Graph-Based Ontology-Guided Data Mining for D-Matrix
Model Maturation

Shane Strasser, John SheppMichael SchuhRafal Angryk, Clemente Izurie
Department of Computer Science, MontState University
357 EPS Building
Montana State University
Bozeman, MT 59717
406-994-4780
shane.strasser@cs.montana.edu

Abstract—In model-based diagnostic algoritms, it is
assumed that the model is corre€the model is incorrec
the diagnostic algorithm may diagnose the wrongit,f.
which can be costly and time consuming. Using
maintenance events, one should be &blmake correction
to themodel in order for diagnostic algorithm to corrg«
diagrosis faults. In this paper, a maturation approa
proposed which uses the grafhieoretic representationsf
Timed Failure Propagation Graph HG) models and
diagnostic sessionsbased on recently standardiz
diagnostic ontologies to determine statiglidiscrepancie
between that which is expected by the models aiad
which has been encountered in practice. Theseegiaocie:
are then analyzed to generate recommendationsdturimg
the diagnostic models. Maturation recommendatinokide
identifying new dependencies and erroneous or ten
dependencies?
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1. INTRODUCTION

Timed failure propagation graphs (TFPG) were f
introduced in 19940 provide improved robustness in fa
diagnosis by analyzing temporal relationships iarrmal
events [1], [2]. Several diagnostic algorithms have b
developed to utilize these TFPG models by detengitie
most likely fault occurrence given a set of alatimest have
been triggered [3], [4] TFPG models have also be
extended to include model dependgrmmmnstraints on th
propagatia links by Abdelwahed in 20045]. These
extended models, referred to as a Hybrid Fa
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Propagation Graphs (HFPG), all the model to operate in
in various operational modesThe different operation:
modes allow alarms to be eithemabler or disabled. In [6 ],
the authors proposedhaerarchice diagnosis approach for
complex causal systems. In their approach, theesyss
partioned into a set of local subsystems, each litn
represent a sub-grapif the entire systenAll of the local
subsystems are then contained within a global syshat
obtains a globally consistent diagnosis of therenfiFPG
system.Figure 1 gives an example TFPG mocln the
example, the node$abeled with F1, F2, F3, and |
represent faultsnithe TFPG model. he labels D1 through
D11 denote nodes that represdigcrepancie. Monitored
discrepancies, or alarms, are represeby nodes labeled
by M2, M3, M9, M10, and M11.Monitors allow the
reasonerto detect if a discrepancy has been tried or
turned ON. By loking at which alarms are ON and Ol
the reasoner will idgnosis the most like fault that was
triggered.

G S

F4 D5 D7 M1

Figure 1. A sample TFPG mode. Nodes that are labeled
F1, F2, F3, and F4 are faults. Nodes labeled D1 through
D11 are discrepancies, and nodes labeled M2, M3, M9,
M10 and M11 are monitors of discrepancies.
Discrepancies with monitors are often referred to as
alarms.

One of the difficlties with using TFPG mods for fault
diagnostics is that diagnosperformance isdependent on
how accurate the TFPG model s.bad TFPG modewill

result in poor diagnosis from the reasr. The problem is
increased when dierarchical diagnosis appich is used
becausst is difficult to know what relations should ex



between the different subsystems or how the dyr@mic TFPG maturation is a difficult problem [8]. Firstl] of the

system will behave in different environmental cdiahis
[7]. If there is an error in the model, then thesener's
likelihood of diagnosing the correct fault in thestem will
decrease. This will cause an increase in time, moparts,
and labor in the maintenance of the modeled sysiece
the corrective action will not be known [7]. Foraemple,
the TFPG model in Figure 2 has had the edge fromtd7
D9 deleted. In this faulty model, the reasoner wit be
able to accurately diagnosis fault F4 should haseuoed.
The reasoner will find that alarms M9, M10, and M4ddre
all triggered. However, fault F4 will not be diages as the
fault since the model does not have a relationblipveen

reasoner diagnosis history and maintenance histery
needed to be able to locate where the reasoner is
misdiagnosing a fault. These data sources are sfterd in
heterogeneous systems and therefore makes retrenhl
analysis of the data difficult. For example, maiatece data

is usually stored, but many times the most imparéspect

of the data is human entered text fields, whichdiffeculty

to interpret automatically. Reasoner and mainteaagata
could also be then be stored among many repostorie
which makes pulling them all together difficult [9]

One possible way to overcome these difficultieisise a

fault F4 and alarms M9, M10, and M11, increasing th domain ontology to join the different data sourtegether

maintenance time since the true fault has to batéot by
alternative means [9].

E:

F4 D5 D7

Figure 2. A faulty TFPG model. The link from
discrepancy D7 to discrepancy D9 has been removed.

To determine whether the reasoner diagnosed theator
fault, one must compare the reasoner’s diagnodis thie
actual fault found by alternative means. By storpast
reasoner history and maintenance history, that &dtevhich
contains the correct fault diagnosis, one can coeplae
two history sessions and look for any discrepanisete/een
the reasoner’s history and the maintenance histbthere
is a discrepancy between the two histories, therkmaav
that the reasoner misdiagnosed a fault. If theomasis
misdiagnosing a particular fault a large numbertiofes,

in a meaningful way. In prior work, Wilmering and
Sheppard suggested an approach to utilizing domain
ontologies as a means to focus and filter datayaisain
knowledge discovery [10]. The specific focus oftthmrk
was utilizing the ontologies to guide the procegsaich
diagnostic models could be matured over time. Tlager
proposed using a method such asApeiori Algorithm to
discover new relationships within historical mamdace
data that could be used to determine diagnostic
relationships, improved probability estimates, oettér
specification of test processes.

In this paper, we describe an extension of thiskwehnere
diagnostic models and historical diagnostic sesdata are
mapped to two ontologies derived from IEEE Std 1232
Standard for Atrtificial Intelligence Exchange andrce
Tie to All Test Environments (AI-ESTATE) and Std362
Software Interface for Maintenance Information €ofion
and Analysis (SIMICA): Maintenance Action Informati
(MAI) [11], [12]. Specifically, the AI-ESTATE D-Matx
Inference Model provides a semantic definition of
information used to define diagnostic models based
diagnostic dependencies while the AI-ESTATE Dynamic
Context Model provides a semantic definition of the
information typically used by diagnostic reasondtsing
online reasoning to track test results, recordrerfees, and
recommend hypotheses. The SIMICA MAI model defines
information elements associated with maintenanseoiyi.
These two models, defined by the IEEE using the
EXPRESS language, have been redefined using the web

then there could an error in the TFPG model. Thedntology language (OWL) [13], [14]. D-matrix modedsd

discrepancies between the reasoner and maintehéstoey
can then be used to modify the TFPG model suchttieat
reasoner will output the fault that has been odegr{7].
Therefore, we propose a maturation process thablis to
look at prior maintenance events and use thatimétion to
make changes to the TFPG model in order to impthee
accuracy of the model. In the example in Figurewg,
observed that fault F4 is not diagnoses as thd falien

diagnostic sessions are then mapped to the onéslaaid
represented using OWL-based instance formats.

The maturation approach uses the graph-theoretic
representations of the models and sessions to ndieter
statistical discrepancies between that which iseetqnl by
the models and that which has been encounteredhatige.
These discrepancies between actual maintenancésesaah

alarms M9, M10, and M11 are triggered. Using thiswhat the TFPG reasoner reported are then storediseu

information, a change should be made to the moole¢hat
given those alarm sequences, fault F4 is diagnasethe
true fault. In this scenario, a link between eittier fault F4
node or discrepancy nodes D5 or D7 should be ctadé¢o
alarm M9.

by our TFPG maturation approach. From this, weabite to
recommend changes, such as adding or removing links
between discrepancies. We are also able to track an
estimate false alarms and non-detect rates. Orcehtinges



have been made the reasoner should be able tocttprre The D-matrix is a matrix representation that redathe

diagnosis the fault.

In developing our TFPG maturation approach, we dab#t
two different scenarios. First, we looked at howntature
which alarms are monitoring which faults. This su@ém is
very similar to the example previously described.he
second maturation scenario we studied was howrdifte
alarms causally depend on each other. For exanopie,
could be given an alarm sequence in the order of A2l
and A3. In a different case, we observe the saarenal but
in a different order, such as Al, A3 and A2. If teasoner
is diagnosing the wrong fault in these cases, there is
some erroneous relationship in our model. In ourkware
focused mostly on the first scenario. However, vesreh
developed and are currently testing an algorithm tfe
second scenario.

2. TIMED FAILURE PROPAGATION GRAPHS

A time failure propagation graph (TFPG) model is
directed graph where each vertex represents adaiade
or discrepancy [1], [2]. Failure nodes representtfain the
target system and discrepancies are causal nodésarth
affected by failure nodes. Discrepancies can beitoaa or
unmonitored. Monitored discrepancies are oftenrrefeto
as alarms. The edges between the nodes represesitfelat
of failure propagation over time in the underlyisgstem
that is being modeled. Formally, this is represgmate TFPG
= (F, D, E, M, ET, EM, DC, DS) where:

* Fis aset of failure nodes

 Dis a set of discrepancy nodes

e E =V xVisasetof edges, wheve= F U D

 Mis a nhonempty set of system modes

e ET: ET(E) — Int, Mapping for each edge B
wherelnt denotes finite time intervals on each
edge.

» EM: Map that associates every edg&iwith a set
of modes irM

 DC: DC(D) —{AND, OR}, Map which defines the

type of each discrepancy as either an AND or an

OR discrepancy
e DS DYD) — {A, I}, Map defining the monitoring

faults and the discrepancies that monitor or oles¢hose
faults. We can also formally represent it as thibo¥ang.
Let F represent a set of faults. LBt represent the set of
discrepancies. Assume eathl] F is a Boolean variable
such thaeval(f)) O {0,1} and eachd; O D is also a Boolean
variable such thaeval(a) O {0,1}. Then a diagnostic
signature is defined to be the vector

f, =[eval(d,),...,eval (dITI)] (1)
Where
eval(d,) = {1 if d dgtectsfi )
0 otherwise.

andf[j] is thej™ element in vectof. A D-matrix is then

defined to be the set of diagnostic signatukder all d; O D
al15]. Rows represent faults and columns represent

discrepancies. Thigh column corresponds to discreparncy

in the TFPG model. The matrix corresponding to D-matrix

for Figure 1 would then be as follows:

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Di1
F1.1 1. 121 0 O 1 o0 1 1 1 1

o 1 0 0 1 O 0o o0 1 1 1
F3 0 0 1 0 1 O O 0 O 0 1
0o 0o o 1 o 1 1 o0 1 1 1

However, in most situations, the only discrepancies tieat a

included or shown in the D-matrix are the monitored ones.
The D-matrix for Figure 1 would be represented as the
following where the columns are the alarms in numerical
order would be defined as follows:

D2 D3 D9 D10 Di1
F1L. 1 1 1 1 1
F2 0 1 1 1 1
F3 0 0 O 0 1
F4 0 0 1 1 1

status of the discrepancy as either active (A) folp_matrices do not fully represent TFPG models because

discrepancies attached to monitored alarms
inactive (I) otherwise

The set of discrepancies that are monitored armelbby
the mapDS. The mapET associates with each edgé E a

Othey do not capture the temporal relationships. Nevertheless,
the representation of the model is easy to manipulate. Given
a D-Matrix which relates the faults and alarms, we can
actually find the logical relationship between the alarms by
computing the logical closure of the matrix [16]. This is

minimum and maximum time for the failure to prop@gja gone by determining which attributes have a parent set that
along the edgeEM associates each edge with a subset of thy 5 subset of another attribute’s parent set. d.dte an

system modes at which the failure can propagategatbe

alarm that monitors fault§ and leta be an alarm that

node. The goal of a diagnostic algorithm is to fiad
hypothetical state that tries to explain the plalsgystem
based on the observed system [3]. In our TFPG rauédur
approach, we only deal with TFPG models that conbaly
OR discrepancies and operate in only one mode.

g. If fi is a subset of, thenf; containsfi andf; — a;. If g; is
true, f; must also be true. This meaasmust be true and
thereforea; — & [16], [17]. Take for example the TFPG
model and the corresponding D-Matrix which shows the



relationship of faults and alarms Figure 3. The faults thet a interactions that can degrade the performance of the
observed by M1 are a subset of the faults that are a@aber diagnostic design. In order to increase performancthef

by alarm M2. Similarly, the faults that are observed®/  diagnostic model, historical maintenance actions will be
are a subset of the faults that are observed by alarnTM8  used to help mature the model. However, [7] points @it th
TFPG model that would result can be seen in Figure 4. A B c

A B Cc

M1 M2 M3
M1 M2 M3
M1 M2 M3 M1 O 1 1
A 1 1 1 M2 O 0 1
B 0 1 1 M3 O 0 0
C 0 0 1

_ _ _ Figure 4. The TFPG model and corresponding D-M atrix
Figure 3. A simple TFPG model and the corresponding after thelogical closure has been taken of the TFPG

D-Matrix. model in Figure 3.
Using the original D-matrix one can easily find the logical
closure matrix of the discrepancies. This matrix relates A B c

discrepancies to other discrepancies. Again, similar to the

first D-matrix, a 1 in théth row andjth column means that

the jth discrepancy observers thidn discrepancy. The D-

matrix in Figure 4 is the result of taking the closurehaf

original D-matrix. D1 D2 D3

In addition, [16] showed that using the logical closure
matrix, the transitive links between discrepancies can be
removed by using logical relationships. This process is

called taking the logical unclosure. M1 M2 M3
Atfter finding the logical closure of the matrix, the logical M1 M2 M3
NOT is taken over the subset and performing an AND A 1 0 0
between the subset of parents for an alarm anddhefs B 0 1 0
alarms. In doing so, the transitive edges in the TFPGeimod C 0 0 1
and the correspond D-Matrices are removed. The TFPG
model in Figure 5 is the model that results after the logical M1 M2 M3
unclosure and the corresponding D-matrices. M1 0 1 0

M2 O 0 1
This unclosed D-matrix is then able to show the first order M3 0 O O

dependencies between the discrepancies. In OWigure 5. The resulting TFPG model and D-Matrices
experiments, we will assume that we only have accetb®to - the logical unclosure has been taken of the TFPG
D-matrix models as they are a universal data represemtatiq, qql in Figure 4. The bottom matrix shows the first
of TFPG models. order relations between the alarms and faults while the

bottom matrix showsthe relations between alarms.

3. RELATED WORK , _
the process requires ready access to the model, mainéenanc

The idea behind diagnostic maturation has been discusseddents, and any other information that could aid in the
several papers, but no formal process or algorithm haxs be maturation process. In order to utilize all of these ressurce
proposed for large amounts of corrective actions in whichhe author proposes using an ontology design to gather a
faulty or false alarms could be occurring. In [7], théhau  the required data together in a meaningful way.

points out there are unexpected and unplanned system

4



In [17], [18], the authors discuss using explanatiorebas In this application, we used ontologies derived from the
learning for the diagnostic model. If misdiagnosis occurs|EEE Std 1232 Atrtificial Intelligence Exchange and Service
then additional testing is done until a correct diagnosis hagie to All Test Environments (AI-ESTATE) and IEEE Std
been made. This information can then be used to modify the636 Software Interface for Maintenance Information
structure of the model so that the correct diagnosis i€ollection and Analysis (SIMICA) [11]. [12]. Specifically,
consistent with testing. The authors also give a proof thate used the IEEE Std 1232 (AI-ESTATE), and IEEE Std
given a single misdiagnoses, the model can be modified si636.2 (Maintenance Action Information or MAI). Al-
that the misdiagnoses never occurs again. However, #is WESTATE is a set of specifications for exchanging data and
only valid for a single training example and did not includedefining software services for diagnostic systems. Its
how to deal with faulty or false alarms. purpose is to standardize the interfaces between eleofents
an intelligent diagnostic reasoner as well as the
In [20], the authors also use explanation based learning t@presentation of diagnostic knowledge and data for use by
aid rule-based diagnostics. The authors use fault didggnostsuch diagnostic reasoners. The information models defined
cases to help create heuristic domain knowledge that woufdr AI-ESTATE are designed to form the basis for
then assist the reasoner. This heuristic domain knowleddacilitating exchange of persistent diagnostic information
was then used to create additional rules which would thebetween two reasoners, and also to provide a formaigyp
be used in conjunction with the original rule based reasonesystem for diagnostic services. The principal information
model used out of AI-ESTATE for this work is the D-
The authors in [9] also discuss the need for diagnostiMatrix Inference Model (DIM) since it can be mapped to
maturation. In the paper, the authors discuss the need fthe structure of Timed Failure Propagation Graphs. An
recording flight information and maintenance data. Theyadditional key information model—the Dynamic Context
present an at-wing modular application for portableModel—also provides the semantics for historical
maintenance aids which can assist maintenance events imjormation captured by a reasoner during a diagnostic

giving information to maintenance workers. session. Finally, both of these models make use of a
“common” information model (called the Common Element
4. ONTOLOGY GUIDED DATA MINING Model) [11]. The SIMICA MAI was designed to capture

records of actual maintenance actions performed on a
In previous work, Wilmering and Sheppard suggestedgusinparticular system or subsystem [12].
domain ontologies as a means to focus and filter data
analysis in data mining [10]. The specific focus of thatkwo Recent work in ontology-guided data mining has made use
was utilizing the ontologies to guide the process by whiclyf standard ontology languages (e.g., OWL, DAML+OIL,
diagnostic models could be matured over time. In thi®pa and RDF) [14], [21], [22]. EXPRESS was not desigted
we used domain ontologies as a way to join togethesypport ontology-based analysis; however, the semantics
different data sources and to find discrepancies betweedkfined by EXPRESS models are very rich. Therefoe, w
those different data sources. used the EXPRESS models as the foundation for definin
ontologies using one of the most widely used ontology
The approach taken in developing ontologies to support theanguages. We decided to use the Web Ontology Language
knowledge discovery process is based on a set qDWL) due to its prevalence in ontology-based systems.
standardized semantic models developed in the EXPRESS
modeling language [11], [12]. EXPRESS is an informationThe Web Ontology Language, or OWL, is a language for
modeling language defined by the Internationaldefining and instantiating ontologies [14]. An OWL
Organization for Standardization (ISO) to supportontology may have descriptions of classes, properties, and
communication of product data between engineeringheir instances. The formal OWL semantics then specify
applications. The purpose of the language is to define thgow to find logical consequences from the defined entities
semantics of information that will be generated by a system
and is not meant to define database formats, file forroats, To convert EXPRESS to OWL, we first had to define a
exchange formats. In EXPRESS, models are definedj@si  mapping of EXPRESS concepts to OWL concepts. Once the
hierarchy partitioned along schemata, entities, and attributefapping of concepts was defined, we then created alkof th
[19]. EXPRESS is often described as being object orientedwL ontologies based on the EXPRESS standards. Finally,
in flavor because it incorporates a number of objeieted  we converted all of the data into the OWL format andduse

features, such as encapsulation, abstraction, and inheritangur ontology guided data mining algorithm to locate the
Values for attributes can be constrained through logicadiscrepancies.

constraints on those attributes. These constraints, which

often define relationships in non-trivial ways, give The following code is part of the EXPRESS definition of
EXPRESS the ability to define the computer-processablghe AI-ESTATE DIM and the EXPRESS diagram can be
semantics. These constraints allow applications to discern deen Figure 6 [11]. Part of the corresponding OWL

the information being received satisfies the intendediefinition for the AI-ESTATE DIM can be seen in Figure 7.
meaning when it was generated and transmitted [19].



ENTITY Outcomelnference;
andOrRows : SET [10F Inference;

preconditionTestOutcome : TestOutcome;

confidence : OPTION&onfidenceValue;
andOrRelation : BOOLEAN;
UNIQUE

one_outcome
WHERE
conjunctOrDisjunct : ((SELF.preconditionTest@me.valueDomain = Pass) AND
(SELF.and_Or = TRUEPR

: precondifiestOutcome;

((SELFeponditionTestOutcome.valueDomain = Fail) AND
(SELF.and_Or = FALSE));
noUserDefined  : reconditionTestOutcorakigDomain[1] <> UserDefined;
END_ENTITY;

7~ AI_ESTATE_COMMON_ELEMENT_

In the maturation of alarm dependencies, we have a
collection of alarm sequences from whenever maintenance
find a certain fault. The maturation process will seamrh f
any differences between the alarm sequences andisigna

in the D-matrix. However, care needs to be taken when
considering false alarms and non-detects since adjusting the
dependencies based on those alarms will likely have a
negative effect on the performance of the reasoned.

<owl:Class rdf:ID="Outcomelnference">

. MODEL DiagnosticModel W <rdfs:subClassOf rdf.about="#DMATRIX_MODEL"/>
</owl:Class>
! <owl:Class rdf:ID="CEM_ConfidenceValue">
‘ . ‘ /" AIESTATE_COMMON_ELEMENT <rdfs:subClassOf rdf.about="#DMATRIX_MODEL"/>
DmatrixInferenceModel N MODEL. TestOutcome.
</owl:Class>

<owl:ObjectProperty rdf:ID="confidence">
<owl:maxCardinality rdf:datatype=
"http://.../XMLSchema#nonNegativelnteger">1
</owl:maxCardinality>
(INV) assertion <owl:minCardinality rdf.datatype=
"http://.../.XMLSchema#nonNegativelnteged'
</owl:minCardinality>
<rdfs:domain rdf:resource="#Outcomelnferenee"/

- cell
*Inference = OutcoTeValus
[ <rdfs:range rdf:resource="#CEM_ConfidenceVétie

B </owl:ObjectProperty>

testColumn S[2:7]

confidence

: . *preconditionTestOutcome
andOrRelation | *Qutcomelnference

andOrRows S[1:7]

BOOLEAN |

/" AL ESTATE_COMMON_ELEMENT_ /" AL ESTATE_COMMON_ELEMENT

\ MODEL.ConfidenceValue . MODEL.DiagnosisOutcome A
2stColumn
Figure 6. The EXPRESS code and diagram for the Al
ESTATE D-Matrix Inference Model (DIM). The lines J
with circles and lables denote attributes while the lines
With Ci r Cl % and no |abel dmote &chl a$ rd ationg.]i pS_ CEM_ConfidenceValue | | CEM_TestOutcome ‘ ‘ \memn:e‘ ‘ CEM_DiagnosisOutcome
cell
For our mining algorithm, we located any discrepancies it —

our ontology's where the reasoner’s diagnosis andftibhe

maintenance event differed. Once those discrepancies Werjgure 7. Part of the OWL code and diagram for the Al

located, we pulled in and store all of the alarm sequencgsstaTE DIM modd. The large arrows without labels

corresponding to the easoner’s wrong diagnosis.. Tho ote parent and child relationships while the smaller
alarm sequences and the corresponding fault which W%ﬁrowsdenoterelationmips.

determined to be the true cause through the maintenance
event are then used in the following section for thé¢ oés

the maturation algorithm. The maturation algorithm we developed works as follows.

First, we retrieve the alarm sequences corresponding to the
AI-ESTATE based and SIMICA MAI based logs of a
repaired fault (whether the diagnosis was correct or Aot).

In TFPG models, alarms monitor or observe faults. If alarm sequence is represented as a bit string where each
certain alarm is monitoring a fault for a real world position in the bit string corresponds to a different
application, but maintenance events are finding that thebservable alarm in the TFPG model. For example, abne a
alarm never occurs when that fault occurs, then thamala indexi means that thih alarm fired in the fault sequence,
probably should not be monitoring that particular fault.and a zero means that tiie alarm did not fire for that fault
Additionally, if another alarm is not monitoring a fault but sequence. We then sum and normalize each bit yielding a
the alarm always occurs when the fault occurs, then thairobability of firing given the fault was diagnosed as the
alarm should probably monitor that fault. In addition, theretrue fault. Finally, we compare the resulting vector of
will also be alarms that do not fire when they should (nonprobabilities to the fault signature in the AI-ESTATE DIM-
detects) and alarms that fire when they should not (falseased D-matrix that corresponds to the repaired fault. /her
alarms). These alarms need to be analyzed in order to gaifere is a wide disparity between the bit positions in the D
an accurate picture of the alarms that should be occurringatrix and the probabilities in the probability vector, we
based on the maintenance events. Such analysis can affag that as a relationship to be examined. The following are
assist incorporating uncertainty measures into the diagnostihe steps for the process:

process.

5. MATURATION OF ALARM DEPENDENCIES



1. Find all discrepancies between the maintenancéail, the signal would split and propagate to alarms M2 and
diagnosis and the reasoner diagnosis. M3. Because the propagation signal is split, alarms M2 and

2. From those discrepancies, pull in all of the alarmM3 could occur in either order and still result in the cttrre
sequences for a particular maintenance diagnosidiagnosis. This makes trying to calculate the ideal alarm

(or fault). sequence difficult. One possible way would be to find all of
3. Calculate the probability of each alarm occurringthe possible different valid alarm sequences for a giaatt f
given the maintenance diagnosis. and then calculate a transition probability matrix for those

4. Compare each alarm probability with the D-Matrix. expected alarms. The expected matrix could then be
a. If the alarm is occurring with a high compared to the actual post-occurrence probability matrix to
probability, but the D-Matrix does not discover discrepancies. However, generating all of tlid va
have the alarm observing the fault, thenalarm sequences is a combinatorial problem and therefore
flag that alarm to be looked at in relation has an exponential run time. Therefore, we simply ford
to that fault. each alarm, which alarms we could expect to see following
b. If the alarm is occurring with a low that alarm for a given fault. To do so, we start tracing an
probability, but the D-Matrix shows a alarm sequence in the unclosed D-Matrix. If we fingpht
relationship between the fault and alarm,in the model, we follow both of those sequences and find
then flag the alarm to be looked at in the straight sequence of those alarms. Then we compare
relation to the fault. each alarm sequence. For each alarm in the alarm smErguen
that occurred after the split, we compare each alarm in one
If an alarm occurs with a high probability and the D-Matrixalarm sequence against all other alarms in the other alarm
shows that the alarm is observing the fault or if thenalar sequences such that those alarms are marked to follow the
occurs with a low probability and the D-Matrix shows thatgiven alarm. For straight alarm sequences, we specially
the alarm is not observing the fault, then there appedrs to mark those alarms and the following alarms so that it is
no problems with that alarm with respect to the faultknown which alarm has to occur first. For example, given
However, in certain cases, it may still be beneficial to lookhe simple TFPG model in Figure 8, we see that the signal is
at those alarms. For example, if an alarm is occurring avith split at the discrepancy D2.
probability of .35 and the D-Matrix shows no relationship
between that fault and alarm, then that could suggestthat t
alarm is faulty and needs to be analyzed more carefully.

6. MATURATION OF ALARM SEQUENCES

This basic TFPG maturation described in the previous
section is very simple and does not make use of the
ontologies. In this section, we use the casual semantics of
the TFPG and D-Matrix to define an algorithm for maturing
causal temporal relationships.

Similar to the maturation process of alarm dependencies, w

M
will have a set of alarm sequences from whenever
maintenance found a particular fault. The difference as th —
instead of just looking at which alarms were triggered, we
M6

also look at the order in which the alarms were triggered.
We will still have false and non-detect alarms and special
steps must be taken in dealing with these alarms. Figure 8. A simple TFPG model. The signal is split at the

discrepancy D2 and makes predicting the expected
Given a set of alarm sequences, we calculate a posilarm sequences a difficult problem. Part of the bad
occurrence probability matrix which gives the probability of Pump and Valve TFPG model. Note that a link has been
an alarm occurring after another alarm. For alarrasdj, removed from POl bust to the discrepancy
[i,j] represents the probability that alainoccurred before Contain_Fuel_in_Plumbing Failed.

alarmj with respect to the total number of alarm sequencegye first start walking down the alarms starting at the fault
that have occurred. This matrix represents the temporal,q we generate the alarm sequence M1, M2. We then fin
occurrences of the alarms that are being observed. a split occurring after alarm M2, generate all of the alarm

sequences that occur after the split, which would give us the
Next, we trace the expected alarm sequences for thSTFPSequences M3. M5 and M4. M6. We first mark which

model. In the simple case, one walks the unclosed D-¥atrig|arms must occur before the other alarms, such as ML mu
which will give a straight sequence of alarms. However, inyccyr pefore all other alarms. Similarly, M4 must occur

many cases there will be a split in the propagation link ifhefore M6. Next, we compare the two alarm sequenas th
the TFPG model. For example if fault 1 in Figure 1 were t -.rred after the split. In this case, M3 may occdoriee
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M4 and M6. Similarly, M4 may occur before M3 and M5. model. This allows us to see the relationship between the
After these sequences of ordering notes have been mvade temporal, logical, and actual relationships of the alarms with
then compare them to the post-occurrence probability matrigne another in the TFPG model. In comparing theseethr
and note any discrepancies we are seeing between ¢he twatrices, we propose taking a specific corrective action if
for inspection. For the TFPG model in Figure 8, we woul there are discrepancies between these three matrices which
see the post-occurrence matrix. will correct any errors that may be present in the TFPG
model. This aspect of the algorithm is still being developed.

M1 | M2 | M3 | M4 | M5 | M6

M1 X X X X X 7. EXPERIMENTS

M2 X X X X . :

M3 o) X o) To test our fault dependency maturation algorithm, we used
a Pump and Valve TFPG Model developed by Boeing and

M4 ) @) X ; . . . .
used the Vanderbilt FACT diagnostic reasoner to diagnosis

M5 ) 0 . g

VI3 0 0 faults given a firing of alarms. The Pump and Valve nhode

provided was used as “ground truth,” and two erroeeou
odels were created by deleting a link and removing a

The squares with X's denote observations that shoul lationship in the TFPG and adding a link and thus creating

always occur (that is, the probabilities should be close tq relationship between a fault and an alarm in the TFPG

100 percent) while_ the squares Wi.th O’s denote opser\satioqmdel that should not exist. Three sets of alarm segsence
that may occur with high probability. The following StPS yere used, one of which properly identified the PO1_burst

summarize the algorithm: fault in the ground truth TFPG. The other two, while not
capable of fully isolating PO1_burst still yields hypotheses
fonsistent with this fault. The four alarms correctly idgntif
PO1_burst as the fault are the following:

1. Find all discrepancies between the maintenanc
diagnosis and the reasoned diagnosis.

2. From those discrepancies, pull in all of the alarm
sequences for a particular maintenance diagnosis

(or fault). e IVHMQ9 - In flight operating pressure command

3. For each alarm sequence, calculate the transition Low output LO. .
probability matrix wherei[j] gives the probability : IVHM11_ In flight operating pressure command
of alarmj occurring after alarm Medium, outpu.t Lo )

4. For the particular fault, mark the alarms that are ° VHM13— In flight operating pressure command
expected to have high probability values. High, output Lo

5. Compare the marked matrix with the transion * VHM15-Fuel Containment
probability matrix and look for any discrepancies. ] » ] ]
6. If there are any discrepancies between the two, flag‘ our first modified model, we deleted the r.elatlonshlp
the two alarms to be looked at. etween PO1_burst and IVHM15 through deleting the link
from PO1_burst to the discrepancy
Similarly to the alarm-fault maturation process, some“ontain_Fuel_in_Plumbing Failed. The good model can be
probability values may not fall into a gray area. Those>€€n in Figure 9 and the bad or modified model casebe
alarms may not be require the TFPG model to be modified? Figure 10.
but may have other problems, such as being a bad alarm.
First, we fired alarms IVHMO09, IVHM11, and IVHM13.
In addition to trying to predict alarm sequences, we als®€xt we only fired IVHM15. Finally, we fired the alarms
propose comparing these temporal matrices to the logicdfY M09, IVHM11, IVHM13 and IVHM15. In addition, we
unclosed D-matrix and the adjacency matrix of the TFPcdded false alarms IVHMO1, IVHMO4, and [VHMOS where

Po1_burst [lf——— — Pl Wrong_Coarse_Pressure_Mechanical_POut_Lo Failed

PO1_clogged [} Xfr_Fuel_to_Valve Failed

PO1_constricted [ XA contain_Fuel_in_Plumbing Failed

PO1_leaking [lf—— L [IPTl Wrong_Fine_Pressure_Mechanical POut_Lo Failed

Figure 9. Part of the good Pump and Valve TFPG mode. The model was used to diagnosis the ground truth and to
simulate maintenance eventsthat would discover the truefault in the bad model.



PO1_burst .7 4@ Wrong_Coarse_Pressure_Mechanical POut_Lo Failed
PO1_clogged [l T <ir_Fuel_to_valve Falled

P01_constricted . m Contain_Fuel_in_Plumbing Failed
P01_leaking [l—— L [Pl wrong_Fine_Pressure_Mechanical_POut_Lo Failed

Figure 10. Part of the bad Pump and Valve TFPG model. Note that a link has been removed from P01 _bust to the
discrepancy Contain_Fuel_in_Plumbing Failed.

each individual false alarm was fired somewhere in thdave flagged that alarm to be analyzed to see if tiscam i

alarm sequence of IVHMO09, IVHM11, IVHM13 and error in the model. After examining the TFPG model, we
IVHM15. From these seven alarm sequences, we thefound that links from the fault PO1_burst to alarms IVHM1

repeated the sequences multiple times to simulatshould be added. In our case, the simplest explanatisn wa
reoccurrence of an alarm sequence in a real worltb add a link from P01 burst to the discrepancy
application. The alarm sequences that contained false alarr@®ntain_Fuel_in_Plumbing Failed. As indicated above, this
were repeated fewer times than the alarm sequencedidhat was indeed the link that was deleted from the original

not contain any false alarms. model.
As stated above, the the alarms IVHMO09, IVHM11, PO1_burst
IVHM13 and IVHM15 properly diagnoses the PO1_burst Index Alarms DMatrix | FauftSequence
fault in the ground truth model. However, since we ddlete - iggﬁ g g
the causal link from PO1_burst to IVHMO09 in the modified 3 SEINIOL o 0118
model, the reasoner diagnosed different faults. Spelyfica 1 VHMO2 q i
the reasoner found that there were 50 different possible 5 TVEIMO3 0 0
faults that could have occurred when the alarms were 6 TVHMO4 0 0049
IVHMO09, IVHM11, IVHM13 and IVHM15 fired, none of 7 IVHMOS 0 0.079
which included P01_burst. To finish the test case, we § IVFMO6 0 0
assumed that maintenance would eventually determine that 190 Rgﬁg; g g
PO1_burst was the actual fault so that the system could be T TVEIMOD 1 0.643
repaired. This information would be provided by the 12 TVEIM10 0 0
maintenance action data. 13 IVHM11 1 0.643

14 IVHMI12 0 0
Using these alarm sequences, we applied the algorithm 13 IVERM13 ! 0.643
described above to see if we could determine where the ig Rgﬂi ﬁﬁ
correct dependency in the model should be. In using the T OFBDOL 0 0
TFPG maturation algorithm, we created the following table 19 OFBDO02 0 0
as output, which can be seen in Figure 11. The tabksgiv 20 OFBDO3 0 0

the corresponding fault for which we are investigating é th

first row. The Index column gives the index of the alrm Figure 11. Part of the output generated by our
while the alarm column lists every alarm in the TFPGalgorithm. The alarm IVHM 15 is not observing the fault
model. The DMatrix column shows if the alarm observedP01_bust, but is occurring with a large number of times
the particular fault. A 1 means the alarm does observe thehenever the fault POl bust is being diagnosed as the
fault while a 0 means the alarm does not observe the faulrue fault, leading to suggest that the alarm IVHM 15
The FaultSequence column gives the probability of theshould observethefault PO1_burst.

alarm occurring given that the fault was diagnosed as ﬂ‘\Glile also tested a scenario where we added an extra link into

fault through the maintenance event, the TFPG model. This was done by adding a relationship
between P01 _burst and IVHMO5 through adding a link

After analyzing the output, we found that the angorIthmbetween the discrepancy PV_1C_Transfer_Fuel_to_Engine

identified that the TFPG model did not have the alarms . L .
IVHM15 monitoring the fault PO1_burst but noticed that the?ha;Ies(;rigdslg{Hol}Ag?érrsn';nzir ;[)(l)”thbeazri;/(l)%uesl gﬁ[jn(\)/\}ewgsgii?e d
alarm IVHM15 occurred with a high probability if the fault that maintenance would eventually determine that PO1t burs

POEL_burst was diagnosed as the ftrue fault n the as the actual fault. The sample output for the scenario can
maintenance event and thus suggests that some relatlonsﬁf

exists between P01 bust and IVHM15. In our table, Wegseen In Figure 12,
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are just more unlikely. Therefore, we want to compaucst f

PO1_burst sequences of both negative and positive diagnosis. Given

Index Alarms DMatrix__| FaultSequence these two groups of alarm sequences, we could then
! LBITI3 0 0 compare the probabilities of alarms occurring and compare
2 LBIT14 0 0 iy

3 VIO 0 0118 those probabilities between the two groups. Furthermore,
1 VEMO2 B 5 these probabilities could then be compared to the D-matrix.
5 TVEIMD3 0 0 Another possible way to further develop the algorithms may
6 TVHMO4 0 0.049 be to use some form of hierarchical clustering algorithm.

7 venvos [

g LVERMO6 o o Other future work will also include maturating the time
190 ?gﬁg; g g intervals used on the TFPG models. Since the diagnostic
T TVEIMOD 1 0.643 algorithms use the time intervals to diagnosis a fault, a
12 IVEMIO0 0 0 wrong time value could greatly change how the reasoner
13 TVEIMI11 1 0.643 diagnosis a fault. Again, using an alarm sequence from a
14 [VHM]12 0 0 maintenance event, one could be able to find those faulty
15 IVHM13 i L time values and adjust them.

16 IVHMI14 0 0

1; g%éf (l, 0':,22 Finally, we would like to include maturation of probabilistic

19 OFBDO2 0 0 values in the TFPG models that utilize probabilistic values.
20 OFBD03 0 0 If those probabilities are faulty, then the diagnostic reaison

could end up diagnosing the wrong faults. Again, if weeha
Figure 8. Part of the output generated by our TFPG the maintenance event which informs us which alarms were
maturation algorithm. The alarm IVHMO5 is set to  triggered and what fault was actually found during
observe the fault PO1 bust, but is occurs a low number maintenance, we could find those faulty values in thdeho
of times whenever the fault PO1_bust is being diagnosed =~ and recommend changes to them.
as the true fault. This suggests that 1IVHM 05 should not
be observing the fault PO1_burst. ACKNOWLEDGMENTS
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