
Object Oriented Design Pattern Decay: A Taxonomy
Travis Schanz

Montana State University
Department of Computer Science

Bozeman, MT 59717
1-406-661-3718

travis.schanz@cs.montana.edu

Clemente Izurieta
Montana State University

Department of Computer Science
Bozeman, MT 59717

1-406-994-3720
clemente.izurieta@cs.montana.edu

Abstract
Software designs decay over time. While most studies focus on
decay at the system level, this research studies design decay on
well understood micro architectures, design patterns. Formal
definitions of design patterns provide a homogeneous foundation
that can be used to measure deviations as pattern realizations
evolve. Empirical studies have shown modular grime to be a
significant contributor to design pattern decay. Modular grime is
observed when increases in the coupling of design pattern classes
occur in ways unintended by the original designer. Further
research is necessary to formally categorize distinct forms of
modular grime. We identify three properties of coupling
relationships that are used to classify subsets of modular grime. A
taxonomy is presented which uses these properties to group
modular grime into six disjoint categories. Illustrative examples of
grime build-up are provided to demonstrate the taxonomy. A pilot
study is used to validate the taxonomy and provide initial
empirical evidence of the proposed classification.

Categories and Subject Descriptors

D.2.10 [Software Engineering]: Design — Design Concepts,
Object-oriented design methods; D.2.11 [Software
Engineering]: Software Architectures — Patterns; D.2.7
[Software Engineering]: Distribution, Maintenance, and
Enhancement — Enhancement, Extensibility, Maintainability,
Maintenance measurement.

General Terms
Measurement, Design, Experimentation.

Keywords
Software Architectures, Object Oriented Design Patterns,
Software Decay, Software Evolution

1. Introduction
Software systems evolve over time and studies [6] suggest that
decay of designs occurs as a result of changes to its functionality
and structure. A consequence of decay is an increase in test
requirements and an increase in adaptability and maintainability
efforts [11]. Studies in software decay focus on the overall design

of a system [14]. Measuring decay is thus a difficult problem
because surrogate measures [2] must be used to quantify external
quality attributes. Attempts to measure decay have been proposed
[6]; however indices used by prior studies make it difficult to
compare the relative decay of system designs to each other.
Izurieta and Bieman [9] however; suggest using design patterns as
the underlying micro-architectures to study. Design patterns
have a well understood form that can be described using formal
pattern languages (e.g. RBML [7], PADL [8]), thus providing an
agreed upon structure that can be used to measure against. As
design patterns evolve, changes to the pattern can be measured to
see if the pattern is evolving in the manner in which it was
intended. Deviations indicate decay. Empirical studies by Izurieta
and Bieman demonstrate a form of decay; grime. Their studies
suggest that “design patterns do not structurally breakdown, but as
designs evolve, design pattern realizations tend to be obscured as
new associations develop between classes.”

Whilst empirical evidence of design pattern decay and grime
buildup is available [10], taxonomy is a natural progression and is
essential. A taxonomy promotes the classification of grime into
ordered groups that are disjoint and complete while preserving
natural relationships between categories. The classification,
description and naming of various forms of grime as applicable to
each individual design pattern is proposed. This research goes
beyond the initial definitions of decay and grime by proposing a
taxonomy of design pattern grime.

The paper is organized as follows. Section 2 discusses the details
of the taxonomy. Section 3 provides illustrative examples of
couplings that contribute to each taxonomical category. Sections 4
and 5 present and discuss data from an initial pilot study focused
on validating the taxonomy. Section 6 examines the threats to
validity. Conclusions and direction for further research are
provided in section 7.

2. Taxonomy of grime
Izurieta and Bieman [9] define three levels of grime; class grime
is defined as changes to software classes that belong to a design
pattern, but whose functional value is not derived from the way
the pattern was meant to be extended. For example, new code
added to design pattern classes (e.g. methods or attributes) that are
not necessary for pattern function will increase class grime.
Modular grime is defined as increases in the internal and external
coupling of classes that belong to a pattern. As designs evolve
pattern classes can develop new relationships that are unnecessary
for pattern operation. Organizational grime refers to the physical
distribution of pattern classes throughout software packages and
namespaces. Empirical studies suggest that modular grime tends
to increase as software designs evolve [9]. Evidence of class and
organizational grime is inconclusive [9]. This research proposes a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEM’10, September 16-17, 2010, Bolzano-Bozen, Italy.
Copyright 2010 ACM 978-1-4503-0039-01/10/09…$10.00.

preliminary taxonomy of modular grime that goes beyond the
original definitions by providing examples in proposed categories.

Modular grime builds when the classes of design pattern
realizations grow new relationships not described by the pattern’s
RBML. A pattern’s RBML is a precise description of the
classifiers and associations that belong to said pattern. RBML was
chosen to describe design patterns because it provided an intuitive
UML-like format that can be used to detect and specify any
pattern. We define criteria that determine when a new coupling
involving a pattern class contributes to modular grime. Section 2.1
describes the criteria that define these couplings.

2.1 Coupling between classes
There exist many metrics and measures that distinguish between
various dimensions of coupling between classes [4]. We use
strength, scope and direction to classify modular grime.

2.1.1 Strength of coupling
Coupling can be classified on an ordinal scale according to
strength [13]. Strength is determined by the difficulty of removing
the coupling relationship. We use persistent and temporary
coupling because they are the most common forms in object
oriented systems [13]. For example, two classes A and B have a
persistent (strong) association when class A contains an attribute
of type B. The classes have a temporary (weak) association when
class A contains a method with a parameter, a return value, or a
local variable of type B. The relative strength of the coupling
relationship is approximated by the amount of effort required to
refactor the relationship. Persistent relationships are considered
strong because they are likely to persist throughout the lifetime of
the design pattern realization, while temporary relationships are
considered weak because of their provisional nature. The sets
Persistent = {class_attribute} and Temporary =
{method_local_variable, method_return_value,
method_formal_parameter} define ordinal sets for permanent and
temporary coupling types respectively. Each set contains (in
increasing level of refactoring complexity) the types of coupling
considered. Currently, we do not have enough ordinal categories
to justify using a five point Likert scale, however as new members
of the Persistent or Temporary sets are identified we can easily
accommodate such changes. These sets can be augmented with
other less common forms of coupling in object oriented designs
(i.e., sharing of global variables, data flow couplings, etc.).
Extensive research in identifying different coupling types has
been performed by [4].

2.1.2 Scope of coupling
Scope demarcates the boundary of a coupling relationship and can
be internal or external. A class belonging to a design pattern
develops a relationship with external scope if another class (not in
the design pattern) is coupled with the former. A relationship has
internal scope if the coupling involves two classes belonging to
the same realization of a design pattern.

Formally, let P be a specialization of RBML that describes a
design pattern. The set of classes that describes P is denoted by
C(P) and the set of relationships is denoted by R(P). The order of
a pattern is defined as the total number of classes in P, and is
denoted by |C(P)|, and the size of a pattern is defined as the total
number of relationships in P, and is denoted by |R(P)|. A valid
classifier is defined as a class c or relationship r allowed by the
RBML of the pattern. Valid classifiers in a design are seminal or

evolve as permitted by the extensibility rules of the pattern’s
RBML. Thus, a relationship rci, cj

is internal iff ∀ i, j : ci, cj ∈ C(P)

is external iff ∃ i, j : ci ∈ C(P) ∧ cj ∉ C(P) ∧ i ≠ j

2.1.3 Direction of coupling
We use afferent (Ca) and efferent (Ce) coupling to refer to the
direction of a coupling relationship [12]. The afferent coupling
count (number of in-bound relationships) of a set of classes
increases when an external class cext references a member of the
set C(P). A reference can be a new attribute, method parameter,
return value, or local variable. Similarly, the efferent coupling
count (number of out-bound relationships) of a set of classes
increases when any class ci ∈ C(P) references an external class
cext.

2.2 Grime categories
The strength, scope, and direction of coupling relationships are
used as the primary coupling factors that influence the
construction of a modular grime taxonomy. As realizations of
design patterns evolve, not all new relationships developed by
classes that belong to the design pattern are considered grime. In
section 2.2.1 we discuss relationships that do not contribute to
grime build-up of design patterns. Section 2.2.2 characterizes
relationships that contribute to grime build-up and provides
definitions of modular grime classifications.

2.2.1 Non-grime coupling
As design pattern realizations evolve, external Ca counts due to
usage relationships grow (as expected). Additionally, the
appearance of new internal coupling relationships as a result of
allowed RBML extensions are expected if the design pattern
evolves as intended by the designer. New relationships that evolve
as a result of such circumstances are not categorized as grime. For
example, design patterns are extended through generalization and
specialization of pattern classes. Classes that extend patterns
through conformant RBML inheritance relationships are not
considered grime. In addition to allowed inheritance relationships,
unidirectional internal coupling increases are also expected if a
pattern evolves via intended extensibility mechanisms. For
example, the Visitor pattern creates such a relationship between
the client side hierarchy visitor methods and the server side
hierarchy accept methods.

2.2.2 Grime
Coupling relationships that violate the pattern’s RBML contribute
to grime build-up. Violations depend on the design pattern
realization and the RBML that characterizes such realizations. If
the RBML of a design pattern is strict, then the number of initial
realizations found in a design will be smaller and the evolution of
the pattern will be constrained. Alternatively, if the RBML of a
design pattern is too lenient, then any set of coupled classes can
be made to match the pattern’s description, yielding too many
false positives. The evolution of the pattern would be largely
unrestricted.

Couplings that cause modular grime are classified according to
our definitions of strength, scope and direction. The strength of
coupling is an important dimension in the taxonomy because it
helps determine the difficulty of grime removal (via refactoring)
by developers. Grime resulting from the accumulation of strong
coupling relationships requires additional effort to refactor. For

example, persistent coupling relationships are more difficult to
remove than temporary coupling relationships. Coupling direction
indicates the source of the grime. An increase in non-conformant
Ce counts of a pattern implies that pattern classes must be
refactored to remove grime build-up. An increase in external Ca
counts to pattern classes also indicates possible grime build-up if
the relationships are made to concrete classes. Usage relationships
are intended to be made with the abstract classes of a pattern.

Using these criteria, we classify modular grime into six disjoint
groups listed in sections 2.2.2.1 through 2.2.2.6. Figure 1 displays
the taxonomy.

2.2.2.1 Persistent internal grime (PIG)
This is the set of all invalid relationships that strongly couple two
pattern classes ∈ C(P). The persistence of these relationships
makes grime removal (refactoring) more difficult when compared
to temporary relationships. PIG is observed when r ∈ Persistent
and the size of the pattern |R(P)| increases when r is invalid.

2.2.2.2 Temporary internal grime (TIG)
This set contains invalid temporary relationships involving two
pattern classes ∈ C(P). Relationships are similar to those
described by the PIG set except they are easier to refactor due to
weaker coupling strength. TIG is observed when r ∈ Temporary
and |R(P)| increases when r is invalid.

Figure 1. A Taxonomy of Object Oriented Design Pattern
Grime

2.2.2.3 Persistent external efferent grime (PEEG)
This is the set of invalid persistent relationships between pattern
classes and external pattern classes. The persistence of the
relationships makes refactoring difficult, yet direction of coupling
simplifies refactoring because dependencies on external classes
can be easily removed from the originating internal classes. PEEG
is observed when r ∈ Persistent and Ce increases when r is
invalid.

2.2.2.4 Temporary external efferent grime (TEEG)
This is the set of invalid temporary relationships between pattern
classes and external pattern classes. Refactoring is simplified by
the weaker coupling strength and, similar to PEEG, the external
relationships are comparatively easier to refactor. TEEG is
observed when r ∈ Temporary and Ce increases when r is
invalid.

2.2.2.5 Persistent external afferent grime (PEAG)
This is the set of all invalid relationships between a pattern and a
non-pattern class where grime originates in a class ∉ C(P). These

relationships are similar to those in the PEEG category except that
the external coupling is afferent, thus increasing the responsibility
of the pattern realization and making the refactoring significantly
more difficult. PEAG is observed when r ∈ Persistent and Ca
increases when r is invalid.

2.2.2.6 Temporary external afferent grime (TEAG)
This is the set of invalid temporary relationships between pattern
classes and external pattern classes where grime originates in a
class ∉ C(P). TEAG is observed when r ∈ Temporary and Ca
increases when r is invalid.

3. Taxonomy examples
In this section we provide illustrative examples of how grime
build-up on creational, structural and behavioural design patterns
is classified using the proposed taxonomy. Example pattern
realizations are depicted with representative invalid couplings.
Invalid couplings are labelled as “violations” that develop over
time. Classification of invalid relationships is driven by the
criteria defined in section 2.1.

3.1 PIG and TIG of the Observer behavioral
pattern
PIG occurs when an invalid persistent association develops
between internal pattern classes ϵ C(P). Figure 2 depicts an
example where the relationship rConcreteObservable,ConcreteObserver
violates the pattern’s RBML. Under governance of valid RBML,
the concrete classes are indirectly coupled via inheritance through
the parent class relationship, and by ConcreteObserver classes
with unidirectional references to ConcreteObservable classes. The
association rConcreteObservable,ConcreteObserver is an example of a
violation and how the pattern is not meant to be extended.

Figure 2. Observer Pattern Realization

Similarly, if rConcreteObservable,ConcreteObserver ϵ Temporary (i.e., a use
dependency) and is an invalid relationship, then r belongs to the
TIG set.

3.2 PEEG and TEEG of the Singleton
creational pattern
Modular grime build-up in the Singleton pattern is only possible
by means of external relationships. The RBML description allows
one class or one inheritance hierarchy as valid realizations, thus
eliminating the possibility of internal relationships. Figure 3
depicts an occurrence of PEEG. The Singleton class develops an
invalid external, persistent relationship rSingleton,Other_Class. The

UML diagram shows that r is invalid because it violates its
RBML. The Ce of the pattern increases with the addition of r. We
classify r as a member of the PEEG set.

Figure 3. Singleton Pattern Realization

Similarly, if rSingleton,Other_Class ϵ Temporary (i.e. a use dependency)
and is an invalid relationship, then r belongs to the TEEG set. The
relationship r shares the same characteristics as if it belonged to
the PEEG set with one major distinction; the strength of coupling.

3.3 PEAG and TEAG of the Adapter
structural pattern
Figure 4 depicts an example of PEAG. The relationship
rClient,ConcreteAdapter in the realization of the Adapter pattern is an
invalid external relationship not supported by the pattern’s
RBML. The figure indicates that r ϵ Persistent, and causes the Ca
of the pattern to increase. Thus, r ϵ PEAG.

Similarly, a change in coupling strength differentiates PEAG from
TEAG. If rClient,ConcreteAdapter is modified so that r ϵ Temporary,
then r ϵ TEAG if it is also invalid.

Figure 4. Adapter Pattern Realization

4. Pilot study
The purpose of the pilot study is to validate and refine each grime
category in the proposed taxonomy. A case study was conducted
on one open source software system to examine the evolution of
modular grime involving design pattern classes. We test the
following hypotheses to determine if grime, as determined by the
proposed taxonomy, does occur in software design patterns.

H1,0: There is inconsequential PEEG buildup over the evolution of
a software design pattern.

H2,0: There is inconsequential TEEG buildup over the evolution of
a software design pattern.

H3,0: There is inconsequential PEAG buildup over the evolution
of a software design pattern.

H4,0: There is inconsequential TEAG buildup over the evolution
of a software design pattern.

In section 4.1 we describe the case study methodology. Section
4.2 displays observed raw results. Results are analyzed and
discussed in section 5.

4.1 Methodology
4.1.1 Software studied
Vuze (formally Azuereus) [21] is a peer-to-peer file sharing client
that uses the bittorrent protocol [16]. Vuze is written in Java, and
is distributed under the Open Source license. The most recent
release has more than 2 million downloads and it is considered a
successful project. We study eight versions of the software
spanning thirty eight months of development. Table 1 displays the
basic statistics of each release.

Table 1.Vuze versions and release dates

Version Date LOC # of Classes

2.5.0.4 01/2007 339,736 3,451

3.0.1.6 06/2007 349,946 3,518

3.0.5.2 05/2008 396,754 3,809

4.0.0.0 10/2008 484,969 4,354

4.1.0.0 01/2009 507,050 4,511

4.2.0.0 03/2009 519,396 4,608

4.2.0.8 09/2009 540,618 4,771

4.3.1.2 02/2010 547,203 4,682

4.1.2 Tools used
The software was analyzed under the Eclipse [19] Integrated
Development Environment (IDE) using the Browse-by-Query
(BBQ) [17] plug-in. BBQ creates an object oriented database of
Java constructs from byte-code and allows users to query the
resulting database for various metrics. All grime metrics are
gathered with these tools.

We used three basic BBQ query statements to gather data about
class attributes (persistent efferent coupling), class method return
types, and method parameter types (temporary efferent coupling).
In BBQ, executable queries are specified with English like
sentences that allow for a more user friendly and accessible
method for specifying arbitrarily complex expressions. To obtain
all unique types of attributes in any class C, we use the query
“unique types of attributes in class C”. All method return types
are obtained using the query “unique types of methods in class
C”. All method parameter types are obtained with the query
“unique types of arguments of methods in class C”. We use the
union operation with the last two queries to obtain the total
temporary efferent coupling count of a class. The queries used to
obtain afferent coupling counts are slightly different. To obtain all
of the classes with an attribute of type C we use the query,
“unique classes containing fields with type of class C”. All classes
with a method parameter of type C are obtained with the query
“unique classes containing methods of arguments matching class

C”. The set of classes with a method return type of class C is
obtained with the query, “unique classes containing methods
matching class C”. We use the union operation with the last two
queries to obtain the total temporary afferent coupling of a class.

To gather data about a set of pattern classes, we simply union the
corresponding query type for each class in the pattern. For
example, to find PEEG for the classes C1 and C2, we use the
query: “count((unique types of attributes in class C1) union
(unique types of attributes in class C2))”.

4.1.3 Data collection
Data was gathered from 8 versions of Vuze spanning 38 months
of development. All design patterns were found with the aid of
various tools and were manually validated. We use PatternFinder
[18] to provide initial guidance for the location of potential design
patterns. We then manually examine pattern structure and naming
semantics to find patterns that were clearly intended by software
designers. We check for RBML conformance to verify each
pattern realization. There are currently no automated tools
available that check for structural RBML conformance. Efforts to
automate RBML conformance are still being developed [5]. The
Java programming language provides several built-in constructs
that allow a class to be considered part of a design pattern. For
example, you can decorate a class to be observable. While these
can be considered design patterns, they are out of the scope of this
research.

We collected all coupling count metrics for each pattern
realization under study. The taxonomy definitions from section 2
provide the basic information necessary to construct the BBQ
queries. We count all couplings that appear during the evolution
of each realization of every pattern. BBQ did not allow us to
differentiate between internal and external scope of new
couplings. Therefore, any changes in PIG are reflected in PEAG
and PEEG, while changes in TIG will be reflected in TEAG and
TEEG. We have identified more powerful tools [20] to help with
the generation of refined queries beyond this seminal pilot study.
For each pattern P, we used the following surrogate definitions to
generate the data collection:

PEEG: Count of unique types of attributes of class C where C ∈ C(P).
TEEG: Count of unique types of return values and parameters of methods in class C where C ∈ C(P).
PEAG: Count of unique classes that have an attribute of type C
where C ∈ C(P).
TEAG: Count of unique classes that have a method return value or method parameter of type C where C ∈ C(P).
We gathered data from 9 design pattern realizations. Each pattern
realization exists in each of the 8 releases studied, and is RBML
compliant in every version of the system. We study 3 Singleton, 3
Observer, and 3 Factory pattern realizations.

4.2 Results
The modular grime counts of the Singleton pattern realizations are
shown in Figure 5. We observe an abated, yet steady increase in
all grime counts with the exception of PEAG. The latter begins to
decrease after the January ‘09 release and continues to decrease
until the January ’10 release where a slight increase is observed. A
refactoring event can cause this decrease, and we discuss this

further in section 5.2. No other categories experience a similar
decline.

Figure 5. Singleton results

Results of the Factory pattern are shown in Figure 6. The metric
counts for each grime category indicate slight increases over the
three years of revisions. A notable exception is the marked growth
observed in TEAG counts between the June ‘07 and January ’09
releases. Grime counts for PEAG do not display similar trends to
those observed in the Singleton pattern realizations.

Figure 6. Factory results

Results for all 3 realizations of the Observer pattern are shown in
Figure 7. Results for each grime category are analogous to those
observed in the Singleton pattern. There is a steady increase in
coupling counts for three grime categories, with the exception of
PEAG counts. PEAG begins to decrease after the January ‘09
release and continues to decrease until the January ’10 release
before a slight increase is observed.

Figure 7. Observer results

In Figure 8 we display the aggregate totals of each grime category
for all design pattern realizations. As reflected in the earlier
results for each individual pattern, TEAG shows the greatest
change from the first to last release with a net increase of 137.
TEEG increases by 26, PEAG increases by 16, and PEEG
increases by 15. Together these results support earlier findings by
Izurieta and Bieman [9] that modular grime does occur.

Figure 8. Results for all patterns

5. Analysis and discussion
In section 5.1 we do a non-parametric statistical analysis to
determine the significance of grime buildup for each category of
the proposed taxonomy. Section 5.2 discusses trends reflected in
the study results and their impact on the taxonomy.

5.1 Statistical analysis
We use Wilcoxon’s Signed-Rank test [15] to evaluate our
hypotheses. The Signed-Rank test is a non-parametric test that
determines whether the differences between measurements on
sequential releases are significantly positive. The limited sample
size of the data renders alternative parametric tests less reliable.

However, while the Singed-Rank test can help determine if
changes between revisions are statistically significant, it has no
power to determine the magnitudes of these changes. All
measured differences are converted to ranks at the beginning of
the test and analysis is then performed on the ranks. Any large
differences in grime counts will only be reflected in the test as a
difference in, at most, several ranks. P-values in the Signed-Rank
test represent the probability that changes between releases are
zero. A low p-value implies it is very unlikely that increases in
grime counts are due to random chance. To determine if grime
buildup is statistically significant, the p-values for all of the tests
are displayed in Table 2.

The p-values for PEEG are not significant at the 0.05 level except
in the general case, where all results are aggregated regardless of
pattern type. There are several cases in the data where the change
in PEEG between releases is zero. A zero cannot be used in the
Signed-Rank test because the data (difference between releases) is
separated into groups by sign. Statistical analysis is done on the
ranks of the values in each group and zeros must be discarded
because they belong to neither group. This decreases the sample
size and lessens the effectiveness of the test for each pattern. The
significance (p < .05) obtained in the general case for all patterns
can be explained by the fact that PEEG rarely decreases and
usually increases regardless of pattern. The significant p-value
suggests there is sufficient evidence to reject H1,0 in the general
case, but not in the case of individual design patterns.

TEEG tests reveal low p-values for the Singleton pattern
realizations as well as for the combination of all pattern
realizations. The significance level of the p-value for the general
case of all patterns, as well as the low p-values (p < .1) for all
individual pattern realizations, suggests there is sufficient
evidence to reject H2,0.

P-values for PEAG are not significant. Large decreases in grime
counts for the Singleton and Observer pattern realizations between
March and September of 2009 cause the results to be
insignificant. These results suggest that there is no evidence to
reject H3,0.

Table 2. P-values for the Signed-Rank test, significant values
(<.05) in bold.

 PEEG TEEG PEAG TEAG

Singleton .186 .044 .306 .018

Factory .186 .074 .200 .290

Observer .091 .087 .335 .011

All .029 .030 .250 .039

Test results for TEAG reveal that this type of grime is not
significant in the Factory pattern realizations only. The
significance of the Singleton, Observer, and All p-values also
suggests we have sufficient evidence to reject H4,0.

Correlation analysis was performed on the results shown in Figure
8 to confirm an apparent relationship observed between PEEG
and TEEG. The value calculated for the Spearman rank
correlation coefficient is 1. The value of the coefficient is
attributed to the grime counts for both PEEG and TEEG; which
are both monotonically increasing over the release history. A

parametric alternative, the Pearson correlation coefficient, is
calculated at 0.989. These coefficients provide evidence of a
positive correlation between the two categories. Although this
does not imply causality, the result confirms that these two types
of grime move together.

5.2 Discussion
The purpose of the proposed modular grime taxonomy is to
suggest a possible organization of couplings that have negative
effects on the evolution of design pattern realizations. The
purpose of the pilot study is to empirically show the extent to
which each grime classification contributes to the decay of
software pattern realizations. The results present some interesting
trends.

PEEG and TEEG show similar trends in every dataset. Both
categories show very little variation. These findings indicate that
PEEG and TEEG may not be independent and have a positive
correlation as reported in 5.1. This would suggest that coupling
strength as defined in the taxonomy plays a minor role as a
modular grime classifier when applied to external efferent
coupling. This conclusion is different for external afferent
coupling; where PEAG and TEAG appear to be distinct. Both
show varying degrees of variability and there are instances
(September 2009) in the Singleton and Observer patterns
realizations where TEAG increases while PEAG shows a marked
decrease. This supports the notion that PEAG and TEAG are
independent. TEAG/PEAG and TEEG/PEEG differ only by
coupling strength, yet the data suggests the former pair is
independent while the latter is not. Pattern usage is a possible
explanation for this result. Changes in usage will not be reflected
in grime counts for TEEG and PEEG because usage must
originate in non-pattern classes, thus affecting afferent coupling
only. However, a refactoring event to reduce strength of coupling
between patterns and classes using said patterns could explain the
difference between TEAG and PEAG. Developers aware of the
dangers of strong coupling might refactor classes that use patterns
to reduce persistent couplings to temporary couplings. The result
would be a simultaneous increase in TEAG and decrease in
PEAG. Excluding the Factory pattern realization, this possibility
is best reflected in the changes observed in TEAG and PEAG
between March and September of 2009.

Results observed in the Singleton and Observer patterns are
similar. Metrics for each grime category show similar trends over
the evolution of the software in both patterns. The possible
refactoring event discussed earlier is reflected in both. A possible
explanation is that some of the pattern realizations are coupled
[4]. Coupled patterns share common classes. Changes to shared
classes are reflected in individual grime counts for each pattern
realization involved in the coupling. Further investigation of the
Singleton and Observer pattern realizations used in the pilot study
shows that there is one example of pattern coupling. One of the
Singleton pattern realizations is embedded within an Observer
pattern realization.

Factory pattern grime counts show little similarity to those
observed in other patterns. In general, the results provide no
evidence to suggest that different types of patterns (creational,
observational, or behavioral) develop grime in a different manner.
There appears to be no discernible relationship between pattern
type and grime buildup.

The statistical results reveal that, in general, PEEG, TEEG, and
TEAG tend to increase throughout the evolution of design
patterns while PEAG does not. The division between grime
categories supports the use of coupling direction as the most
relevant criteria for classification. Pattern usage may have an
effect on the results for TEAG, but PEEG and TEEG cannot
increase as the result of usage. It is also apparent that different
design patterns may experience changes in grime differently.
Further research is necessary to determine if this is true.

6. Threats to validity
We assess construct, content, internal and external validity of the
case study.

Construct validity refers to the use of meaningful metrics and
measures. The measures used for releases and grime coupling
counts must actually quantify the notion of releases and the
various grime categories. We use BBQ to build queries that when
executed, collect grime counts. The queries serve as surrogates to
capture the metrics whose formal definitions are given in section
2. BBQ does not have the ability to differentiate between internal
and external grime counts, and this limitation forced us to
combine the two. This threatens construct validity because
changes in TIG will have an effect on measures for TEEG and
TEAG, while changes in PIG will affect PEAG and PEEG.
Though this may cause concern over the validity of the results, it
should be noted that we were unable to manually find an example
of internal grime during the data gathering phase of the research.
Additionally, the lack of automated RBML tools limits our ability
to differentiate between some types of compliant relationships and
grime buildup. Increases in usage of the design patterns studied
can inflate some modular grime results.

To have content validity, the measures must completely represent
the notions of grime coupling counts. The definitions proposed in
this case study could be subdivided further into specific coupling
counts that could capture grime definitions at finer granularity
levels; however these definitions would also fall under our higher
level definitions and not threaten the content of our representation.

Internal validity refers to the causal connection between
dependent and independent variables. In this case study there are
4 independent variables —TEEG, PEEG, TEAG, and PEAG, and
one dependent variable, grime count. There is a rationale to
consider design pattern types (creational, structural, or behavioral)
or Open Source software versus commercial software as a
possible dependency, where the type of pattern or system
accumulates different types of grime at different rates. However,
we did not have enough data to support a causal relationship.

External validity indicates that the study results can generalize to
other systems. Clearly, the size limitations of the pilot study have
an effect on external validity. Only one Open Source system was
studied and the number of distinct pattern types and realizations of
those types were small. It is not possible to generalize from these
preliminary results and thus we cannot assert whether patterns in
other systems decay and buildup grime in a similar manner.
Additional data needs to be gathered from commercial and Open
Source systems to increase external validity.

7. Conclusion and further research
A modular grime taxonomy is presented that uses three basic
underlying criteria as classification factors: strength, scope, and
direction. Strength helps us identify the relative difficulty of

refactoring invalid coupling relationships. Scope helps us
determine if the source of grime build-up comes from within
pattern classes or from changes made to the surrounding design.
Finally, direction defines the source of the grime. Grime
originating from external classes is harder to remove because of
the heightened responsibility of the pattern. Grime originating
from within the pattern causes the testability of the pattern to
increase because the dependencies of said pattern are higher.

The pilot study confirms earlier research that modular grime does
occur. The results observed in the evolution of the Vuze software
system confirm that TEEG, TEAG, and PEEG show increases in
grime counts. Analysis of the data shows no apparent relationship
between design pattern type and modular grime; although a more
formal study is needed to confirm this conclusion.

This pilot study is another data point in generating a body of
evidence to continue our understanding of how design patterns
decay. Further studies will explore the prevalence of each grime
category in Open Source software and serve as validation of
proposed categories.

Additional research is also planned to compare grime build up
against the total coupling of objects in a software system. This
ratio will help us determine if grime grows at a different rate than
the coupling of all objects, including objects not associated with
design pattern realizations. Future studies will also investigate the
appearance of grime in coupled design patterns. A thorough
statistical trend analysis is also necessary in future studies to help
predict the build up of grime over time. A significant number of
coupling measures have been proposed that have not been taken
into consideration in this seminal work. This threatens the
construct validity of the taxonomy; however we expect to expand
the taxonomy to accommodate a higher order space.

8. References
[1] Arisholm, E. and Sjoberg, D.I.K. 2000. Towards a

Framework for Empirical Assessment of Changeability
Decay. J. Syst. Software. 53, 1 (July. 2000), 3-14.

[2] Basili, V.R., Briand, L.C. and Melo W.L. 1996. A Validation
of Object-Oriented Design Metrics as Quality Indicators.
IEEE. Trans. Software. Eng. 22, 10 (October 1996), 751-761.

[3] Bieman, J. and Wang, H. 2004 Evaluating the Strength and
Impact of Design Pattern Coupling. Working paper.

[4] Briand, L.C., Daly, J.W. and Wust J.K. 1999. A Unified
Framework for Coupling Measurement in Object-Oriented
Systems IEEE. Trans. Software. Eng. 25, 1 (January 1999),
91-121.

[5] Dae-Kyoo, K. and Shen W. 2008. Evaluating Pattern
Conformance of UML Models: a Divide and Conquer
Approach and Case Studies. Software Quality Control. 16, 3
(September 2008), 329-359.

[6] Eick, S.G. et al. 2001. Does Code Decay? Assessing the
Evidence from Change Management.Data. IEEE. Trans.
Software. Eng. 27, 1 (January 2001), 1-12.

[7] France, R.B., Kim D.K., Song, E. and Ghosh S. 2004. A
UML-Based Pattern Specification. Technique. IEEE. Trans.
Software. Eng. 30, 3 (March 2004), 193-206.

[8] Gueheneuc, Y-G. and Antoniol, G. 2008. DeMIMA: A
Multi-Layered Framework for Design Pattern Identification.
IEEE. Trans. Software. Eng. 34, 5, (September 2008) 667-
684.

[9] Izurieta, C. and Bieman, J.M. 2008. Testing Consequences of
Grime Buildup in Object Oriented Design Patterns. In First
ACM-IEEE International Conference on Software Testing,
Verification and Validation (Lillehamer, Norway, April 9-11,
2008). ICST '08, 449-451.

[10] Izurieta, C. and Bieman, J.M. 2007. How Software Designs
Decay: A Pilot Study of Pattern Evolution. In First ACM-
IEEE Symposium on Empirical Software Engineering and
Measurement (Madrid, Spain, Sept. 20 – 21, 2007).ESEM
’07, 171-179.

[11] Izurieta, C. 2009.Decay and Grime Buildup in Evolving
Object Oriented Design Patterns. Ph.D. Dissertation,
Colorado State University.

[12] Martin, R. 1994. OO Design Quality Metrics-An Analysis of
Dependencies. Proc. Workshop Pragmatic and Theoretical
Directions in Object-Oriented Software Metrics, OOPSLA '
94.

[13] Myers, G.J. 1978. Composite/Structural Design. Van
Nostrand Reinhold, New York.

[14] Ohlsson, M., Mayrhauser, A., McGuire, B. & Wohlin, C.
1999. Code Decay Analysis of Legacy Software through
Successive Releases. In Proceedings of the IEEE Aerospace
Conf (Aspen, CO., March 6-13, 1999). 69-81.

[15] Wilcoxon, F. 1945. Individual Comparisons by Ranking
Methods. Biometrics, 1, 80-83.

[16] Bittorrent Protocol.
http://www.bittorrent.org/beps/bep_0003.html

[17] Browse-by-Query. http://browsebyquery.sourceforge.net/

[18] Design Pattern Finder.
http://www.codeplex.com/DesignPatternFinder

[19] Eclipse Integrated Development Environment.
http://www.eclipse.org/

[20] SemmleCode. http://semmle.com/semmlecode

[21] Vuze. http://www.vuze.com/

