
30	 IEEE	A&E	SYSTEMS	MAGAZINE	 JULY	2013

INTRODUCTION

Modern diagnostic systems can generate an overwhelming
abundance of data. Often this data is distributed across mul-
tiple heterogeneous systems and cannot be immediately (or
easily) collected and aggregated for use. Even with easy ac-
cess to data, much of it is uninteresting to the user’s specific
inquiry. This puts a large burden on the user to coalesce the
data and mine the interesting bits relevant to their current
needs. Depending on the task at hand, this amount of ef-
fort may not be justifiable or practical, and the potential for
knowledge discovery is lost. Our tool facilitates this data
mining process and generates relevant sequences of data in a
fraction of the time it would take domain experts to retrieve
and display similar information.

We present this extended update from our previously
published work at AUTOTESTCON 2011 [1]. As develop-
ment continues on our application, it has now grown into
a full-fledged tool that incorporates additional visualiza-
tions and analysis methods, including the necessary inputs
required for the method of diagnostic maturation developed
in [2]. The tool further removes the user’s burden for data
lookup and aggregation, and it greatly increases the poten-
tial for knowledge discovery from data (KDD) within the
maintenance community.

This work primarily focused on aircraft data collected at
ground-based maintenance facilities. The data are composed
of transactional records detailing each maintenance action
(MA) that takes place, including important fields such as the
aircraft tail number, type and date of the event, and possible
part(s) being removed or installed. Importantly, this data
also contains the necessary corrective actions that were per-
formed as well as insightful text-fields detailing the results
of these actions. Also, we now integrate onboard (in-flight)
data that indicates which faults were observed to prompt the
performed maintenance event (ME) actions.

We used existing data model standards, defined by the
Institute of Electrical and Electronics Engineers (IEEE), and
derived new ontological models to better represent the data.
We then transform the raw data into MEs and provide the
user with a query interface to filter on specific event attri-
butes. The filtered query generates a chronological sequence
of MEs, and the user can optionally display links between
events that belong to the same aircraft or share the same
remove/install part(s). Additionally, the user now has the
ability to view these sequences to scale of the actual time
elapsed between events. Each event in a sequence can also
be inspected individually, displaying the entire ontology-
based graph from interconnected data sources.

By combining ME sequences with their underlying faults
and corrective actions, the user is provided with a much
more complete context of maintenance history. The model
maturation tool uses this data in conjunction with timed fail-
ure propagation graph (TFPG) models [3], allowing the user
to go beyond standard diagnostic procedures. The matura-
tion process provides recommendations about possible er-
rors in the diagnostic models used to guide MAs. If errors
exist in a model, the resulting diagnosis and corrective ac-
tions may be incorrect, causing wasted time, money, and ef-
fort during the maintenance process [4].

The ongoing tool development provides increased acces-
sibility of existing (and related) data sources to the experts
who need them. This increases novel data exploration and
KDD by integrating additional existing standards and data
collection formats. Through continued integration, the user
will waste no time switching to different tools and analysis
methods for the same event sequence of interest.

ONTOLOGY-GUIDED DATA MINING

We utilized domain ontologies to join together different data
sources and aggregate individual records into more mean-
ingful models. In information science, ontology is a type of
knowledge representation that formally defines concepts,
their properties, and the relationships between them [5].
This well-defined representation enables automated meth-
ods of reasoning and analysis into the domain concepts the
ontology describes. Previous work by Wilmering and Shep-
pard suggested using domain ontologies to focus and filter
data analysis in data mining [6].

An IEEE Standards-Based Visualization Tool for
Knowledge Discovery in Maintenance Event Sequences
Michael Schuh, John Sheppard, Shane Strasser, Rafal Angryk, Clemente Izurieta
Montana State University

Authors’ current address: M. Schuh, J. Sheppard, S. Strasser, R.
Angryk, C. Izurieta, Department of Computer Science, 357 EPS
Building, Montana State University, Bozeman, Montana 59717,
USA, e-mail: michael.schuh@cs.montana.edu. Manuscript
SYSAES-2012-0023 received January 25, 2012, and ready for
publication March 11, 2013. Review handled by W. Walsh.
0885-8985/13/ $26.00 ©2013 IEEE

JULY	2013	 IEEE	A&E	SYSTEMS	MAGAZINE	 	31

The approach we take in developing ontologies to sup-
port the knowledge discovery process is based on a set of
standardized semantic models developed in the EXPRESS
modeling language [7]. EXPRESS is an information model-
ing language defined by the International Organization for
Standardization to support communication of product data
between engineering applications. The purpose of the lan-
guage is to define the semantics of information that will be
generated by a system, and it is not meant to define database
formats.

Models in EXPRESS are defined using a hierarchy parti-
tioned along schemata, entities, and attributes [8]. The EX-
PRESS language incorporates a number of object-oriented
features, such as encapsulation, abstraction, and inheritance,
and it additionally allows logical constraints to be placed on
attribute values. These constraints, which often define re-
lationships in nontrivial ways, give EXPRESS the ability to
define computer-processable semantics, which allows appli-
cations to discern if the information being received satisfies
the intended meaning when it was generated and transmit-
ted [8].

The tool uses ontologies derived from the IEEE Std. 1232
Artificial Intelligence Exchange and Service Tie to All Test
Environments (AI-ESTATE) [9] and IEEE Std 1636 Software
Interface for Maintenance Information Collection and Anal-

ysis (SIMICA) [10]. AI-ESTATE is a set of specifications for
exchanging data and defining software services for diagnos-
tic systems. Its purpose is to standardize the diagnostic data
representations of an intelligent diagnostic reasoner and the
interfaces between elements of such reasoners. The informa-
tion models defined for AI-ESTATE are designed to form the
basis for facilitating exchange of persistent diagnostic infor-
mation between two reasoners through a standardized sys-
tem for diagnostic services. Additionally, both models make
use of a “common” information model (called the common
element model) [9].

MEs are primarily represented by the SIMICA MA in-
formation (MAI) model, which was designed to capture
records of actual MAs performed on a particular system or
subsystem [11]. The AI-ESTATE D-Matrix Inference Model
and Dynamic Context Model are used to define the diagnos-
tic models and associated information used and produced
by diagnostic reasoners, including recommended corrective
actions.

Recent work in ontology-guided data mining has
made use of standard ontology languages (e.g. OWL [12],
DAML+OIL [13], and RDF [14]). EXPRESS was not designed
to support ontology-based analysis; however, the seman-
tics defined by EXPRESS models are rich enough to use as
the foundation for defining ontologies in the Web Ontology
Language (OWL), which is one of the most widely used on-
tology languages. An OWL ontology may have descriptions
of classes, properties, and their data instances, and the for-
mal OWL semantics then specify how to find logical conse-
quences from the defined entities. Given an OWL ontology,
we can then define and instantiate data in OWL format [12].

To convert EXPRESS to OWL, we first had to define a
logical mapping from the general EXPRESS concepts to
OWL concepts (e.g., an EXPRESS entity becomes an OWL
class). We then used the mapping to create our OWL ontolo-
gies from the existing standards in EXPRESS. In some cases,
the data did not match the entire EXPRESS models, and the
newly created OWL ontologies had to be extended beyond
the defined standards. With the incorporation of additional
models and data source, we also have to ensure a unified
ontology that links each piece accurately given the available
data fields. Figures 1 and 2 present a small sample of this
conversion process for the ME component. Notice the simi-
larity between each format, such as the “actionTaken” and
“delayReason” relationships present in both.

Frequently Used Abbreviations
AI-ESTATE: Artificial Intelligence-Exchange and
Service Tie to All Test Environments

SIMICA: Software Interface for Maintenance
Information Collection and Analysis

MAID: maintenance action information document

ME: maintenance event

MA: maintenance action

ML: maintenance level

ACID: aircraft identification

JCN: job control number

UNS: unified numbering system

PartNo: item (removed or installed) part number

SerNo: item (removed or installed) serial number

32	 IEEE	A&E	SYSTEMS	MAGAZINE	 JULY	2013

Maintenance Event Sequence Visual izat ion Tool

EVENT GRAPHS AND SEQUENCES

We define an event as a group of records pertaining to a
unique set of ground-based MAs. Each event is composed
of one or more transactional database records grouped to-
gether based on the SIMICA MAI model, which defines the
elements and attributes of our OWL ontology. The MA infor-
mation document (MAID) element is the root of our MAI on-
tology, and its attributes are specified as unique, representing
the superkey of each event. The existence of multiple records
with the same superkey value indicates multiple MAs were
performed for a single ME. Therefore, the ME ontology ele-
ment contains a list of MAs and is directly connected to the
root (MAID) element. Refer to the model in Figure 2 to see
the direct relationship between MAID, ME, and MA.

The tool also incorporates onboard diagnostic data from
the aircraft. This data contains a chronological list of diag-
nostic tests (and results) that were performed during the
course of a flight. Faults that were observed during a flight
lead to ground-based MAs that are meant to fix and resolve
the faults [21]. The TFPG model maturation approach ana-
lyzes the statistical discrepencies between the reasoner’s

action recommendations and the corrective actions (on the
ground) that actually fixed the problem [2].

Because the data sources have transactional records,
these multiactioned corrective events typically contain a
pair of remove/install actions or a list of timely inspection
actions. In other words, each ground-based record is essen-
tially an MA element, stored with its MAID attributes. Simi-
larily, each record of onboard data contains the identifying
attribute values shared in common by all, such as aircraft
identification (ACID). By aggregating these events into on-
tological graph structures, we are performing something
similar to a database conversion from first normal form to
third normal form, where each key now returns only a single
event graph [16].

After the data is transformed into events, it must then
be presented to the user. We develop a method of display-
ing the summarized events as a sequence through time. Each
event is reduced to a single node and arranged in sequence
by one of the user-specified date attributes: job control num-
ber (JCN) Date, or MA completion date. The sequence can
be considered a further abstraction of the data, where each
event only displays the date and associated aircraft, as well

Figure 1.
A sample of an EXPRESS model and related code.

JULY	2013	 IEEE	A&E	SYSTEMS	MAGAZINE	 	33

Schuh et al .

as all unified numbering systems (UNSs) and item serial
numbers (SerNos).

These additional attributes (UNS and SerNo) are not part
of the unique key but were suggested by domain experts
as the most valuable information to display. The entire ap-
plication window is shown in Figure 3, with the sequence
being displayed in the large panel on the right. To simplify
the readability of the interface, the sequence contains three
distinct layers. The topmost layer contains the date of each
event through time, and the aircraft tail number is displayed
in the middle layer directly below the event date. The bot-
tom layer is composed of the single node events, linked ver-
tically to their corresponding aircraft above. This layer of
event nodes is further segmented into three separate levels
corresponding to the maintenance level (ML) attribute value
for each event (with ML 1 the topmost/closest to the aircraft
and ML 3 at the bottom). Finally, we create links between
events that have the same aircraft, or SerNo, to help the user
follow items of interest through the larger sequence. This

is a critical enhancement to KDD, as
it quickly and easily allows a user to
trace the context of specific parts or
aircraft through time.

The default sequence view is not
scaled in proportion to event time/
date occurrences. Instead, each event
has uniform separation between all
actions and other events in the gener-
ated sequence. This makes the most
sense when a user is interested in fol-
lowing specific links or looking for
specific events, regardless of when
they occurred. Alternatively, the user
can choose to view the sequence in a
true time-proportional scale. This can
be more beneficial when investigating
the history of specific parts or aircraft,
where a quick glance can give easy in-
dication of time between events.

An additional utility-turned fea-
ture was inspired by the nature of
the data. We developed a data pre-
processor that anonymizes sensitive
attributes’ values, while retaining
the relationships between records.
After anonymization, the application
is used exactly like before, except the
“clean” data now replaces the origi-
nal (sensitive) data. Unfortunately,
because of the inherent (and neces-
sary) randomness built into our ano-
nymization algorithm, the resultant
attribute values make little logical
sense to the human observer. Espe-
cially important attributes, such as
text-based corrective actions, are not
even retained, as their only benefit is

being able to actually read and infer more information from
them. This also means presenting interesting case studies is
difficult, especially for the TFPG model maturation, which
we encourage the reader to refer to [2] for a previously pub-
lished example.

IMPLEMENTATION

The application implementation can be separated into five
parts: an initial (optional) raw data anonymization, a neces-
sary data transformation into ontology instances, attribute
value filtering and querying, the display of event sequenc-
es, and the display of individual event graphs. While the
first two parts represent one-time preprocessing steps, the
remaining three parts are performed dynamically during
normal application use. All code was written in Java (v1.6),
and MySQL (v5.1) was used as our database management
system.

Figure 2.
A sample of an OWL model and related code.

34	 IEEE	A&E	SYSTEMS	MAGAZINE	 JULY	2013

Maintenance Event Sequence Visual izat ion Tool

The optional first step is a preprocessing anonymization
function that transforms the data into clean and safe content
for general presentation. This algorithm essentially creates a
mathematical correspondence mapping between the origi-
nal data values and the randomly generated new values.
Each attribute retains its specific qualities, such as data type
and length, and the correspondence ensures all relationships
within the data are preserved.

The second step is a required data transformation from
transactional records representing pieces of MEs to entire
event graphs that aggregate all those pieces into a common
OWL ontology instance. Because we are only concerned with
connection-based relationships among the data, defined by
the ontology, we can more simply, and efficiently, store the
transformed data as graph objects—requiring only a few as-
sumptions. Recall that our ontology defines a root element,
MAID, which contains the keys for each instance, as well as
an attached ME list of MA elements, each of which essential-
ly encapsulates an original ground-based data record. The
MAID element also links to the onboard diagnostic records
from the previous flight(s) that match the data keys.

In our graph representation, we define nodes in a treelike
context, either as internal nodes (e.g., MAID, ME, MA), or as
leaf nodes that represent attributes associated with an inter-

nal node. Therefore, given an internal node, all connected leaf
nodes are its attributes, and all connected internal nodes are
further extensions of the ontology structure, such as MAID to
ME, ME to MA #1, ME to MA #2, etc. Additionally, each node
contains an identifier that defines it as a specific element of
the ontology, and internal nodes contain a list of connected
nodes, while leaf nodes contain their respective data value.
The node ID is important, because it allows for quick and
easy identification of any node anywhere within the entire
ontology, and that identification provides further informa-
tion about the node, such as its name and attribute value
type used during visualization and analysis methods. We use
the JGraphT library [17] to create these graphs with custom
nodes and store them as serialized objects in our database.

After all records for a single event are added to a graph, we
store the event keys (which again are the MAID attributes, or
leaf nodes), as well as the two date fields used for sorting and
the serialized graph object in a new database table—separate
from the raw data. We also create a look-up table to store a
cross-relation of every UNS, item part number (PartNo), and
SerNo associated with each event (a many-to-many relation).
At this point, the original data is no longer needed because the
tool runs entirely on the two new tables. This provides a con-
venient mechanism for dumping the data into the backend

Figure 3.
The main application window. The left panel contains the query options to filter on event attributes, and the right panel contains the gen-
erated sequence based on the query. Below the sequence is a small status window that provides information and feedback to the user.

JULY	2013	 IEEE	A&E	SYSTEMS	MAGAZINE	 	35

Schuh et al .

database as it is accumulated incrementally. Also note that
both preprocessing steps are self-contained within the tool
and initiated with specific command line arguments.

With the data transformation complete, the user can
now access the main application window for interactive
KDD by applying a filter to the query and then viewing
the event sequence and individual events. When the pro-
gram is started, the user is presented with several query
options in the left panel (refer to Figure 3), which are or-
dered from top to bottom and from least to most specific.
The only required options are “Sort By,” which orders the
events by JCN date or MA completion date, and “Date
To”–“Date From,” which restrict the sequence to only
events within the given date range. To aid the user, we
provide the default selection of JCN date, and autofill the
date range with the minimum and maximum JCN dates
found in the database.

One complication that arose with our method of record
aggregation is the possibility of conflicting date values for ac-
tions in the same event. This is a known problem with the data,
and we resolved it by storing the earliest found JCN and MA
completion dates as the date fields for an event. The remaining
query options: ACID, UNS, PartNo, and SerNo provide fur-
ther filtering capabilities, and the valid options for each filter
are auto-generated based on the previously selected filters.
For example, when a user selects a set of ACIDs that are of
interest, the subsequent filters (UNS, PartNo, and SerNo) are
repopulated to display only valid values found in database re-
cords that contain one of the selected ACIDs. This removes the
guessing game of identifying which records exist, and it allows
the user to gain considerable insight into the data they are in-
vestigating—even before the first query is performed.

After the query options are set, the sequence graph is
generated and displayed in the right side panel of the ap-

plication window. While using the tool, information, such
as query history and important messages, are displayed in
the bottom status panel and optionally logged to a file. A
sequence can be scrolled (left and right) through time and
each event is a click-able object that displays the details of
the individual event. The sequence graph is generated using
Java’s swing layout mechanism with the semantic links be-
ing overlaid by Java’s 2D drawing framework. These links
connect identical aircraft (ACID) and item parts (SerNo)
from one occurrence to the next, as time flows to the right. As
discussed earlier, the sequences presented in figures are not
scaled by time and instead use the original default graphi-
cal view. There is currently active development on the GUI
framework to more easily support adding additional views
and user interactions.

Finally, when an event is clicked, a separate window is
opened that displays all the details of the event, such as in
Figure 4. Each clicked event opens a new window, allow-
ing easier side-by-side comparison of multiple events. View-
ing individual events is accomplished quite easily by port-
ing objects from JGraphT to JGraph [18], which provides
an on-the-fly layout and visualization of the graph object.
These event graphs can be further manipulated (dragged,
reshaped, etc.) to highlight attributes of interest, while hid-
ing the unimportant ones. At any time, the visualized graphs
can be saved as a image (.png format) for presentation and
discussion beyond the confines of the tool and the computer
system it is running on.

DISCUSSION

The primary objective of this software tool is to minimize
wasted time and effort during aircraft maintenance by pro-
viding a meaningful display and integration of data collect-

Figure 4.
An individual event window containing an auto-generated layout of all the attributes (and their values) for a given event. The unique
event ID is displayed in the window title bar, and the graphical visualiztion can be saved as an image.

36	 IEEE	A&E	SYSTEMS	MAGAZINE	 JULY	2013

Maintenance Event Sequence Visual izat ion Tool

ed from ground-based and onboard maintenance records.
This was achieved with the grouping and ordering of re-
cords and the summarized display of only certain key infor-
mation. The application facilitates detailed query selections
based on the most useful parameters identified by domain
experts. Because of the large (and continually growing) set
of data being accessed, this allows the user to select only the
appropriate data that they are interested in.

The potentially large volume of stored data is a point of
concern, as it could have effects on maintaining timely que-
ries. Our current implementation provides no safeguards to-
ward checking for manageable and effective user-generated
queries. Through MySQL, we maintain a separate index for
all queryable attributes, but the sheer volume of data com-
bined with an ill-minded query can still bring the applica-
tion to a brief standstill. For example, suppose we have four
successive filters, each with 100 possible items to choose
from—so if we choose ten from each, then we have (100
choose 10) times 4, which is nearly 1053 possible combina-
tions! The problem is that a query like this has no defining
attribute to filter on that provides adequate data reduction,
whereby MySQL can optimize the query and perform the
most selective joins first.

The good news for us is that these vague and indis-
criminate queries are rarely helpful to real-world users and
should therefore be encountered minimally. For example, a
user rarely needs to see a large set of aircraft, related to a
large set of items, over a large span of time; rather, they are
more often interested in a specific aircraft and a handful of
parts or a specific part on any aircraft. These practical que-
ries return results in seconds.

In a similar argument, the readability of our dynamic
links between neighboring events that share aircraft or parts
in common can become muddled in an overly complicated
query. However, if someone is attempting to follow links for
a part or aircraft from one event to another, they are prob-
ably not looking at a lot of parts or aircraft. If for some reason
the user deems a large or overly complicated query is neces-
sary, these links are easily toggled off for a clean view of the
event sequence.

Beyond the idea of just querying items, the application
has the added benefit of allowing a user to follow interesting
items through time. This is achieved in part by the aforemen-
tioned query options but also by the dynamically generated

item links displayed on the sequence. With these features, a
user can, for example, generate a summary of specific items
through time, discover a reoccurring list of similar problems
to a specific aircraft, or track a specific part from aircraft to
aircraft as it is perhaps repetitively cannibalized or replaced.
All of these uses could benefit from these novel data visual-
izations.

We provide an example use case in Figures 5 and 6, and
we walk through the important knowledge discovery abilities
displayed. Presented in Figure 5 is a sequence of three events.
The top arc indicates the same aircraft ruBCc1 in the second
and third events, while the bottom arc indicates the same item
is referenced in all three events. The item is identified by its
serial number tZs, which we simply highlighted for readabil-
ity. Now we can essentially read the event sequence “story.”
In early 2009, the tZs item was removed from aircraft tUP4Xi
during a Level 1 MA. Then, only days later, the same item was
installed on aircraft ruBCc1, only to be removed a few more
days later during a Level 3 MA. According to domain experts,
this most likely indicates a failed part that was later fixed and
cannibalized only to fail once again.

To investigate further, the user could then inspect the other
attributes of each event in the sequence. The graphical visual-
ization of an event can be manipulated to highlight the impor-
tant attributes before being saved for discussion and investi-
gation outside the application. Figure 6 shows an example of
the modified event graph for the third event in the sequence
in Figure 5. Notice we can now clearly see the event’s MAID
node connected to the ME node and the ME node connected
to two MA nodes. Each MA node has three visible attributes
that indicate the item being removed or installed. Important
text fields would also be present here (in real data), and they
would likely confirm our previous insights.

The investigation of MEs is dramatically increased with
the aid of TFPG diagnostic model maturation recommen-
dations through the method described in [2]. The matura-
tion process requires a combined analysis of the diagnosed
faults found onboard, and the corrective actions reported

“Links are created between
events that have the same
aircraft, or SerNo, to help
the user follow specific parts
or aircraft through time.”

Figure 5.
A sequence of events.

JULY	2013	 IEEE	A&E	SYSTEMS	MAGAZINE	 	37

Schuh et al .

to fix the problem—both of which are available in our ME
graphs. Essentially, the recommendations arise when a
corrective action is performed more often than expected,
given the reasoner’s diagnosis from observed faults or vice
versa, when a suggested corrective action rarely fixes the
actual problem. These indicate a potential problem with
the underlying diagnosis model, and the user could be bet-
ter informed by knowing in advance these discrepancies
may exist.

FUTURE WORK

The tool provides a promising and exciting framework for
continued data mining and knowledge discovery research.
Interesting continuations of this work include adding more
data sources and tools, enhanced GUI interactions and visu-
alizations, applying graph-based data mining algorithms to
the data, and performing an in-depth analysis and mining of
text field attributes.

A benefit of conforming to the IEEE standards-based on-
tologies is the well-established data model that already pro-
vides connections between multiple sources of maintenance
data. While we have already added an onboard diagnostic
data source to the application, additional data sources will
continue to enhance KDD through more comprehensive
analyses and incorporated tools. By filling out the existing
ontologies with more available information sources, we can
provide the user a more complete context surrounding an
interesting event or sequence of events. Similar to the facili-
tated TFPG model maturation recommendations, further in-
tegration with independent tools will increase the efficiency
of aircraft maintenance and minimize costly mistakes that
would be otherwise unavoidable.

As we mentioned earlier, current and ongoing work has
been focused on enhancing the GUI for the user. Additional
views of aggregated maintenance data, such as the time-scaled

event sequences, provide unique
benefits for an overall better un-
derstanding of the data. New
visualizations also create the
opportunity for new user in-
teractions with the system, and
entirely new tools may arise
during such development. Pre-
defined layouts of individual
event graphs would also speed
up the detailed investigation of
event attributes, minimizing the
need for the user to extensively
manipulate these graphs every
time one is viewed.

Because our data is essen-
tially a database of graphs,
another interesting research
direction would be exploring
graph-based data mining algo-

rithms. Angryk’s previous work in frequent subgraph min-
ing [19] shared a similar problem formulation, where the goal
was to detect all frequently occurring subgraphs (based on
a given support threshold) from a larger graph object. This
is similar to frequent itemset mining, except instead of a set
of items we use a set of edges, representing a subgraph [20].

Similar to Angryk’s use of an ontology as a master docu-
ment graph in text-mining [19], we can use our ontology as
a “master event graph,” retaining the necessary computa-
tional speedups gained by this assumption. While the set of
frequent subgraphs lends itself to further data mining appli-
cations, even simple analysis could provide some beneficial
knowledge. For example, a frequent subgraph might indi-
cate that several events always occur together when accom-
panied by certain attribute values. Perhaps this is a series
of items to replace after a specific malfunction. Then, if the
malfunction occurs and only triggers some of the associat-
ed events, an operator could be informed that other events
commonly occur in these circumstances, and they probably
deserve attention too.

Figure 6.
A user-modified event graph.

“The graphical visualization of
an event can be manipulated
to highlight the important
attributes before being
saved for discussion and
investigation outside the
application.”

38	 IEEE	A&E	SYSTEMS	MAGAZINE	 JULY	2013

Maintenance Event Sequence Visual izat ion Tool

The ground-based maintenance data we used has
two very important text fields—the description narra-
tion, which describes details of the task or problem of
the event, and the corrective action, which describes
the actions taken to fix or complete the event task. Both
fields are entered manually by human operators and
contain a variety of shorthand and abbreviations—as
well as spelling mistakes and input errors—that truly
require a domain expert for proper interpretation. How-
ever, the benefits of understanding and incorporating
these fields would be enormous, as a great deal of in-
formation is conveyed solely within the text, including
referrals to other events, parts, and problems. Further-
more, simple keyword analysis (and perhaps tagging of
events) would detect common phrases, such as “routine
inspection,” “see job #,” “cannibalization of item #,”
and provide great opportunities to explore clustering on
these phrases as an alternative view to the chronological
sequence display.

CONCLUSION

This paper described the initial and ongoing develop-
ment of a tool that facilitates improved knowledge dis-
covery within maintenance data by transforming data
records into ontology-based event graphs and provid-
ing several filterable visualizations of event sequences
through time. We accomplish several major preprocess-
ing objectives, such as records-to-ontology event map-
ping and the resolution of date conflicts in the aggregated
records of events.

The most beneficial aspect of our software is the quick
look up and display of filtered event sequences. Rather than
take a domain expert hours to coalesce and display the rel-
evant data records, our tool can generate a comprehensive
sequence of contextual MEs from several data sources in a
matter of seconds. This work continues to highlight a variety
of research topics that could greatly benefit the maintenance
community.

REFERENCES

[1] Schuh, M., Sheppard, J., Strasser, S., Angryk, R., and Izurieta,
C. Ontology-guided knowledge discovery of event sequences
in maintenance data. In Proceedings of the IEEE AUTOTESTCON

2011 Conference, Baltimore, MD, Sep. 2011, 279–285.
[2] Strasser, S., Sheppard, J., Schuh, M., Angryk, R., and Izurieta, C.

Graph-based ontology-guided data mining for D-matrix model
maturation. In Proceedings of the 2011 Aerospace Conference, Big
Sky, MT, Mar. 2011.

[3] Abdelwahed, S., Karsai, G., Mahadevan, N., and Ofsthun, S.
Practical implementation of diagnosis systems using timed fail-
ure propagation graph models. IEEE Transactions on Instrumen-

tation and Measurement, Vol. 58, 2 (2009), 240–247.

[4] Wilmering, T. J. Semantic requirements on information integra-
tion for diagnostic maturation. In Proceedings of the 2001 AU-

TOTESTCON. IEEE Systems Readiness Technology Conference,
Valley Forge, PA, Aug. 2001, 793–807.

[5] Gruber, T. Toward principles for the design of ontologies used
for knowledge sharing. International Journal of Human-Computer

Studies, Vol. 43, 5–6 (1995), 907–928.
[6] Wilmering T., and Sheppard, J. Ontologies for data mining and

knowledge discovery to support diagnostic maturation. In Pro-

ceedings of the 18th International Workshop on Principles of Diagno-

sis (DX-07), Nashville, TN, May 2007, 210–217.
[7] International Organization for Standardization, Industrial auto-

mation systems and integration—Product data representation
and exchange—Part 11: Description methods: The EXPRESS
language reference manual. ISO 10303-11:2004, 2004.

[8] Sheppard, J., Kaufman, M., and Wilmering, T. Model based
standards for diagnostic and maintenance information integra-
tion. In Proceedings of the 2007 IEEE AUTOTESTCON. Baltimore,
MD, Sep. 2002, 304–310.

[9] Standard for Artificial Intelligence Exchange and Service Tie to
All Test Environments (AI-ESTATE). IEEE Std 1232-2010. Pisca-
taway, NJ: IEEE Standards Press, 2011.

[10] Trial-Use Standard for Software Interface forMaintenance Infor-
mation Collection and Analysis (SIMICA). IEEE Std 1636-2010.
Piscataway, NJ: IEEE Standards Press, 2010.

[11] Trial-Use Standard for Software Interface forMaintenance Infor-
mation Collection and Analysis (SIMICA): Maintenance Action
Information (MAI). IEEE Std 1636.2-2010. Piscataway, NJ: IEEE
Standards Press, 2010.

[12] World Wide Web Consortium. OWL 2 Web Ontology Language
document overview, http://www.w3.org/TR/owl2-overview/,
2009.

[13] Agent Markup Language Committee. DAML+OIL, http://
www.daml.org/2001/03/daml+oil-index, 2001.

[14] World Wide Web Consortium. Resource Description Frame-
work (RDF), http://www.w3.org/RDF/, 2004.

[15] Hitzler, P., Krötzsch, M., and Rudolph, S. Foundations of Seman-

tic Web Technologies (1st ed.). Boca Raton, FL: Chapman & Hall/
CRC, 2009.

[16] Elmasri R., and Navathe, S. B. Fundamentals of Database Systems (5th
ed.). Boston: Addison-Wesley Longman Publishing Co., Inc., 2006.

[17] JGraphT. JGraphT a free Java graph library, http://www.
jgrapht.org/, 2011.

[18] JGraph. JavaScript and Java diagram library components,
http://www.jgraph.com/, 2011.

[19] Hossain M. S., and Angryk, R. A. GdClust: a graph-based docu-
ment clustering technique. In Proceedings of the Seventh IEEE

International Conference on Data Mining Workshops, Omaha, NE,
Oct. 2007, 417–422.

[20] Han J., and Kamber, M. Data Mining: Concepts and Techniques,

(2nd ed.). Waltham, MA: Morgan Kaufmann, 2006.
[21] Byington, C. S., Kalgren, P. W., and Donovan, B. P. Portable di-

agnostic reasoning for improved avionics maintenance and in-
formation capture & continuity. In Proceedings of the 2004 IEEE

AUTOTESTCON 2004 Conference, Sep. 2004, 518–524.

JULY	2013	 IEEE	A&E	SYSTEMS	MAGAZINE	 	39

Schuh et al .

ABOUT	THE	AUTHORS

Michael Schuh received a BS in Com-
puter Science with math and business
minors from the University of Wiscon-
sin in 2009. He has since been a gradu-
ate student researcher in Computer
Science at Montana State University
where he received his MS in 2012 and
continues to pursue his PhD. His pri-
mary research interests revolve around
large scale data mining with a focus
on high-dimensional data indexing,

content-based image retrieval, and similarity-based kNN search.
He also has a strong emphasis on interdisciplinary research with
solar physics and the massive solar image repositories they pro-
duce, archive, and access. Michael has won several awards in re-
cent years, including the 2011 AUTOTESTCON Best Student
Paper Award, a 2012 outstanding MSU Computer Science PhD
researcher award, and a 2013 MSU College of Engineering Ben-
jamin Fellowship.

Dr. John Sheppard is a Professor and
RightNow Technologies Fellow in the
Department of Computer Science at
Montana State University and an Ad-
junct Professor in the Department of
Computer Science at Johns Hopkins
University. In 2007, he was elected as
an IEEE Fellow “for contributions to
system-level diagnosis and prognosis.”
Prior to joining Hopkins, he was a Fel-
low at ARINC Incorporated in An-

napolis, MD where he worked for almost 20 years. Dr. Sheppard
performs research in Bayesian classification, dynamic Bayesian
networks, evolutionary methods, and reinforcement learning and
is active in IEEE Standards activities. Currently, he serves as a
member of the IEEE Computer Society Standards Activities Board
and is the Computer Society liaison to IEEE Standards Coordinat-
ing Committee 20 on Test and Diagnosis for Electronic Systems.
He is also the co-chair of the Diagnostic and Maintenance Con-
trol Subcommittee of SCC20 and has served as an official US del-
egate to the International Electrotechnical Commission’s Technical
Committee 93 on Design Automation.

Clemente Izurieta is an associate re-
search professor in the Computer Sci-
ence Department at Montana State
University. Born in Santiago, Chile,
his research interests include empirical
software engineering, design and ar-
chitecture of software systems, design
patterns, the measurement of software
quality and ecological modeling. Dr.
Izurieta has approximately 16 years ex-
perience working for various R&D labs
at Hewlett Packard and Intel Corporation.

Rafal Angryk is an Associate Professor
in the Computer Science Department at
Montana State University (MSU). He
is also the founding Director of MSUís
Data Mining Laboratory, and holds the
title of Affiliate Professor of Physics due
to the interdisciplinary research he is
conducting on massive repositories of so-
lar data. He received his M.S. and Ph.D.
in Computer Science from Tulane Uni-
versity. Dr. Angryk’s research and teach-
ing interests lie in the areas of Very Large
Databases (Spatial and Spatio-temporal Databases, and kNN Index-
ing), Data Mining (Frequent Patterns Discovery, Clustering and
Classification of real-life large-scale data), and Information Retrieval
(Text and Image data). He has published over 60 journal articles,
book chapters and peer-reviewed conference papers in these areas.

Shane Strasser received a BS in com-
puter science and mathematics from the
University of Sioux Falls in Sioux Falls,
South Dakota. Afterwards he went on
to obtain an MS in Computer Science at
Montana State University, where he is
currently working on his PhD in Com-
puter Science. While at Montana State,
he has received several awards, such as
the 2012 outstanding PhD MSU Com-
puter Science researcher and the 2011
AUTOTESTCON Best Student Paper
Award. In the spring of 2013, he also joined Oracle Right Now as
a software developer intern working in the areas of search and arti-
ficial intelligence. His research interests are primarily in artificial
intelligence and machine learning with a focus on prognostics and
health management systems.

