network before executing their adversary-controlled 
code or commands.  Table 1 shows a breakdown of tactics that 
are dependent on other tactics before they can be successfully 
employed by an attacker. Some dependencies are purely 
contextual, as in the case of Privilege Escalation’s dependency on 
Lateral Movement – if the attacker can gain privileges in the 
initial system, then there is no need to move across the network in 
order to employ this tactic. Note that Defense Evasion is not 
dependent on any other tactics nor do other tactics depend on it 
per se; however, this tactic is often used in parallel with other 
tactics.  

 
Table 2: Technical Impacts associated with CWEs 

CWE Technical 
Impact 

Automatic Static 
Analysis 

Manual Static 
Analysis 

Execute 
unauthorized code 

78, 79, 98, 120, 129, 131, 
134, 190, 426, 798, 805 

98, 120, 131, 190, 
426, 494, 805 

Gain privileges, 
assume identity 

306, 352, 426, 601, 798 259, 306, 352, 426 

Read data 78, 79, 89, 129, 131, 134, 
352, 426, 798 

89, 131, 209, 311, 
327, 352, 426 

Modify data 78, 89, 129, 131, 190, 352 89, 131, 190, 311, 
327, 352  

DoS: unreliable 
execution 

78, 120, 129, 131, 190, 
352, 400, 426, 805 

120, 131, 190, 352, 
426, 805 

DoS: resource 
consumption 

120, 190, 400, 770, 805 120, 190, 805 

Bypass protection 
mechanism 

79, 89, 190, 352, 400, 
601, 798 

89, 190, 352 

Hide activities 78 327 

 
After tactic dependencies were established, we investigated 

how tactics employed by adversaries map to technical impacts. 
Technical impacts are consequences of CWEs that negatively 
affect TD in a target. We can detect CWEs using static analysis 
techniques. Automated static analysis (i.e., FxCop 10  and 
FindBugs11) helped us detect 18 different CWEs. Manual analysis 
helped us identify 14 CWEs. Manual and Automated analysis 
overlapped on 9 common CWEs and helped us validate the 
automated findings. Table 2 relates the CWE numbers detectable 
from static analysis techniques to their technical impacts. 

Finding a common link between the consequences of CWEs 
(i.e., technical impacts) and the tactics that are used to exploit a 
software system, allows developers to prioritize the TD associated 
with the vulnerabilities being exploited by the attacks. Thus, this 
mapping establishes which attack tactics can be used to impact 
TD caused by anyone of eight CWE technical impacts. 
Traversing from attack tactics to technical impacts provides a way 

                                                             
10 https://www.microsoft.com/en-us/previous-versions/dotnet/netframework-3.0/ 
11 http://findbugs.sourceforge.net/ 

to connect the detected tactics employed by attackers to the 
CWEs associated with source code vulnerabilities.  This allows 
developers immediate access to TD prioritization based on 
operations experiences. Fig. 2 displays the tactic dependencies 
graph, and does not illustrate parallel usage of tactics. Future 
work could investigate which tactics are most often used in 
conjunction with one another.  Fig. 3 shows the mapping of 
tactics to technical impacts. 

 

 
 

 

 
 
 
Once the tactic dependencies and the mappings from technical 

impacts to CWEs were agreed upon, the following steps were 
followed: 
1. A file of n randomly simulated attack vectors, each 

containing up to m techniques, defined as	𝒂""⃗ ij where i = 1..n 
and j = 1..m is compared to each of the tactics from the 
ATT@CK matrix, 

2. For each attack, the ATT@CK tactics are ranked based on 
how similar they are to the simulated attack vector 𝒂""⃗ ij using 
the Jaccard Similarity (JS) Index ranking system, 

3. The graphs are traversed from the top ranked JS tactic to 
technical impact; which suggests the CWEs that are most 
likely to be at risk of attack based on the attack vector 𝒂""⃗ ij.  
The tactics dependency graph also points to secondary 
potential CWEs. 

4. CWEs describe the source code that requires attention. 
 

Figure 2: Attack Tactics Dependencies 

Figure 2. Attack Tactics Dependencies 

Figure 3: Mapping of attacker tactics to CWE impacts 

Figure 2. Attack Tactics Dependencies 
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To use the JS Index, we convert the ATT@CK matrix to csv 
format where a 1 represents the partake of a technique in that 
tactic and a 0 does not. Attack vectors 𝒂""⃗ ij, are generated randomly 
where 𝒂""⃗ ij = 1 indicates that a technique is used/detected, 𝒂""⃗ ij = 0 
indicates that a technique is not used/detected, and 𝒂""⃗ ij = ? 
indicates that a technique is not detectable.  We use the ‘?’ 
symbol in order to simulate cases where a system cannot detect 
certain techniques; which is a common occurrence. By using a ‘?’ 
instead of a 0 in these situations, the algorithm for JS is not 
skewed by the system’s inability to detect the techniques, and 
instead can compute the closest tactic to the attack vector using 
available information. The comparison of a simulated attack 
vector 𝒂""⃗ ij against a tactic vector 𝒕ij of the ATT@CK matrix uses 
the JS index, which measures the binary overlap between the 
attributes of two vectors 𝒂""⃗ ij  and 𝒕ij. Equation JS = M11/(M01 + M10 

+ M11), where M11 is the total number of attributes where 𝒕ij, and 
𝒂""⃗ ij is 1, M01 is the total number of attributes where 𝒕ij is 0 and 𝒂""⃗ ij 
is 1, M10 is the total number of attributes where 𝒕ij is 1 and 𝒂""⃗ ij is 0, 
and M00 is the total number of attributes where both vectors equal 
0, yields a similarity score for any two vectors. Note that for any 
two vectors 𝒂""⃗ ij  and 𝒕ij,  M01 + M10 + M11 + M00 = m. 

The simulation algorithm traverses the dependency and 
association graphs from the highest ranked tactic to determine 
which technical impacts are most at risk of being exploited by this 
tactic. Each technical impact has several CWEs associated with it; 
thus, an attack vector can be analyzed to determine which CWEs 
are most vulnerable to a given attack. This ranking allows 
developers to address the TD associated with code vulnerabilities 
as a result of real attacks observed by operations staff. Two csv 
files are compared, where one is a file of MitreÒ’s attack tactics 
and the other is a file of simulated attack vectors. It ranks the 11 
tactics for each simulated attack vector using JS, and then 
traverses the graphs to output the most vulnerable CWEs to each 
attack. A Swing application provides a visualization of these 
graphs for the user to view and interact with. 

4 POSITION ON TECHNICAL DEBT 
In the context of SecDevOps environments we are afforded a 

unique opportunity to address cybersecurity threats to 
computational environments quickly, and the decisions that 
developers can make to address the technical debt associated with 
said systems are vastly improved because of context – Ops is in 
constant communications with Devs. Today, we run static 
analysis tools to detect source code disharmonies and to compute 
the TD principal associated with source code, but we often run 
these tools independently of any other lifecycle phases or Ops, 
and many times developers are not aware of the TD in the source 
code until they review relevant QA reports.  This disconnection 
affects the decisions that developers make in terms of prioritizing 
which debts to fix first.  Executing static analysis tools out of 
context does not help operational staff because although first 
responders may be able to mitigate an attack, the TD associated 
with the relevant source code vulnerabilities may still persist. 

By using an approach that can quickly map an attack to a 
relevant CWE, developers can prioritize much more effectively 
and fix the source code responsible for the vulnerability. It is also 
our position that the longer a technical impact associated with an 
attack goes unattended, the larger the TD interest incurred. 

Thus, our approach allows for: 
i. addressing PrincipalTD-Security in context, and 

ii. reducing the InterestTD-Security because relevant issues are 
tackled quickly 

6    CONCLUSION AND FUTURE WORK 
 In line with our prior conclusions [2], it is our position that 
security is a special case because the TD associated with 
cybersecurity cannot just be measured in terms of maintainability, 
but also in terms of damage to a business.  Addressing the TD 
needs to occur quickly in context with Ops.  SecDevOps allows 
developers an opportunity to address TD dynamically.  Significant 
work remains in terms of industrial and open source studies. 
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