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INTRODUCTION

Modern diagnostic systems can generate an overwhelming 
abundance of data. Often this data is distributed across mul-
tiple heterogeneous systems and cannot be immediately (or 
easily) collected and aggregated for use. Even with easy ac-
cess to data, much of it is uninteresting to the user’s specific 
inquiry. This puts a large burden on the user to coalesce the 
data and mine the interesting bits relevant to their current 
needs. Depending on the task at hand, this amount of ef-
fort may not be justifiable or practical, and the potential for 
knowledge discovery is lost. Our tool facilitates this data 
mining process and generates relevant sequences of data in a 
fraction of the time it would take domain experts to retrieve 
and display similar information.

We present this extended update from our previously 
published work at AUTOTESTCON 2011 [1]. As develop-
ment continues on our application, it has now grown into 
a full-fledged tool that incorporates additional visualiza-
tions and analysis methods, including the necessary inputs 
required for the method of diagnostic maturation developed 
in [2]. The tool further removes the user’s burden for data 
lookup and aggregation, and it greatly increases the poten-
tial for knowledge discovery from data (KDD) within the 
maintenance community.

This work primarily focused on aircraft data collected at 
ground-based maintenance facilities. The data are composed 
of transactional records detailing each maintenance action 
(MA) that takes place, including important fields such as the 
aircraft tail number, type and date of the event, and possible 
part(s) being removed or installed. Importantly, this data 
also contains the necessary corrective actions that were per-
formed as well as insightful text-fields detailing the results 
of these actions. Also, we now integrate onboard (in-flight) 
data that indicates which faults were observed to prompt the 
performed maintenance event (ME) actions.

We used existing data model standards, defined by the 
Institute of Electrical and Electronics Engineers (IEEE), and 
derived new ontological models to better represent the data. 
We then transform the raw data into MEs and provide the 
user with a query interface to filter on specific event attri-
butes. The filtered query generates a chronological sequence 
of MEs, and the user can optionally display links between 
events that belong to the same aircraft or share the same 
remove/install part(s). Additionally, the user now has the 
ability to view these sequences to scale of the actual time 
elapsed between events. Each event in a sequence can also 
be inspected individually, displaying the entire ontology-
based graph from interconnected data sources.

By combining ME sequences with their underlying faults 
and corrective actions, the user is provided with a much 
more complete context of maintenance history. The model 
maturation tool uses this data in conjunction with timed fail-
ure propagation graph (TFPG) models [3], allowing the user 
to go beyond standard diagnostic procedures. The matura-
tion process provides recommendations about possible er-
rors in the diagnostic models used to guide MAs. If errors 
exist in a model, the resulting diagnosis and corrective ac-
tions may be incorrect, causing wasted time, money, and ef-
fort during the maintenance process [4].

The ongoing tool development provides increased acces-
sibility of existing (and related) data sources to the experts 
who need them. This increases novel data exploration and 
KDD by integrating additional existing standards and data 
collection formats. Through continued integration, the user 
will waste no time switching to different tools and analysis 
methods for the same event sequence of interest.

ONTOLOGY-GUIDED DATA MINING

We utilized domain ontologies to join together different data 
sources and aggregate individual records into more mean-
ingful models. In information science, ontology is a type of 
knowledge representation that formally defines concepts, 
their properties, and the relationships between them [5]. 
This well-defined representation enables automated meth-
ods of reasoning and analysis into the domain concepts the 
ontology describes. Previous work by Wilmering and Shep-
pard suggested using domain ontologies to focus and filter 
data analysis in data mining [6].
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The approach we take in developing ontologies to sup-
port the knowledge discovery process is based on a set of 
standardized semantic models developed in the EXPRESS 
modeling language [7]. EXPRESS is an information model-
ing language defined by the International Organization for 
Standardization to support communication of product data 
between engineering applications. The purpose of the lan-
guage is to define the semantics of information that will be 
generated by a system, and it is not meant to define database 
formats.

Models in EXPRESS are defined using a hierarchy parti-
tioned along schemata, entities, and attributes [8]. The EX-
PRESS language incorporates a number of object-oriented 
features, such as encapsulation, abstraction, and inheritance, 
and it additionally allows logical constraints to be placed on 
attribute values. These constraints, which often define re-
lationships in nontrivial ways, give EXPRESS the ability to 
define computer-processable semantics, which allows appli-
cations to discern if the information being received satisfies 
the intended meaning when it was generated and transmit-
ted [8].

The tool uses ontologies derived from the IEEE Std. 1232 
Artificial Intelligence Exchange and Service Tie to All Test 
Environments (AI-ESTATE) [9] and IEEE Std 1636 Software 
Interface for Maintenance Information Collection and Anal-

ysis (SIMICA) [10]. AI-ESTATE is a set of specifications for 
exchanging data and defining software services for diagnos-
tic systems. Its purpose is to standardize the diagnostic data 
representations of an intelligent diagnostic reasoner and the 
interfaces between elements of such reasoners. The informa-
tion models defined for AI-ESTATE are designed to form the 
basis for facilitating exchange of persistent diagnostic infor-
mation between two reasoners through a standardized sys-
tem for diagnostic services. Additionally, both models make 
use of a “common” information model (called the common 
element model) [9].

MEs are primarily represented by the SIMICA MA in-
formation (MAI) model, which was designed to capture 
records of actual MAs performed on a particular system or 
subsystem [11]. The AI-ESTATE D-Matrix Inference Model 
and Dynamic Context Model are used to define the diagnos-
tic models and associated information used and produced 
by diagnostic reasoners, including recommended corrective 
actions.

Recent work in ontology-guided data mining has 
made use of standard ontology languages (e.g. OWL [12], 
DAML+OIL [13], and RDF [14]). EXPRESS was not designed 
to support ontology-based analysis; however, the seman-
tics defined by EXPRESS models are rich enough to use as 
the foundation for defining ontologies in the Web Ontology 
Language (OWL), which is one of the most widely used on-
tology languages. An OWL ontology may have descriptions 
of classes, properties, and their data instances, and the for-
mal OWL semantics then specify how to find logical conse-
quences from the defined entities. Given an OWL ontology, 
we can then define and instantiate data in OWL format [12].

To convert EXPRESS to OWL, we first had to define a 
logical mapping from the general EXPRESS concepts to 
OWL concepts (e.g., an EXPRESS entity becomes an OWL 
class). We then used the mapping to create our OWL ontolo-
gies from the existing standards in EXPRESS. In some cases, 
the data did not match the entire EXPRESS models, and the 
newly created OWL ontologies had to be extended beyond 
the defined standards. With the incorporation of additional 
models and data source, we also have to ensure a unified 
ontology that links each piece accurately given the available 
data fields. Figures 1 and 2 present a small sample of this 
conversion process for the ME component. Notice the simi-
larity between each format, such as the “actionTaken” and 
“delayReason” relationships present in both.

Frequently Used Abbreviations
AI-ESTATE: Artificial Intelligence-Exchange and 
Service Tie to All Test Environments

SIMICA: Software Interface for Maintenance 
Information Collection and Analysis

MAID: maintenance action information document

ME: maintenance event

MA: maintenance action

ML: maintenance level

ACID: aircraft identification

JCN: job control number

UNS: unified numbering system

PartNo: item (removed or installed) part number

SerNo: item (removed or installed) serial number
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EVENT GRAPHS AND SEQUENCES

We define an event as a group of records pertaining to a 
unique set of ground-based MAs. Each event is composed 
of one or more transactional database records grouped to-
gether based on the SIMICA MAI model, which defines the 
elements and attributes of our OWL ontology. The MA infor-
mation document (MAID) element is the root of our MAI on-
tology, and its attributes are specified as unique, representing 
the superkey of each event. The existence of multiple records 
with the same superkey value indicates multiple MAs were 
performed for a single ME. Therefore, the ME ontology ele-
ment contains a list of MAs and is directly connected to the 
root (MAID) element. Refer to the model in Figure 2 to see 
the direct relationship between MAID, ME, and MA.

The tool also incorporates onboard diagnostic data from 
the aircraft. This data contains a chronological list of diag-
nostic tests (and results) that were performed during the 
course of a flight. Faults that were observed during a flight 
lead to ground-based MAs that are meant to fix and resolve 
the faults [21]. The TFPG model maturation approach ana-
lyzes the statistical discrepencies between the reasoner’s 

action recommendations and the corrective actions (on the 
ground) that actually fixed the problem [2].

Because the data sources have transactional records, 
these multiactioned corrective events typically contain a 
pair of remove/install actions or a list of timely inspection 
actions. In other words, each ground-based record is essen-
tially an MA element, stored with its MAID attributes. Simi-
larily, each record of onboard data contains the identifying 
attribute values shared in common by all, such as aircraft 
identification (ACID). By aggregating these events into on-
tological graph structures, we are performing something 
similar to a database conversion from first normal form to 
third normal form, where each key now returns only a single 
event graph [16].

After the data is transformed into events, it must then 
be presented to the user. We develop a method of display-
ing the summarized events as a sequence through time. Each 
event is reduced to a single node and arranged in sequence 
by one of the user-specified date attributes: job control num-
ber (JCN) Date, or MA completion date. The sequence can 
be considered a further abstraction of the data, where each 
event only displays the date and associated aircraft, as well 

Figure 1.  
A sample of an EXPRESS model and related code.
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as all unified numbering systems (UNSs) and item serial 
numbers (SerNos).

These additional attributes (UNS and SerNo) are not part 
of the unique key but were suggested by domain experts 
as the most valuable information to display. The entire ap-
plication window is shown in Figure 3, with the sequence 
being displayed in the large panel on the right. To simplify 
the readability of the interface, the sequence contains three 
distinct layers. The topmost layer contains the date of each 
event through time, and the aircraft tail number is displayed 
in the middle layer directly below the event date. The bot-
tom layer is composed of the single node events, linked ver-
tically to their corresponding aircraft above. This layer of 
event nodes is further segmented into three separate levels 
corresponding to the maintenance level (ML) attribute value 
for each event (with ML 1 the topmost/closest to the aircraft 
and ML 3 at the bottom). Finally, we create links between 
events that have the same aircraft, or SerNo, to help the user 
follow items of interest through the larger sequence. This 

is a critical enhancement to KDD, as 
it quickly and easily allows a user to 
trace the context of specific parts or 
aircraft through time.

The default sequence view is not 
scaled in proportion to event time/
date occurrences. Instead, each event 
has uniform separation between all 
actions and other events in the gener-
ated sequence. This makes the most 
sense when a user is interested in fol-
lowing specific links or looking for 
specific events, regardless of when 
they occurred. Alternatively, the user 
can choose to view the sequence in a 
true time-proportional scale. This can 
be more beneficial when investigating 
the history of specific parts or aircraft, 
where a quick glance can give easy in-
dication of time between events.

An additional utility-turned fea-
ture was inspired by the nature of 
the data. We developed a data pre-
processor that anonymizes sensitive 
attributes’ values, while retaining 
the relationships between records. 
After anonymization, the application 
is used exactly like before, except the 
“clean” data now replaces the origi-
nal (sensitive) data. Unfortunately, 
because of the inherent (and neces-
sary) randomness built into our ano-
nymization algorithm, the resultant 
attribute values make little logical 
sense to the human observer. Espe-
cially important attributes, such as 
text-based corrective actions, are not 
even retained, as their only benefit is 

being able to actually read and infer more information from 
them. This also means presenting interesting case studies is 
difficult, especially for the TFPG model maturation, which 
we encourage the reader to refer to [2] for a previously pub-
lished example.

IMPLEMENTATION

The application implementation can be separated into five 
parts: an initial (optional) raw data anonymization, a neces-
sary data transformation into ontology instances, attribute 
value filtering and querying, the display of event sequenc-
es, and the display of individual event graphs. While the 
first two parts represent one-time preprocessing steps, the 
remaining three parts are performed dynamically during 
normal application use. All code was written in Java (v1.6), 
and MySQL (v5.1) was used as our database management 
system.

Figure 2. 
A sample of an OWL model and related code.
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The optional first step is a preprocessing anonymization 
function that transforms the data into clean and safe content 
for general presentation. This algorithm essentially creates a 
mathematical correspondence mapping between the origi-
nal data values and the randomly generated new values. 
Each attribute retains its specific qualities, such as data type 
and length, and the correspondence ensures all relationships 
within the data are preserved.

The second step is a required data transformation from 
transactional records representing pieces of MEs to entire 
event graphs that aggregate all those pieces into a common 
OWL ontology instance. Because we are only concerned with 
connection-based relationships among the data, defined by 
the ontology, we can more simply, and efficiently, store the 
transformed data as graph objects—requiring only a few as-
sumptions. Recall that our ontology defines a root element, 
MAID, which contains the keys for each instance, as well as 
an attached ME list of MA elements, each of which essential-
ly encapsulates an original ground-based data record. The 
MAID element also links to the onboard diagnostic records 
from the previous flight(s) that match the data keys.

In our graph representation, we define nodes in a treelike 
context, either as internal nodes (e.g., MAID, ME, MA), or as 
leaf nodes that represent attributes associated with an inter-

nal node. Therefore, given an internal node, all connected leaf 
nodes are its attributes, and all connected internal nodes are 
further extensions of the ontology structure, such as MAID to 
ME, ME to MA #1, ME to MA #2, etc. Additionally, each node 
contains an identifier that defines it as a specific element of 
the ontology, and internal nodes contain a list of connected 
nodes, while leaf nodes contain their respective data value. 
The node ID is important, because it allows for quick and 
easy identification of any node anywhere within the entire 
ontology, and that identification provides further informa-
tion about the node, such as its name and attribute value 
type used during visualization and analysis methods. We use 
the JGraphT library [17] to create these graphs with custom 
nodes and store them as serialized objects in our database.

After all records for a single event are added to a graph, we 
store the event keys (which again are the MAID attributes, or 
leaf nodes), as well as the two date fields used for sorting and 
the serialized graph object in a new database table—separate 
from the raw data. We also create a look-up table to store a 
cross-relation of every UNS, item part number (PartNo), and 
SerNo associated with each event (a many-to-many relation). 
At this point, the original data is no longer needed because the 
tool runs entirely on the two new tables. This provides a con-
venient mechanism for dumping the data into the backend 

Figure 3. 
The main application window. The left panel contains the query options to filter on event attributes, and the right panel contains the gen-
erated sequence based on the query. Below the sequence is a small status window that provides information and feedback to the user.
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database as it is accumulated incrementally. Also note that 
both preprocessing steps are self-contained within the tool 
and initiated with specific command line arguments.

With the data transformation complete, the user can 
now access the main application window for interactive 
KDD by applying a filter to the query and then viewing 
the event sequence and individual events. When the pro-
gram is started, the user is presented with several query 
options in the left panel (refer to Figure 3), which are or-
dered from top to bottom and from least to most specific. 
The only required options are “Sort By,” which orders the 
events by JCN date or MA completion date, and “Date 
To”–“Date From,” which restrict the sequence to only 
events within the given date range. To aid the user, we 
provide the default selection of JCN date, and autofill the 
date range with the minimum and maximum JCN dates 
found in the database.

One complication that arose with our method of record 
aggregation is the possibility of conflicting date values for ac-
tions in the same event. This is a known problem with the data, 
and we resolved it by storing the earliest found JCN and MA 
completion dates as the date fields for an event. The remaining 
query options: ACID, UNS, PartNo, and SerNo provide fur-
ther filtering capabilities, and the valid options for each filter 
are auto-generated based on the previously selected filters. 
For example, when a user selects a set of ACIDs that are of 
interest, the subsequent filters (UNS, PartNo, and SerNo) are 
repopulated to display only valid values found in database re-
cords that contain one of the selected ACIDs. This removes the 
guessing game of identifying which records exist, and it allows 
the user to gain considerable insight into the data they are in-
vestigating—even before the first query is performed.

After the query options are set, the sequence graph is 
generated and displayed in the right side panel of the ap-

plication window. While using the tool, information, such 
as query history and important messages, are displayed in 
the bottom status panel and optionally logged to a file. A 
sequence can be scrolled (left and right) through time and 
each event is a click-able object that displays the details of 
the individual event. The sequence graph is generated using 
Java’s swing layout mechanism with the semantic links be-
ing overlaid by Java’s 2D drawing framework. These links 
connect identical aircraft (ACID) and item parts (SerNo) 
from one occurrence to the next, as time flows to the right. As 
discussed earlier, the sequences presented in figures are not 
scaled by time and instead use the original default graphi-
cal view. There is currently active development on the GUI 
framework to more easily support adding additional views 
and user interactions.

Finally, when an event is clicked, a separate window is 
opened that displays all the details of the event, such as in 
Figure 4. Each clicked event opens a new window, allow-
ing easier side-by-side comparison of multiple events. View-
ing individual events is accomplished quite easily by port-
ing objects from JGraphT to JGraph [18], which provides 
an on-the-fly layout and visualization of the graph object. 
These event graphs can be further manipulated (dragged, 
reshaped, etc.) to highlight attributes of interest, while hid-
ing the unimportant ones. At any time, the visualized graphs 
can be saved as a image (.png format) for presentation and 
discussion beyond the confines of the tool and the computer 
system it is running on.

DISCUSSION

The primary objective of this software tool is to minimize 
wasted time and effort during aircraft maintenance by pro-
viding a meaningful display and integration of data collect-

Figure 4. 
An individual event window containing an auto-generated layout of all the attributes (and their values) for a given event. The unique 
event ID is displayed in the window title bar, and the graphical visualiztion can be saved as an image.
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ed from ground-based and onboard maintenance records. 
This was achieved with the grouping and ordering of re-
cords and the summarized display of only certain key infor-
mation. The application facilitates detailed query selections 
based on the most useful parameters identified by domain 
experts. Because of the large (and continually growing) set 
of data being accessed, this allows the user to select only the 
appropriate data that they are interested in.

The potentially large volume of stored data is a point of 
concern, as it could have effects on maintaining timely que-
ries. Our current implementation provides no safeguards to-
ward checking for manageable and effective user-generated 
queries. Through MySQL, we maintain a separate index for 
all queryable attributes, but the sheer volume of data com-
bined with an ill-minded query can still bring the applica-
tion to a brief standstill. For example, suppose we have four 
successive filters, each with 100 possible items to choose 
from—so if we choose ten from each, then we have (100 
choose 10) times 4, which is nearly 1053 possible combina-
tions! The problem is that a query like this has no defining 
attribute to filter on that provides adequate data reduction, 
whereby MySQL can optimize the query and perform the 
most selective joins first.

The good news for us is that these vague and indis-
criminate queries are rarely helpful to real-world users and 
should therefore be encountered minimally. For example, a 
user rarely needs to see a large set of aircraft, related to a 
large set of items, over a large span of time; rather, they are 
more often interested in a specific aircraft and a handful of 
parts or a specific part on any aircraft. These practical que-
ries return results in seconds.

In a similar argument, the readability of our dynamic 
links between neighboring events that share aircraft or parts 
in common can become muddled in an overly complicated 
query. However, if someone is attempting to follow links for 
a part or aircraft from one event to another, they are prob-
ably not looking at a lot of parts or aircraft. If for some reason 
the user deems a large or overly complicated query is neces-
sary, these links are easily toggled off for a clean view of the 
event sequence.

Beyond the idea of just querying items, the application 
has the added benefit of allowing a user to follow interesting 
items through time. This is achieved in part by the aforemen-
tioned query options but also by the dynamically generated 

item links displayed on the sequence. With these features, a 
user can, for example, generate a summary of specific items 
through time, discover a reoccurring list of similar problems 
to a specific aircraft, or track a specific part from aircraft to 
aircraft as it is perhaps repetitively cannibalized or replaced. 
All of these uses could benefit from these novel data visual-
izations.

We provide an example use case in Figures 5 and 6, and 
we walk through the important knowledge discovery abilities 
displayed. Presented in Figure 5 is a sequence of three events. 
The top arc indicates the same aircraft ruBCc1 in the second 
and third events, while the bottom arc indicates the same item 
is referenced in all three events. The item is identified by its 
serial number tZs, which we simply highlighted for readabil-
ity. Now we can essentially read the event sequence “story.” 
In early 2009, the tZs item was removed from aircraft tUP4Xi 
during a Level 1 MA. Then, only days later, the same item was 
installed on aircraft ruBCc1, only to be removed a few more 
days later during a Level 3 MA. According to domain experts, 
this most likely indicates a failed part that was later fixed and 
cannibalized only to fail once again.

To investigate further, the user could then inspect the other 
attributes of each event in the sequence. The graphical visual-
ization of an event can be manipulated to highlight the impor-
tant attributes before being saved for discussion and investi-
gation outside the application. Figure 6 shows an example of 
the modified event graph for the third event in the sequence 
in Figure 5. Notice we can now clearly see the event’s MAID 
node connected to the ME node and the ME node connected 
to two MA nodes. Each MA node has three visible attributes 
that indicate the item being removed or installed. Important 
text fields would also be present here (in real data), and they 
would likely confirm our previous insights.

The investigation of MEs is dramatically increased with 
the aid of TFPG diagnostic model maturation recommen-
dations through the method described in [2]. The matura-
tion process requires a combined analysis of the diagnosed 
faults found onboard, and the corrective actions reported 

“Links are created between 
events that have the same 
aircraft, or SerNo, to help 
the user follow specific parts 
or aircraft through time.”

Figure 5. 
A sequence of events.
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to fix the problem—both of which are available in our ME 
graphs. Essentially, the recommendations arise when a 
corrective action is performed more often than expected, 
given the reasoner’s diagnosis from observed faults or vice 
versa, when a suggested corrective action rarely fixes the 
actual problem. These indicate a potential problem with 
the underlying diagnosis model, and the user could be bet-
ter informed by knowing in advance these discrepancies 
may exist.

FUTURE WORK 

The tool provides a promising and exciting framework for 
continued data mining and knowledge discovery research. 
Interesting continuations of this work include adding more 
data sources and tools, enhanced GUI interactions and visu-
alizations, applying graph-based data mining algorithms to 
the data, and performing an in-depth analysis and mining of 
text field attributes.

A benefit of conforming to the IEEE standards-based on-
tologies is the well-established data model that already pro-
vides connections between multiple sources of maintenance 
data. While we have already added an onboard diagnostic 
data source to the application, additional data sources will 
continue to enhance KDD through more comprehensive 
analyses and incorporated tools. By filling out the existing 
ontologies with more available information sources, we can 
provide the user a more complete context surrounding an 
interesting event or sequence of events. Similar to the facili-
tated TFPG model maturation recommendations, further in-
tegration with independent tools will increase the efficiency 
of aircraft maintenance and minimize costly mistakes that 
would be otherwise unavoidable.

As we mentioned earlier, current and ongoing work has 
been focused on enhancing the GUI for the user. Additional 
views of aggregated maintenance data, such as the time-scaled 

event sequences, provide unique 
benefits for an overall better un-
derstanding of the data. New 
visualizations also create the 
opportunity for new user in-
teractions with the system, and 
entirely new tools may arise 
during such development. Pre-
defined layouts of individual 
event graphs would also speed 
up the detailed investigation of 
event attributes, minimizing the 
need for the user to extensively 
manipulate these graphs every 
time one is viewed.

Because our data is essen-
tially a database of graphs, 
another interesting research 
direction would be exploring 
graph-based data mining algo-

rithms. Angryk’s previous work in frequent subgraph min-
ing [19] shared a similar problem formulation, where the goal 
was to detect all frequently occurring subgraphs (based on 
a given support threshold) from a larger graph object. This 
is similar to frequent itemset mining, except instead of a set 
of items we use a set of edges, representing a subgraph [20].

Similar to Angryk’s use of an ontology as a master docu-
ment graph in text-mining [19], we can use our ontology as 
a “master event graph,” retaining the necessary computa-
tional speedups gained by this assumption. While the set of 
frequent subgraphs lends itself to further data mining appli-
cations, even simple analysis could provide some beneficial 
knowledge. For example, a frequent subgraph might indi-
cate that several events always occur together when accom-
panied by certain attribute values. Perhaps this is a series 
of items to replace after a specific malfunction. Then, if the 
malfunction occurs and only triggers some of the associat-
ed events, an operator could be informed that other events 
commonly occur in these circumstances, and they probably 
deserve attention too.

Figure 6. 
A user-modified event graph.

“The graphical visualization of 
an event can be manipulated 
to highlight the important 
attributes before being 
saved for discussion and 
investigation outside the 
application.”
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The ground-based maintenance data we used has 
two very important text fields—the description narra-
tion, which describes details of the task or problem of 
the event, and the corrective action, which describes 
the actions taken to fix or complete the event task. Both 
fields are entered manually by human operators and 
contain a variety of shorthand and abbreviations—as 
well as spelling mistakes and input errors—that truly 
require a domain expert for proper interpretation. How-
ever, the benefits of understanding and incorporating 
these fields would be enormous, as a great deal of in-
formation is conveyed solely within the text, including 
referrals to other events, parts, and problems. Further-
more, simple keyword analysis (and perhaps tagging of 
events) would detect common phrases, such as “routine 
inspection,” “see job #,” “cannibalization of item #,” 
and provide great opportunities to explore clustering on 
these phrases as an alternative view to the chronological 
sequence display.

CONCLUSION

This paper described the initial and ongoing develop-
ment of a tool that facilitates improved knowledge dis-
covery within maintenance data by transforming data 
records into ontology-based event graphs and provid-
ing several filterable visualizations of event sequences 
through time. We accomplish several major preprocess-
ing objectives, such as records-to-ontology event map-
ping and the resolution of date conflicts in the aggregated 
records of events.

The most beneficial aspect of our software is the quick 
look up and display of filtered event sequences. Rather than 
take a domain expert hours to coalesce and display the rel-
evant data records, our tool can generate a comprehensive 
sequence of contextual MEs from several data sources in a 
matter of seconds. This work continues to highlight a variety 
of research topics that could greatly benefit the maintenance 
community. 
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