
Object Oriented Design Pattern Decay: A Taxonomy 
Travis Schanz 

Montana State University 
Department of Computer Science 

Bozeman, MT 59717 
1-406-661-3718 

travis.schanz@cs.montana.edu 
 

 

Clemente Izurieta 
Montana State University 

Department of Computer Science 
Bozeman, MT 59717 

1-406-994-3720 
clemente.izurieta@cs.montana.edu 

Abstract 
Software designs decay over time. While most studies focus on 
decay at the system level, this research studies design decay on 
well understood micro architectures, design patterns. Formal 
definitions of design patterns provide a homogeneous foundation 
that can be used to measure deviations as pattern realizations 
evolve. Empirical studies have shown modular grime to be a 
significant contributor to design pattern decay. Modular grime is 
observed when increases in the coupling of design pattern classes 
occur in ways unintended by the original designer. Further 
research is necessary to formally categorize distinct forms of 
modular grime. We identify three properties of coupling 
relationships that are used to classify subsets of modular grime. A 
taxonomy is presented which uses these properties to group 
modular grime into six disjoint categories. Illustrative examples of 
grime build-up are provided to demonstrate the taxonomy. A pilot 
study is used to validate the taxonomy and provide initial 
empirical evidence of the proposed classification. 

Categories and Subject Descriptors 

D.2.10 [Software Engineering]: Design — Design Concepts, 
Object-oriented design methods;  D.2.11 [Software 
Engineering]: Software Architectures — Patterns; D.2.7 
[Software Engineering]: Distribution, Maintenance, and 
Enhancement — Enhancement, Extensibility, Maintainability, 
Maintenance measurement. 

General Terms 
Measurement, Design, Experimentation. 

Keywords 
Software Architectures, Object Oriented Design Patterns, 
Software Decay, Software Evolution 

1. Introduction 
Software systems evolve over time and studies [6] suggest that 
decay of designs occurs as a result of changes to its functionality 
and structure. A consequence of decay is an increase in test 
requirements and an increase in adaptability and maintainability 
efforts [11]. Studies in software decay focus on the overall design 

of a system [14]. Measuring decay is thus a difficult problem 
because surrogate measures [2] must be used to quantify external 
quality attributes. Attempts to measure decay have been proposed 
[6]; however indices used by prior studies make it difficult to 
compare the relative decay of system designs to each other. 
Izurieta and Bieman [9] however; suggest using design patterns as 
the underlying micro-architectures to study. Design patterns 
have a well understood form that can be described using formal 
pattern languages (e.g. RBML [7], PADL [8]), thus providing an 
agreed upon structure that can be used to measure against. As 
design patterns evolve, changes to the pattern can be measured to 
see if the pattern is evolving in the manner in which it was 
intended. Deviations indicate decay. Empirical studies by Izurieta 
and Bieman demonstrate a form of decay; grime. Their studies 
suggest that “design patterns do not structurally breakdown, but as 
designs evolve, design pattern realizations tend to be obscured as 
new associations develop between classes.” 

Whilst empirical evidence of design pattern decay and grime 
buildup is available [10], taxonomy is a natural progression and is 
essential. A taxonomy promotes the classification of grime into 
ordered groups that are disjoint and complete while preserving  
natural relationships between categories. The classification, 
description and naming of various forms of grime as applicable to 
each individual design pattern is proposed. This research goes 
beyond the initial definitions of decay and grime by proposing a 
taxonomy of design pattern grime.  

The paper is organized as follows. Section 2 discusses the details 
of the taxonomy. Section 3 provides illustrative examples of 
couplings that contribute to each taxonomical category. Sections 4 
and 5 present and discuss data from an initial pilot study focused 
on validating the taxonomy. Section 6 examines the threats to 
validity. Conclusions and direction for further research are 
provided in section 7. 

2. Taxonomy of grime 
Izurieta and Bieman [9] define three levels of grime; class grime 
is defined as changes to software classes that belong to a design 
pattern, but whose functional value is not derived from the way 
the pattern was meant to be extended. For example, new code 
added to design pattern classes (e.g. methods or attributes) that are 
not necessary for pattern function will increase class grime. 
Modular grime is defined as increases in the internal and external 
coupling of classes that belong to a pattern. As designs evolve 
pattern classes can develop new relationships that are unnecessary 
for pattern operation. Organizational grime refers to the physical 
distribution of pattern classes throughout software packages and 
namespaces. Empirical studies suggest that modular grime tends 
to increase as software designs evolve [9]. Evidence of class and 
organizational grime is inconclusive [9]. This research proposes a 
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preliminary taxonomy of modular grime that goes beyond the 
original definitions by providing examples in proposed categories. 

Modular grime builds when the classes of design pattern 
realizations grow new relationships not described by the pattern’s 
RBML. A pattern’s RBML is a precise description of the 
classifiers and associations that belong to said pattern. RBML was 
chosen to describe design patterns because it provided an intuitive 
UML-like format that can be used to detect and specify any 
pattern. We define criteria that determine when a new coupling 
involving a pattern class contributes to modular grime. Section 2.1 
describes the criteria that define these couplings. 

2.1 Coupling between classes 
There exist many metrics and measures that distinguish between 
various dimensions of coupling between classes [4]. We use 
strength, scope and direction to classify modular grime. 

2.1.1 Strength of coupling 
Coupling can be classified on an ordinal scale according to 
strength [13]. Strength is determined by the difficulty of removing 
the coupling relationship. We use persistent and temporary 
coupling because they are the most common forms in object 
oriented systems [13]. For example, two classes A and B have a 
persistent (strong) association when class A contains an attribute 
of type B. The classes have a temporary (weak) association when 
class A contains a method with a parameter, a return value, or a 
local variable of type B. The relative strength of the coupling 
relationship is approximated by the amount of effort required to 
refactor the relationship. Persistent relationships are considered 
strong because they are likely to persist throughout the lifetime of 
the design pattern realization, while temporary relationships are 
considered weak because of their provisional nature. The sets 
Persistent = {class_attribute} and Temporary = 
{method_local_variable, method_return_value, 
method_formal_parameter} define ordinal sets for permanent and 
temporary coupling types respectively. Each set contains (in 
increasing level of refactoring complexity) the types of coupling 
considered. Currently, we do not have enough ordinal categories 
to justify using a five point Likert scale, however as new members 
of the Persistent or Temporary sets are identified we can easily 
accommodate such changes. These sets can be augmented with 
other less common forms of coupling in object oriented designs 
(i.e., sharing of global variables, data flow couplings, etc.). 
Extensive research in identifying different coupling types has 
been performed by [4]. 

2.1.2 Scope of coupling 
Scope demarcates the boundary of a coupling relationship and can 
be internal or external. A class belonging to a design pattern 
develops a relationship with external scope if another class (not in 
the design pattern) is coupled with the former. A relationship has 
internal scope if the coupling involves two classes belonging to 
the same realization of a design pattern. 

Formally, let P be a specialization of RBML that describes a 
design pattern. The set of classes that describes P is denoted by 
C(P) and the set of relationships is denoted by R(P). The order of 
a pattern is defined as the total number of classes in P, and is 
denoted by |C(P)|, and the size of a pattern is defined as the total 
number of relationships in P, and is denoted by |R(P)|. A valid 
classifier is defined as a class c or relationship r allowed by the 
RBML of the pattern. Valid classifiers in a design are seminal or 

evolve as permitted by the extensibility rules of the pattern’s 
RBML. Thus, a relationship rci, cj

 
is internal iff ∀ i, j : ci, cj ∈ C(P) 

is external iff ∃ i, j : ci ∈ C(P) ∧ cj ∉ C(P) ∧ i ≠ j 

2.1.3 Direction of coupling 
We use afferent (Ca) and efferent (Ce) coupling to refer to the 
direction of a coupling relationship [12]. The afferent coupling 
count (number of in-bound relationships) of a set of classes 
increases when an external class cext references a member of the 
set C(P). A reference can be a new attribute, method parameter, 
return value, or local variable. Similarly, the efferent coupling 
count (number of out-bound relationships) of a set of classes 
increases when any class ci ∈ C(P)  references an external class 
cext.  

2.2 Grime categories 
The strength, scope, and direction of coupling relationships are 
used as the primary coupling factors that influence the 
construction of a modular grime taxonomy. As realizations of 
design patterns evolve, not all new relationships developed by 
classes that belong to the design pattern are considered grime. In 
section 2.2.1 we discuss relationships that do not contribute to 
grime build-up of design patterns. Section 2.2.2 characterizes 
relationships that contribute to grime build-up and provides 
definitions of modular grime classifications. 

2.2.1 Non-grime coupling 
As design pattern realizations evolve, external Ca counts due to 
usage relationships grow (as expected). Additionally, the 
appearance of new internal coupling relationships as a result of 
allowed RBML extensions are expected if the design pattern 
evolves as intended by the designer. New relationships that evolve 
as a result of such circumstances are not categorized as grime. For 
example, design patterns are extended through generalization and 
specialization of pattern classes. Classes that extend patterns 
through conformant RBML inheritance relationships are not 
considered grime. In addition to allowed inheritance relationships, 
unidirectional internal coupling increases are also expected if a 
pattern evolves via intended extensibility mechanisms. For 
example, the Visitor pattern creates such a relationship between 
the client side hierarchy visitor methods and the server side 
hierarchy accept methods. 

2.2.2 Grime 
Coupling relationships that violate the pattern’s RBML contribute 
to grime build-up. Violations depend on the design pattern 
realization and the RBML that characterizes such realizations. If 
the RBML of a design pattern is strict, then the number of initial 
realizations found in a design will be smaller and the evolution of 
the pattern will be constrained. Alternatively, if the RBML of a 
design pattern is too lenient, then any set of coupled classes can 
be made to match the pattern’s description, yielding too many 
false positives. The evolution of the pattern would be largely 
unrestricted.  

Couplings that cause modular grime are classified according to 
our definitions of strength, scope and direction. The strength of 
coupling is an important dimension in the taxonomy because it 
helps determine the difficulty of grime removal (via refactoring) 
by developers. Grime resulting from the accumulation of strong 
coupling relationships requires additional effort to refactor. For 



example, persistent coupling relationships are more difficult to 
remove than temporary coupling relationships. Coupling direction 
indicates the source of the grime. An increase in non-conformant 
Ce counts of a pattern implies that pattern classes must be 
refactored to remove grime build-up. An increase in external Ca 
counts to pattern classes also indicates possible grime build-up if 
the relationships are made to concrete classes. Usage relationships 
are intended to be made with the abstract classes of a pattern.  

Using these criteria, we classify modular grime into six disjoint 
groups listed in sections 2.2.2.1 through 2.2.2.6. Figure 1 displays 
the taxonomy. 

2.2.2.1 Persistent internal grime (PIG) 
This is the set of all invalid relationships that strongly couple two 
pattern classes ∈ C(P). The persistence of these relationships 
makes grime removal (refactoring) more difficult when compared 
to temporary relationships. PIG is observed when r ∈ Persistent 
and the size of the pattern |R(P)| increases when r is invalid. 

2.2.2.2 Temporary internal grime (TIG) 
This set contains invalid temporary relationships involving two 
pattern classes ∈ C(P). Relationships are similar to those 
described by the PIG set except they are easier to refactor due to 
weaker coupling strength. TIG is observed when r ∈ Temporary 
and |R(P)| increases when r is invalid. 

 

Figure 1. A Taxonomy of Object Oriented Design Pattern 
Grime 

 

2.2.2.3 Persistent external efferent grime (PEEG) 
This is the set of invalid persistent relationships between pattern 
classes and external pattern classes. The persistence of the 
relationships makes refactoring difficult, yet direction of coupling 
simplifies refactoring because dependencies on external classes 
can be easily removed from the originating internal classes. PEEG 
is observed when r ∈ Persistent and Ce increases when r is 
invalid. 

2.2.2.4 Temporary external efferent grime (TEEG) 
This is the set of invalid temporary relationships between pattern 
classes and external pattern classes. Refactoring is simplified by 
the weaker coupling strength and, similar to PEEG, the external 
relationships are comparatively easier to refactor. TEEG is 
observed when r ∈ Temporary and Ce increases when r is 
invalid. 

2.2.2.5 Persistent external afferent grime (PEAG) 
This is the set of all invalid relationships between a pattern and a 
non-pattern class where grime originates in a class ∉ C(P). These 

relationships are similar to those in the PEEG category except that 
the external coupling is afferent, thus increasing the responsibility 
of the pattern realization and making the refactoring significantly 
more difficult. PEAG is observed when r ∈ Persistent and Ca 
increases when r is invalid. 

2.2.2.6 Temporary external afferent grime (TEAG) 
This is the set of invalid temporary relationships between pattern 
classes and external pattern classes where grime originates in a 
class ∉ C(P). TEAG is observed when r ∈ Temporary and Ca 
increases when r is invalid. 

3. Taxonomy examples 
In this section we provide illustrative examples of how grime 
build-up on creational, structural and behavioural design patterns 
is classified using the proposed taxonomy. Example pattern 
realizations are depicted with representative invalid couplings. 
Invalid couplings are labelled as “violations” that develop over 
time. Classification of invalid relationships is driven by the 
criteria defined in section 2.1. 

3.1 PIG and TIG of the Observer behavioral 
pattern 
PIG occurs when an invalid persistent association develops 
between internal pattern classes ϵ C(P). Figure 2 depicts an 
example where the relationship rConcreteObservable,ConcreteObserver 
violates the pattern’s RBML. Under governance of valid RBML, 
the concrete classes are indirectly coupled via inheritance through 
the parent class relationship, and by ConcreteObserver classes 
with unidirectional references to ConcreteObservable classes. The 
association rConcreteObservable,ConcreteObserver is an example of a 
violation and how the pattern is not meant to be extended. 

 

Figure 2. Observer Pattern Realization 

 

Similarly, if rConcreteObservable,ConcreteObserver ϵ Temporary (i.e., a use 
dependency) and is an invalid relationship, then r belongs to the 
TIG set. 

3.2 PEEG and TEEG of the Singleton 
creational pattern 
Modular grime build-up in the Singleton pattern is only possible 
by means of external relationships. The RBML description allows 
one class or one inheritance hierarchy as valid realizations, thus 
eliminating the possibility of internal relationships. Figure 3 
depicts an occurrence of PEEG. The Singleton class develops an 
invalid external, persistent relationship rSingleton,Other_Class. The 



UML diagram shows that r is invalid because it violates its 
RBML. The Ce of the pattern increases with the addition of r. We 
classify r as a member of the PEEG set. 

 

Figure 3. Singleton Pattern Realization 

 

Similarly, if rSingleton,Other_Class ϵ Temporary (i.e. a use dependency) 
and is an invalid relationship, then r belongs to the TEEG set. The 
relationship r shares the same characteristics as if it belonged to 
the PEEG set with one major distinction; the strength of coupling.  

3.3 PEAG and TEAG of the Adapter 
structural pattern 
Figure 4 depicts an example of PEAG. The relationship 
rClient,ConcreteAdapter in the realization of the Adapter pattern is an 
invalid external relationship not supported by the pattern’s 
RBML. The figure indicates that r ϵ Persistent, and causes the Ca 
of the pattern to increase. Thus, r ϵ PEAG. 

Similarly, a change in coupling strength differentiates PEAG from 
TEAG. If rClient,ConcreteAdapter is modified so that r ϵ Temporary, 
then r ϵ TEAG if it is also invalid. 

 

Figure 4. Adapter Pattern Realization 

 

4. Pilot study 
The purpose of the pilot study is to validate and refine each grime 
category in the proposed taxonomy. A case study was conducted 
on one open source software system to examine the evolution of 
modular grime involving design pattern classes. We test the 
following hypotheses to determine if grime, as determined by the 
proposed taxonomy, does occur in software design patterns. 

H1,0: There is inconsequential PEEG buildup over the evolution of 
a software design pattern. 

H2,0: There is inconsequential TEEG buildup over the evolution of 
a software design pattern. 

H3,0: There is inconsequential PEAG buildup over the evolution 
of a software design pattern. 

H4,0: There is inconsequential TEAG buildup over the evolution 
of a software design pattern. 

In section 4.1 we describe the case study methodology. Section 
4.2 displays observed raw results. Results are analyzed and 
discussed in section 5. 

4.1 Methodology 
4.1.1 Software studied 
Vuze (formally Azuereus) [21] is a peer-to-peer file sharing client 
that uses the bittorrent protocol [16]. Vuze is written in Java, and 
is distributed under the Open Source license. The most recent 
release has more than 2 million downloads and it is considered a 
successful project. We study eight versions of the software 
spanning thirty eight months of development. Table 1 displays the 
basic statistics of each release. 

Table 1.Vuze versions and release dates 

Version Date LOC # of Classes 

2.5.0.4 01/2007 339,736 3,451 

3.0.1.6 06/2007 349,946 3,518 

3.0.5.2 05/2008 396,754 3,809 

4.0.0.0 10/2008 484,969 4,354 

4.1.0.0 01/2009 507,050 4,511 

4.2.0.0 03/2009 519,396 4,608 

4.2.0.8 09/2009 540,618 4,771 

4.3.1.2 02/2010 547,203 4,682 

 

4.1.2 Tools used 
The software was analyzed under the Eclipse [19] Integrated 
Development Environment (IDE) using the Browse-by-Query 
(BBQ) [17] plug-in. BBQ creates an object oriented database of 
Java constructs from byte-code and allows users to query the 
resulting database for various metrics. All grime metrics are 
gathered with these tools. 

We used three basic BBQ query statements to gather data about 
class attributes (persistent efferent coupling), class method return 
types, and method parameter types (temporary efferent coupling). 
In BBQ, executable queries are specified with English like 
sentences that allow for a more user friendly and accessible 
method for specifying arbitrarily complex expressions.  To obtain 
all unique types of attributes in any class C, we use the query 
“unique types of attributes in class C”. All method return types 
are obtained using the query “unique types of methods in class 
C”. All method parameter types are obtained with the query 
“unique types of arguments of methods in class C”. We use the 
union operation with the last two queries to obtain the total 
temporary efferent coupling count of a class. The queries used to 
obtain afferent coupling counts are slightly different. To obtain all 
of the classes with an attribute of type C we use the query, 
“unique classes containing fields with type of class C”. All classes 
with a method parameter of type C are obtained with the query 
“unique classes containing methods of arguments matching class 



C”. The set of classes with a method return type of class C is 
obtained with the query, “unique classes containing methods 
matching class C”. We use the union operation with the last two 
queries to obtain the total temporary afferent coupling of a class. 

To gather data about a set of pattern classes, we simply union the 
corresponding query type for each class in the pattern. For 
example, to find PEEG for the classes C1 and C2, we use the 
query: “count((unique types of attributes in class C1) union 
(unique types of attributes in class C2))”. 

4.1.3 Data collection 
Data was gathered from 8 versions of Vuze spanning 38 months 
of development. All design patterns were found with the aid of 
various tools and were manually validated. We use PatternFinder 
[18] to provide initial guidance for the location of potential design 
patterns. We then manually examine pattern structure and naming 
semantics to find patterns that were clearly intended by software 
designers. We check for RBML conformance to verify each 
pattern realization. There are currently no automated tools 
available that check for structural RBML conformance. Efforts to 
automate RBML conformance are still being developed [5]. The 
Java programming language provides several built-in constructs 
that allow a class to be considered part of a design pattern. For 
example, you can decorate a class to be observable. While these 
can be considered design patterns, they are out of the scope of this 
research. 

We collected all coupling count metrics for each pattern 
realization under study. The taxonomy definitions from section 2 
provide the basic information necessary to construct the BBQ 
queries. We count all couplings that appear during the evolution 
of each realization of every pattern. BBQ did not allow us to 
differentiate between internal and external scope of new 
couplings. Therefore, any changes in PIG are reflected in PEAG 
and PEEG, while changes in TIG will be reflected in TEAG and 
TEEG. We have identified more powerful tools [20] to help with 
the generation of refined queries beyond this seminal pilot study. 
For each pattern P, we used the following surrogate definitions to 
generate the data collection: 

PEEG: Count of unique types of attributes of class C where C ∈ C(P). 
TEEG: Count of unique types of return values and parameters of methods in class C where C ∈ C(P). 
PEAG: Count of unique classes that have an attribute of type C 
where C ∈ C(P). 
TEAG: Count of unique classes that have a method return value or method parameter of type C where C ∈ C(P).  
We gathered data from 9 design pattern realizations. Each pattern 
realization exists in each of the 8 releases studied, and is RBML 
compliant in every version of the system. We study 3 Singleton, 3 
Observer, and 3 Factory pattern realizations. 

4.2 Results 
The modular grime counts of the Singleton pattern realizations are 
shown in Figure 5. We observe an abated, yet steady increase in 
all grime counts with the exception of PEAG.  The latter begins to 
decrease after the January ‘09 release and continues to decrease 
until the January ’10 release where a slight increase is observed. A 
refactoring event can cause this decrease, and we discuss this 

further in section 5.2. No other categories experience a similar 
decline.  

 

 

Figure 5. Singleton results 

Results of the Factory pattern are shown in Figure 6. The metric 
counts for each grime category indicate slight increases over the 
three years of revisions. A notable exception is the marked growth 
observed in TEAG counts between the June ‘07 and January ’09 
releases. Grime counts for PEAG do not display similar trends to 
those observed in the Singleton pattern realizations. 

 
Figure 6. Factory results 

Results for all 3 realizations of the Observer pattern are shown in 
Figure 7. Results for each grime category are analogous to those 
observed in the Singleton pattern. There is a steady increase in 
coupling counts for three grime categories, with the exception of 
PEAG counts. PEAG begins to decrease after the January ‘09 
release and continues to decrease until the January ’10 release 
before a slight increase is observed. 



 
Figure 7. Observer results 

In Figure 8 we display the aggregate totals of each grime category 
for all design pattern realizations. As reflected in the earlier 
results for each individual pattern, TEAG shows the greatest 
change from the first to last release with a net increase of 137. 
TEEG increases by 26, PEAG increases by 16, and PEEG 
increases by 15. Together these results support earlier findings by 
Izurieta and Bieman [9] that modular grime does occur. 

 

 
Figure 8. Results for all patterns 

5. Analysis and discussion 
In section 5.1 we do a non-parametric statistical analysis to 
determine the significance of grime buildup for each category of 
the proposed taxonomy. Section 5.2 discusses trends reflected in 
the study results and their impact on the taxonomy. 

5.1 Statistical analysis 
We use Wilcoxon’s Signed-Rank test [15] to evaluate our 
hypotheses. The Signed-Rank test is a non-parametric test that 
determines whether the differences between measurements on 
sequential releases are significantly positive. The limited sample 
size of the data renders alternative parametric tests less reliable. 

However, while the Singed-Rank test can help determine if 
changes between revisions are statistically significant, it has no 
power to determine the magnitudes of these changes. All 
measured differences are converted to ranks at the beginning of 
the test and analysis is then performed on the ranks. Any large 
differences in grime counts will only be reflected in the test as a 
difference in, at most, several ranks. P-values in the Signed-Rank 
test represent the probability that changes between releases are 
zero. A low p-value implies it is very unlikely that increases in 
grime counts are due to random chance. To determine if grime 
buildup is statistically significant, the p-values for all of the tests 
are displayed in Table 2.  

The p-values for PEEG are not significant at the 0.05 level except 
in the general case, where all results are aggregated regardless of 
pattern type. There are several cases in the data where the change 
in PEEG between releases is zero. A zero cannot be used in the 
Signed-Rank test because the data (difference between releases) is 
separated into groups by sign. Statistical analysis is done on the 
ranks of the values in each group and zeros must be discarded 
because they belong to neither group. This decreases the sample 
size and lessens the effectiveness of the test for each pattern. The 
significance (p < .05) obtained in the general case for all patterns 
can be explained by the fact that PEEG rarely decreases and 
usually increases regardless of pattern. The significant p-value 
suggests there is sufficient evidence to reject H1,0 in the general 
case, but not in the case of individual design patterns. 

TEEG tests reveal low p-values for the Singleton pattern 
realizations as well as for the combination of all pattern 
realizations. The significance level of the p-value for the general 
case of all patterns, as well as the low p-values (p < .1) for all 
individual pattern realizations, suggests there is sufficient 
evidence to reject H2,0. 

P-values for PEAG are not significant. Large decreases in grime 
counts for the Singleton and Observer pattern realizations between 
March and September of 2009 cause the results to be 
insignificant. These results suggest that there is no evidence to 
reject H3,0. 

Table 2. P-values for the Signed-Rank test, significant values 
(<.05) in bold. 

 PEEG TEEG PEAG TEAG 

Singleton .186 .044 .306 .018 

Factory .186 .074 .200 .290 

Observer .091 .087 .335 .011 

All .029 .030 .250 .039 

 

Test results for TEAG reveal that this type of grime is not 
significant in the Factory pattern realizations only. The 
significance of the Singleton, Observer, and All p-values also 
suggests we have sufficient evidence to reject H4,0.  

Correlation analysis was performed on the results shown in Figure 
8 to confirm an apparent relationship observed between PEEG 
and TEEG. The value calculated for the Spearman rank 
correlation coefficient is 1. The value of the coefficient is 
attributed to the grime counts for both PEEG and TEEG; which 
are both monotonically increasing over the release history. A 



parametric alternative, the Pearson correlation coefficient, is 
calculated at 0.989. These coefficients provide evidence of a 
positive correlation between the two categories.  Although this 
does not imply causality, the result confirms that these two types 
of grime move together. 

5.2 Discussion 
The purpose of the proposed modular grime taxonomy is to 
suggest a possible organization of couplings that have negative 
effects on the evolution of design pattern realizations. The 
purpose of the pilot study is to empirically show the extent to 
which each grime classification contributes to the decay of 
software pattern realizations. The results present some interesting 
trends. 

PEEG and TEEG show similar trends in every dataset. Both 
categories show very little variation. These findings indicate that 
PEEG and TEEG may not be independent and have a positive 
correlation as reported in 5.1. This would suggest that coupling 
strength as defined in the taxonomy plays a minor role as a 
modular grime classifier when applied to external efferent 
coupling. This conclusion is different for external afferent 
coupling; where PEAG and TEAG appear to be distinct. Both 
show varying degrees of variability and there are instances 
(September 2009) in the Singleton and Observer patterns 
realizations where TEAG increases while PEAG shows a marked 
decrease. This supports the notion that PEAG and TEAG are 
independent. TEAG/PEAG and TEEG/PEEG differ only by 
coupling strength, yet the data suggests the former pair is 
independent while the latter is not. Pattern usage is a possible 
explanation for this result. Changes in usage will not be reflected 
in grime counts for TEEG and PEEG because usage must 
originate in non-pattern classes, thus affecting afferent coupling 
only. However, a refactoring event to reduce strength of coupling 
between patterns and classes using said patterns could explain the 
difference between TEAG and PEAG. Developers aware of the 
dangers of strong coupling might refactor classes that use patterns 
to reduce persistent couplings to temporary couplings. The result 
would be a simultaneous increase in TEAG and decrease in 
PEAG. Excluding the Factory pattern realization, this possibility 
is best reflected in the changes observed in TEAG and PEAG 
between March and September of 2009. 

Results observed in the Singleton and Observer patterns are 
similar. Metrics for each grime category show similar trends over 
the evolution of the software in both patterns. The possible 
refactoring event discussed earlier is reflected in both. A possible 
explanation is that some of the pattern realizations are coupled 
[4]. Coupled patterns share common classes. Changes to shared 
classes are reflected in individual grime counts for each pattern 
realization involved in the coupling. Further investigation of the 
Singleton and Observer pattern realizations used in the pilot study 
shows that there is one example of pattern coupling. One of the 
Singleton pattern realizations is embedded within an Observer 
pattern realization.  

Factory pattern grime counts show little similarity to those 
observed in other patterns. In general, the results provide no 
evidence to suggest that different types of patterns (creational, 
observational, or behavioral) develop grime in a different manner. 
There appears to be no discernible relationship between pattern 
type and grime buildup. 

The statistical results reveal that, in general, PEEG, TEEG, and 
TEAG tend to increase throughout the evolution of design 
patterns while PEAG does not. The division between grime 
categories supports the use of coupling direction as the most 
relevant criteria for classification. Pattern usage may have an 
effect on the results for TEAG, but PEEG and TEEG cannot 
increase as the result of usage. It is also apparent that different 
design patterns may experience changes in grime differently. 
Further research is necessary to determine if this is true.  

6. Threats to validity 
We assess construct, content, internal and external validity of the 
case study. 

Construct validity refers to the use of meaningful metrics and 
measures.  The measures used for releases and grime coupling 
counts must actually quantify the notion of releases and the 
various grime categories. We use BBQ to build queries that when 
executed, collect grime counts.  The queries serve as surrogates to 
capture the metrics whose formal definitions are given in section 
2. BBQ does not have the ability to differentiate between internal 
and external grime counts, and this limitation forced us to 
combine the two. This threatens construct validity because 
changes in TIG will have an effect on measures for TEEG and 
TEAG, while changes in PIG will affect PEAG and PEEG. 
Though this may cause concern over the validity of the results, it 
should be noted that we were unable to manually find an example 
of internal grime during the data gathering phase of the research. 
Additionally, the lack of automated RBML tools limits our ability 
to differentiate between some types of compliant relationships and 
grime buildup. Increases in usage of the design patterns studied 
can inflate some modular grime results. 

To have content validity, the measures must completely represent 
the notions of grime coupling counts.  The definitions proposed in 
this case study could be subdivided further into specific coupling 
counts that could capture grime definitions at finer granularity 
levels; however these definitions would also fall under our higher 
level definitions and not threaten the content of our representation. 

Internal validity refers to the causal connection between 
dependent and independent variables.  In this case study there are 
4 independent variables —TEEG, PEEG, TEAG, and PEAG, and 
one dependent variable, grime count. There is a rationale to 
consider design pattern types (creational, structural, or behavioral) 
or Open Source software versus commercial software as a 
possible dependency, where the type of pattern or system 
accumulates different types of grime at different rates.  However, 
we did not have enough data to support a causal relationship. 

External validity indicates that the study results can generalize to 
other systems. Clearly, the size limitations of the pilot study have 
an effect on external validity. Only one Open Source system was 
studied and the number of distinct pattern types and realizations of 
those types were small. It is not possible to generalize from these 
preliminary results and thus we cannot assert whether patterns in 
other systems decay and buildup grime in a similar manner. 
Additional data needs to be gathered from commercial and Open 
Source systems to increase external validity. 

7. Conclusion and further research 
A modular grime taxonomy is presented that uses three basic 
underlying criteria as classification factors: strength, scope, and 
direction. Strength helps us identify the relative difficulty of 



refactoring invalid coupling relationships. Scope helps us 
determine if the source of grime build-up comes from within 
pattern classes or from changes made to the surrounding design. 
Finally, direction defines the source of the grime. Grime 
originating from external classes is harder to remove because of 
the heightened responsibility of the pattern. Grime originating 
from within the pattern causes the testability of the pattern to 
increase because the dependencies of said pattern are higher. 

The pilot study confirms earlier research that modular grime does 
occur. The results observed in the evolution of the Vuze software 
system confirm that TEEG, TEAG, and PEEG show increases in 
grime counts. Analysis of the data shows no apparent relationship 
between design pattern type and modular grime; although a more 
formal study is needed to confirm this conclusion. 

This pilot study is another data point in generating a body of 
evidence to continue our understanding of how design patterns 
decay. Further studies will explore the prevalence of each grime 
category in Open Source software and serve as validation of 
proposed categories.  

Additional research is also planned to compare grime build up 
against the total coupling of objects in a software system. This 
ratio will help us determine if grime grows at a different rate than 
the coupling of all objects, including objects not associated with 
design pattern realizations. Future studies will also investigate the 
appearance of grime in coupled design patterns. A thorough 
statistical trend analysis is also necessary in future studies to help 
predict the build up of grime over time. A significant number of 
coupling measures have been proposed that have not been taken 
into consideration in this seminal work. This threatens the 
construct validity of the taxonomy; however we expect to expand 
the taxonomy to accommodate a higher order space.  
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