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1. Motivation 5. Batch reactor model implementation and simulations

e We are studying the biogeochemical response of the soils from (a) Timberlake Wetland in North Carolina, USA, to restoration e We are C0||ecting solute processing data from soil S|urry batch reactors, with soil Samp|es taken
from agricultural land use (re-flooding) and surface water intrusion of seawater (via wind tides) from the Timberlake Wetland.

e Thermodynamic theory is frequently invoked to explain biogeochemical patterns in wetland soils.

e Most thermochemical models are too detailed to be practical for comparisons with typical (b) field and (c) lab measurements

 Therefore, we have few tools for testing thermodynamic theory against typical observations of solute dynamics

2. Objective

Build a thermodynamic model of microbial
growth and metabolism with sufficient
generality for comparison to measurements
of solute dynamics in wetland soils

Experimental
unit 1..n

 Ultimately we will be using these batch reactor data to help parameterize the model, currently
we are using the concept of a batch reactor environment to evaluate model behavior

A batch reactor is a closed system, so the aqueous compartment for each reactor was assumed to
be isolated and contain a constant volume of water

 The initial concentrations for simulations can be arbitrarily set at application run time, to allow
for numerical experimentation and sensitivity analysis

 Application runs a default “control” reactor, and multiple additional reactors configured to vary
the experimental treatments

Autotrophy Heterotrophy

Stimulate simulated aerobic respiration, denitrification, sulfate

Stimulate simulated nitrification with high . . . :
reduction, and methanogenesis with high concentrations of

ammonium and oxygen concentrations.

. . DOC and terminal electron acceptors (TEASs)
3. Thermodynamic theory 4. Model structure and algorithm
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