
Technical Debt Reduction Using a Game Theoretic Competitive Source Control
Approach

Sarah Morrison-Smith

Dept. of Computer Science
Montana State University

Bozeman, MT, USA

sarah.morrisonsmith@msu.
montana.edu

Stephen Dighans

Dept. of Computer Science
Montana State University

Bozeman, MT, USA

stephen.dighans@msu.
montana.edu

Talon Daniels
Dept. of Computer Science

Montana University
Bozeman, MT, USA

talon.daniels@msu.
montana.edu

Chad Marmon
Dept. of Computer Science
Montana State University

Bozeman, MT, USA

chad.marmon@msu.montana.edu

Clemente Izurieta
Dept. of Computer Science
Montana State University

Bozeman, MT, USA

clemente.izurieta@cs.montana.edu

Abstract

The management of technical debt and the use of

productivity games are important aspects of developing

software projects. A productivity game was created in the

form of a competitive source control plug-in that rewards

technical debt-reducing actions. The plug-in was tested by

simulating source control usage with in a small sample

project. Analysis showed that the plug-in appropriately

assigned scores to developers for debt-reducing and debt-

increasing actions. The plug-in has potential practical

applications in the management of technical debt in

workplace environments. The approach described in this

paper is promising, and in future work we plan to test the

Build Game plug-in with a wider variety of existing and

simulated projects. Additional research is also planned to

investigate the impact of the Build Game plug-in on

workplace productivity.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics

General Terms
Management, Measurement, Design, Experimentation.

Keywords
Source code control, software tools, technical debt, game

theory, maintainability.

1. INTRODUCTION

Technical Debt (TD) is a metaphor created by Ward

Cunningham to describe the burden placed on software

engineers when shortcuts taken to speed development lead

to long-term production setbacks [1]. Left unchecked,

technical debt can impede agility [2], raise maintenance

costs, and increase defects [3]. Thus, the management of

technical debt is extremely important for any large software

project.

Productivity games, sensu [4] (Director of Test at

Microsoft), are a subcategory of games designed to

improve the morale and productivity of employees.

Microsoft's experiment, 42projects [5], has definitively

shown that games can increase productivity [6]. The use of

productivity games is shown to enhance communication

within the working environment and promote a high level

of engagement [6]. Additionally, when used to enhance

testing procedures, productivity games offer a means of

regulating test coverage. Consequently, the use of

productivity games is potentially very useful in any project,

regardless of type.

Historically, source control systems have been enhanced to

promote good programming practices by means of

productivity game plug-ins. For example, the Continuous

Integration Game plug-in by Rumfelt and Kutzinski [7] was

created to decrease the number of times that a build

becomes broken by awarding points to developers who

commit builds with no failures. However, while the

Continuous Integration Game incorporates additional test

rules which focus on detecting suboptimal code with

immediate consequences, no rules exist to penalize

technical debt. Rumfelt and Kutzinski test and game rules

for the Continuous Integration Build Game are described in

tables I and II [7], [8], respectively.

Our objective is to improve upon this concept by creating a

productivity game in the form of a competitive source

control plug-in, called the Build Game plug-in, which

rewards technical debt-reducing actions. This is

accomplished by analyzing source control check-ins using

predefined static analysis metrics. A contributor is assigned

a score for every check-in. For example, decreasing

complexity would be a positive action that yields a positive

score, while reducing test coverage would be a negative

action that yields a negative score.

TABLE II

THE CONTINUOUS INTEGRATION BUILD GAME RULES [7] [8]

2. SOFTWARE CONFIGURATION

With every source code commit, the Build Game plug-in

utilizes an external calculation of the amount of technical

debt that a contributor creates or removes, and assigns a

score accordingly. The plug-in uses five major components:

Git [9] for source control, a Jenkins container [11], Apache

Maven [12], a Sonar plug-in for Jenkins [13], and a Java

Jenkins plug-in that assigns a technical debt score based on

the Sonar analysis and keeps track of all the users’ points.

2.1 GitHub and Git

GitHub is a web-based hosting service for software

development using the Git revision control system [14].

This service provides source control management

capabilities for the client [14]. In this project, GitHub is

used to store revisions of committed builds.

2.2 Jenkins

Jenkins is an open source continuous integration tool

written in Java [10]. Jenkins provides an easy-to-use

system that makes it easier for developers to integrate

changes into a project [11]. The plug-in for Jenkins requires

the GitHub plug-in to be installed and using Git for source

control.

2.3 Apache Maven

Apache Maven, a Java-based tool designed for building and

managing Java-based projects, is an automation utility that

allows developers to easily comprehend the state of a

project [12]. The goal of Maven is to provide a unified

build system that is easy and effective at keeping all users

up to date of the build process [12]. Apache Maven plays a

small role in our project. It builds the GitHub hosted

project to be used by the Build Game plug-in and Sonar.

Our plug-in for Jenkins is configured to only be compatible

with Maven projects, thus it is a requirement that the user’s

project uses Maven.

2.4 Sonar

Sonar is an all-in-one, open platform designed to manage

code quality [13]. Sonar is a web-based application that

keeps a database of statistics derived from builds of a

project that can be used in plug-ins that evaluate metrics.

The Sonar plug-in for Jenkins is required for the purposes

of this project. When setting up Sonar one must install the

plug-in for technical debt. We use this plug-in to derive our

metrics from the created technical debt database. Sonar's

calculation of technical debt is configurable [15] depending

on individual project needs.

2.5 Build Game Plug-in

The competitive source control plug-in Build Game, is the

mechanism that converts raw Sonar analysis results into

user scores and passes them to Jenkins to be recorded.

Action Points

Breaking a build −10*

Build with no failures +1

Test failure (each) −1

New passed test +1

TABLE I

THE CONTINUOUS INTEGRATION BUILD ADDITIONAL TEST RULES [7]

Action Points

Adding/removing a high priority PMD Plug-in warning −5/+5

Adding/removing a medium priority PMD Plug-in warning −3/+3

Adding/removing a low priority PMD Plug-in warning −1/+1

Adding/removing a high priority Task Scanner Plug-in task −5/+5

Adding/removing a medium Task Scanner Plug-in priority task −3/+3

Adding/removing a low priority Task Scanner Plug-in task −1/+1

Adding/removing a Violations Plug-in violation −1/+1

Adding/removing a Violations Plug-in duplication violation −5/+5

Adding/removing a high priority Findbugs warning −5/+5

Adding/removing a medium priority Findbugs warning. −3/+3

Adding/removing a low priority Findbugs warning −1/+1

Adding/removing a compiler warning −1/+1

Adding/removing a Checkstyle warning −1/+1

2.5.1 Files and Structure

The Build Game plug-in is comprised of five Java classes

shown in Figure 1; a main driver; a class that consists of

methods that calculate the point value to be awarded to the

current build; two classes which are connected to and

controlled by Jenkins that contain methods that hold, set,

and retrieve a user’s score; and a minor class that

implements a configuration mechanism for the Jenkins user

interface.

The Build Game plug-in also has several necessary

peripheral jelly files. The jelly files are used by Jenkins to

create configurable parameters for the plug-in [16]. These

files set parameters for interfacing with Jenkins, and for

setting configuration parameters. The Build Game plug-in

also contains one important HTML file that defines the

ordered list of sonar metrics used by the plug-in for the

Jenkins web app.

2.5.2 Function and Behavior

The Build Game plug-in first performs a preliminary check

to confirm that the outcome of the build is successful. Next,

the project ID, Sonar URL, and weight string — a comma-

delimited list that represents the importance and sign of

each Sonar metric [17] — are retrieved from Jenkins. If an

error occurs while retrieving the weight string, default

weights are used. Since weighting is heavily dependent on

individual projects and company needs, default weights

assign the same value of importance to each metric. Default

weights are given a positive or negative sign based on the

color assigned to each metric in the Sonar dashboard.

Positively signed weights are assigned to metrics colored

green, while metrics that are colored red during negative

variation are assigned negative weights. Next, the Build

Game plug-in queries Sonar using the Sonar URL and

retrieves the variation of measurements for each metric

between the latest and previous build. Point values are

calculated by the summation of each metric weight

multiplied by its polled variation. Point values are then

returned to the Build Game plug-in.

For example, if the weight string is (1.0, 1.0, −1.0, −1.0,

1.0) and the variation in Sonar metrics between two builds

is (6.1, 17.0, −4.3, 5.2, −19.4), points are calculated by:

 (1.0 * 6.1) + (1.0 * 17.0) + (−1.0 * −4.3) (1)

 + (−1.0 * 5.2) + (1.0 * −19.4) = 2.8

Figure 1. UML class diagram of the Build Game Plugin. BuildGamePlugin is the main driver for the plugin;

ComputePoints contains methods that calculate the point value to be awarded for the current build; ScoreProperty

and ScorePropertyDescriptor, which are connected to and controlled by Jenkins, consist of methods that manipulate

user scores; DescriptorImpl is a minor class nested in BuildGamePlugin that is used to implement a

configuration/extensibility mechanism for the Jenkins user interface.

During the final step, the set of contributors to the latest

build are retrieved from Jenkins. The Build Game plug-in

adds the current point value to each user’s previous score.

3. METHODOLOGY

The Build Game plug-in was tested using a productivity

game simulation over a small sample project of

approximately 1500 lines of code. Simulation was used to

test the correctness of the plug-in's logic prior to fully

integrating with Jenkins. A Python script was created to

simulate Jenkins by traversing the Git commit history,

checking out a previous version, then running Sonar

analysis. Each build was defined as a snapshot build. This

allowed Sonar to store the data for every commit. After

Sonar analysis was complete, the script then ran through

the logical statements contained in the Build Game plug-in

to provide the total score for the build.

4. RESULTS

The following figures describe trends in technical debt ratio

and score over a period of 47 builds. Technical debt ratio is

calculated by Sonar as:

(technical debt / total possible debt) * 100, (2)

where technical debt and total possible debt are both values

calculated by Sonar [15].

In Figure 2 we display the overall technical debt ratio and

scores over a period of 47 versions of the build.

Figures 3 to 7 describe the normalized influence of

additional metrics on technical debt and score. These

metrics are used by Sonar to calculate technical debt and

are used by the Build Game plug-in to calculate the score.

Metrics are subdivided into categories for readability.

Figure 2. Normalized technical debt ratio and

scores.

Figure 3. Normalized comment lines density, publicly

documented API density, technical debt ratio, and

scores.

Figure 4. Normalized class complexity, file complexity,

function complexity, technical debt ratio, and scores.

Figure 5. Normalized test success density, test coverage,

violations density, technical debt ratio, and scores.

Figure 6. Normalized duplicated blocks, duplicated

files, duplicated lines density, technical debt ratio, and

scores.

Figure 7. Normalized suspect lack of cohesion of

methods (LCOM4) density, package tangle index,

technical debt ratio, and scores.

5. DISCUSSION

As depicted in Figure 1, there is an inverse relationship

between the score determined by the Build Game plug-in,

and the technical debt ratio determined by Sonar. Although

several weighted metrics are used to compute the score,

which enhances the ability for users to customize, technical

debt is appropriately represented by Sonar’s technical debt

ratio. The score/technical debt ratio suggests that the Build

Game plug-in appropriately assigns points to developers

based on their contributions to technical debt.

A spike in score and metrics is shown in figures 2 - 7

during builds 1 through 5. This is expected because going

from no code to even the smallest code base reflects a large

positive increase in points, boosting the developers’ score.

This is quickly equalized by build 7, as a gradual build-up

of negative points counteracts the low rate at which

positive changes occur. It is at this point that the build

appears to stabilize. Since this spike can be expected at the

beginning of every project, the Build Game plug-in can be

employed at any time during the project and still be able to

analyze past builds. This would initiate the game with a

more accurate starting score.

With two notable exceptions, the relationship between

individual metrics and score (indicated in figures 2 – 7)

progressed as expected. Between builds 28 through 29 and

35 through 44, a large drop in score was not matched by an

equivalent rise in technical debt. Since score is determined

by the weighted contribution of several metrics in addition

to technical debt, a sharp change in one heavily weighted

metric can have a profound impact on the score. It appears,

in these instances, that the change in score was caused by

an increase in the package_tangle_index metric. This

indicates that while the rest of the metrics used by the Build

Game plug-in appropriately influence score, the

package_tangle_index may be inappropriately weighted in

the technical debt calculation. Because weights are

intended to be tailored to the individual project or

company, it is reasonable to allow a user to change the

value of said parameters.

6. CONCLUSION

As the results have shown, the Build Game plug-in has the

potential to be a reliable tool for deriving a consistent

score, which leads to many practical applications. The

game atmosphere fostered by the plug-in can help

employers maintain an enjoyable work atmosphere, thus

promoting positive employee morale. The plug-in’s focus

on decreasing technical debt facilitates decreased down

time and promotes faster development cycles, thus

improving employee productivity. In addition, the use of

Open Source software used by Build Game makes it

appropriate for decreasing technical debt in personal

computing scenarios.

7. REFERENCES

[1] Cunningham, W. The WyCash Portfolio Management

System. Addendum to the proceedings on Object-

oriented programming systems, languages, and

applications (Addendum), ser. OOPSLA ’92. New

York, NY, USA: ACM, 1992, pp. 29–30. [Online].

Available: http://doi.acm.org/10.1145/157709.157715

[2] Sussna, J. Technical Debt, and Adaptive

Organizations. DevOps, 2012.

http://blog.ingineering.it/post/21311393348/tech-debt

[3] Eisenberg, R. J. A threshold based approach to

technical debt. ACM SIGSOFT Software Engineering

Notes archive. March 2012, 37(2), pp 1.

http://dl.acm.org/citation.cfm?id=2108151&dl=ACM&

coll=DL&CFID=97542137&CFTOKEN=95173102.

[4] Smith, R. Portfolio selection and game theory in defect

prevention.” July, 2009.

http://blogs.msdn.com/b/microsoft_press/archive/

2009/07/31/portfolio-selection-and-game-theory-in-

defect-prevention.aspx

[5] 42Projects. What is 42Projects?

http://www.42projects.org/

[6] Smith, R. How Gaming Transforms the Workplace.

Casual Connect. Seattle, Washington, July, 2011.

http://casualconnect.org/lectures/business/how-

gaming-transforms-the-workplace-ross-smith/

[7] Ramfelt, E. and Kutzinski, C. The Continuous

Integration Game plug-in. March 6, 2012.

https://wiki.jenkins-

ci.org/display/JENKINS/The+Continuous+Integration

+Game+plugin

[8] Ramfelt, E. The Continuous Integration Game plug-in.

March 15, 2011. http://wiki.hudson-

ci.org/display/HUDSON/The+Continuous+

Integration+Game+plugin

[9] Git. Git. September 26, 2012. http://git-scm.com/

[10] Magnyan and Kawaguchi, K. Git Plug-in. April 2012.

https://wiki.jenkins-

ci.org/display/JENKINS/Git+Plugin

[11] Kawaguchi, K. and Molter, T. Meet Jenkins. April

2012. https://wiki.jenkins-

ci.org/display/JENKINS/Meet+Jenkins

[12] Apache Software Foundation. What is Maven? April

2012. http://maven.apache.org/what-is-maven.html

[13] SonarSource. http://www.sonarsource.org/

[14] GitHub Inc. Github. September 26, 2012.

https://github.com/

[15] Gaudin, O. and Brandhof, S. Technical Debt

Calculation. March 2011.

http://docs.codehaus.org/display/SONAR/Technical+D

ebt+Calculation

[16] Oestreicher, S. Basic guide to Jelly usage in Jenkins.

March 2011.

https://wiki.jenkinsci.org/display/JENKINS/Basic+gui

de+to+Jelly +usage+in+Jenkins

[17] Mallet, F. and Madrikov, E. Metric Definitions.

January 2012.

http://docs.codehaus.org/display/SONAR/Metric+defin

itions

