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Abstract—Industrial Control Systems (ICSs) are a crucial
component of critical infrastructure and a popular target for
cyberattacks. While most research focuses on the defense of large-
scale networks of ICSs, it is critical to expand research on the
small-scale networks of Process Control Systems (PCSs), which
attackers may target to remain undetectable from the security
of the larger network. One potential method of protection for
PCS networks is the use of verification tools; however, existing
research on verification tools focuses on the detection of attacks
without mitigation. This research describes two instantiations of
a verification tool for a PCS controlled by a RISC-V computer
implemented on an FPGA. The first version of the verification
tool provides passive detection, informing an engineering station
of an attack, and the second version provides detection with mit-
igation against unauthorized command messages and malicious
software downloads. An experimental testbed was developed to
test both versions, consisting of: (1) a circuit to charge a battery;
(2) an FPGA controller that controls charge/discharge based on
user input; (3) an engineering station that provides control data,
and updates firmware to the FPGA; and (4) a verification tool
that verifies input forwarded by a passive serial tap, connected
through the FPGA’s hardware. The experimental data yielded
promising results, with the tool successfully providing mitigation
and detection against attacks on the serial communication chan-
nel between the engineering station and FPGA. This approach
has applicability to common ICS computer devices, such as
programmable logic controllers (PLCs).

Index Terms—Industrial Control, Process Control, Field Pro-
grammable Gate Arrays, Reduced Instruction Set Computing,
Computer Security, Hardware Security, Prevention and mitiga-
tion, Cyber-physical systems, Industrial Internet of Things.

I. INTRODUCTION

Industrial Control Systems (ICSs) are an integral part
of a nation’s infrastructure and must operate continuously
and without error. Many industrial systems were originally
standalone operational technology systems, but the rise of
modern-day information technology has led them to become
increasingly interconnected with each other through local
networks and the Internet. Although this interconnectedness
allows for advances in ease of use and access to a system,
it also increases the surface area of attacks. Security research
around ICSs focuses on their larger network systems, with the
goal of preventing attackers from gaining large-scale access to
the control system. However, this may diminish well-rounded
security for smaller portions of the system, as it is assumed
that attacks will be stopped before they reach that level.

One of these important subcomponents of ICSs is Process
Control Systems (PCSs). PCSs control singular processes
within a larger ICS, such as adjusting the level of a water tank
within a sewage plant. They are typically controlled with Pro-
grammable Logic Controllers (PLCs), which use the innately
insecure Modbus communication protocol [3]. Many attacks
take advantage of PCSs due to their lack of comprehensive
implementation of security protocols. Notably, Internet-facing
security on PLCs and other components is sometimes ignored
because it interferes with system availability.

A pervasive issue of adding more security to control systems
occurs when adding it has a negative impact on the availability
of the systems. One technique to ensure the integrity of
measurement data and control logic delivered to PLCs without
impacting system availability is a verification tool. The passive
nature of verification tools lets them monitor the control data
provided to a PLC without preventing or delaying its arrival to
the controller. Research on verification tools currently explores
the ability to detect attacks, but research to prevent attacks has
not received the same attention.

In our research, we create a verification tool that provides
mitigation of these attacks in addition to detection without
impacting the availability of the control system. We describe
two instantiations of a verification tool for a PCS controlled
by a RISC-V computer implemented on a Field Programmable
Gate Array (FPGA). These instantiations separately provide i)
passive detection, where the tool detects and informs the engi-
neering station of an attack, and ii) detection with mitigation,
where the attacks never reach the engineering station. The tool
operates in the presence of unauthorized command message
attacks where an attacker aims to modify the controller’s
logic in the engineering station. Though this tool is developed
for a RISC-V FPGA, the approach has applicability to other
common ICS computer devices such as programmable logic
controllers (PLCs), which use ohter potentially vulnerable
serial communication protocols.

II. BACKGROUND

An ICS comprises complex hardware and software compo-
nents designed to automate processes within physical indus-
trial systems. In cybersecurity, ICSs have received significant
attention due to their role in national infrastructures and the



surge in harmful cyber-assaults targeting them. Stuxnet stands
out as one of the most documented examples of such attacks
[1]. In 2010, this attack targeted an Iranian nuclear facility,
causing physical damage to the facility by taking advantage
of a vulnerability within its Siemens PLC controlled PCSs to
spread malicious control logic. PLCs are one of the common
components used in the PCSs and are typically equipped with
internet-facing components but not always secure-by-default.
This allows attackers to have direct access to logic controls
while avoiding the security of the larger ICS network.

A. Process Control Systems
A large majority of research for PCSs focuses on PLCs

[2]. Many PCS components are proprietary, and therefore it
can be hard to develop generalized defense techniques that
adapt easily to all types. In particular, this prevents proper
understanding of the operational logic and internal mecha-
nisms of these embedded systems when developing defense
techniques [14]. This research focuses on a control system
where the controller is implemented with an FPGA. FPGAs
are built around a matrix of configurable logic that allows them
to be reconfigured and reprogrammed as needed and thus can
be specialized to fit the specific needs of a control system.
Although FPGAs are less common in ICS because PLCs tend
to be cheaper and easier to use, FPGAs can be programmed
to perform the same functionality within an ICS [4] [5].

B. Weaknesses
When discussing PCS weaknesses, the MITRE Common

Weakness Enumeration (CWE) nomenclature is used [7]. In
recent years, PCSs within ICSs have been implemented with
greater amounts of interconnectivity, which improves their
ease of use, but increases vulnerabilities due to the opening
of internal attack vectors [9]. For example, to incorporate
internet-facing PLCs into PCSs without negative effects on the
control system’s performance, many systems chose to ignore
their security features [8]. This is CWE-655: Insufficient Psy-
chological Acceptability, where a product’s protection mech-
anism is too inconvenient to use, encouraging non-malicious
users to bypass the mechanism. With this lack of properly
implemented anomaly detection for PLCs to identify irregular
control logic and measurements, methods of anomaly detection
for PCSs have been a well-studied topic [6].

Another common weakness in PCSs is a lack of proper
authentication and encryption that is innate to its communi-
cation protocols. Many systems use the Modbus communi-
cation protocol, which does not offer built-in encryption or
strong authentication mechanisms [1]. This relates to weakness
CWE-311: Missing Encryption of Sensitive Data, and allows
attackers easy access to gather information on a system’s
measurements and commands for easier fabrication of attacks.
PCSs also experience weaknesses due to human factors, such
as malicious personnel and inexperienced users.

C. Attack Techniques
There are a plethora of attack techniques available against

PCSs. Most techniques target the availability portion of the

CIA triad, consisting of Confidentiality, Integrity, and Avail-
ability [2]. ICS availability is best described as the probability
that a system is up and running at some point in time?
Availability for ICSs is critical, as systems need to run unin-
terrupted to maintain proper functionality, and the entire ICS’s
availability can be affected by a single PCS. For example, at
a Queensland sewer, false commands and data injected into a
wastewater station caused one million liters of wastewater to
be expelled into nearby waterways [11].

A frequent form of attacks on PCSs, commonly with
internet-facing PLCs, is Adversary-in-the-Middle (AiTM),
where attackers with privileged network access read or spoof
network traffic [10]. A large portion of PCS attacks consist of
false data injection and control logic injection AiTM attacks.
In the MITRE ATT&CK ICS Matrix, these are the Spoof
Reporting Message and Unauthorized Command Message
techniques, in the Impair Process Control tactic, MITRE ID
TA0106 [12]. With spoof reporting messaging, an attacker
seeks to cause harm by altering reported measurement data
used as feedback to control a system. With unauthorized com-
mand message attacks, an attacker sends malicious commands
and logic to the controller. Both attacks can cause system
assets to perform actions not aligned with its current state or
beyond normal bounds [13]. Lastly, Denial of Service (DoS)
attacks disrupt a system’s ability to respond by sending a high
volume of traffic that the system is incapable of handling [3].

D. Defense Techniques

Defense techniques focus on detection and mitigation, also
referred to as prevention, of intrusions, with a majority
focusing on the former [2]. Detection techniques focus on
identifying attacks using analysis and process techniques [21].
Among common intrusion detection methods are honeypots,
verification tools, network traffic inspection, and dynamic
watermarking. Honeypots are intended to lure attackers in and
allow an attack to occur in a safe setting, so that information
can be safely collected on the attack [15].

Mitigation techniques focus on reducing harm from attacks.
One such technique is encryption for ICS networks. This
addresses the lack of encryption within system network proto-
cols, which often send plain text [2]. Verification tools work to
confirm the veracity of firmware or software within the PCS,
detecting malicious actions if any of these facets have been
altered, typically grouped as techniques that validate program
inputs [16], and techniques such as dynamic watermarking to
determine the veracity of a signal within the PCS [17].

E. Serial Communication

Modbus protocol uses serial communication to send data
over a line as a series of bits. Serial data standards such
as Recommended Standard 232 (RS-232) standard, which is
widely used in industrial monitoring and embedded systems
such as PLCs, specify how serial data is transmitted [22]. A
network Test Access Point (TAP) is a device that connects
directly to cabling infrastructure to split or copy packets for
use in analysis and security [18]. A serial tap is a network tap



specialized for serial communication. A passive tap is invisible
to the network and may monitor traffic undetected.

F. RISC-V Architecture

We selected the RadPC edge computer developed by Re-
silient Computing as our controller [20]. It is implemented
onto a Xilinx Nexys Artix-7 FPGA, has a RISC-V RV32I
ISA process architecture, and has fault-mitigation procedures
to help continue operations in the presence of space radiation.
RISC-V [19] is a open standard instruction set architecture that
focuses on reduced instruction set computer (RISC) concepts,
which aim to simplify instruction sets while improving exe-
cution. RISC-V was chosen as it is usable for most practical
computer use cases, and its reduced code size can reduce the
binary size of code for use on small computers. Thus, it is a
good consideration for use on deeply embedded systems like
those we frequently encounter in ICS components.

III. SYSTEM DESIGN

Here, we define the PCS experiment and the verification
tool. These were designed in the scope of a simple PCS which
controls the charge of a 9 V Nickel-Metal Hydride (NiMH)
rechargeable battery. The physical design of the charging
circuit is shown in Figure 2. To allow the circuit to turn the
battery charging on and off based on a digital signal from the
FPGA, a 2N3904 bipolar junction transistor (BJT) is placed
before the 12V wall source and used as a switch. Two versions
of the verification tool were designed, one providing only
detection and the other providing detection with mitigation.

A. Control System

Fig. 1. Control Loop Block Diagram for Battery Charging Process Control
System. Components within the main control loop are colored black, whereas
external components that communicate with the control system are depicted
in color. The legitimate external sources of communication in this diagram
are represented with green arrows, whereas adversary sources are represented
with red arrows.

The control system is shown as a negative feedback loop
in Figure 1’s control block diagram. We first describe the
components existing within the control loop. The Engineering
Station block allows human users to send and receive data
from the FPGA through a USB to UART bridge. The FPGA
Controller block component outputs an on/off signal for the
battery charger based on feedback logic from the battery state
of charge (SoC) sensor. The SoC Sensor block measures volt-
age across the battery to provide a current SoC. The Battery

Charger block charges or discharges the Battery block based
on feedback logic from the SoC Sensor block. Components
outside the control loop includes an Attacker block, which can
send and read data from the channel between the engineering
station and the FPGA, and a Verification Tool block, which
can read from the same channel and send data to the FPGA
and engineering station. Figure 2 shows connections where
PCS components are connected with wire, as well as the cable
connections between the USB ports of the PCS components.

Fig. 2. Wired Connections of the process control system (PCS).

B. FPGA Logic

Basic logic code was provided for the RadPC board by the
Resilient Computing lab and altered to fit the needs of the
PCS controller. Alterations of UART traffic flow to RadPC
varied for the different versions of the verification tool. For
the detection version, all signals sent to the FPGA from the
engineering station are received by the RX line of the primary
UART (UART00) and saved to its RX register as normal.
The signals are additionally saved to the secondary UART’s
(UART01’s) TX register to be forwarded to the verification
tool through its TX line. For the mitigation version of the
tool, all signals sent to the FPGA from the engineering station
are received by the RX line of UART00, but not saved to its
RX register. The signals are instead saved to UART01’s TX
register to be forwarded to the verification tool through its TX
line. Lastly, the RX register of UART00 saves data received
by the RX line of UART01 from the verification tool. This
flow of UART traffic simulates the passive serial tap used by
the verification tool and lets UART01 to send control logic to
be bootloaded onto the board, which only allows control logic
saved to UART00’s RX register to be bootloaded.

A secondary level of logic code was executed on the
RadPC board. This code provides the operating control logic
for the PCS based on feedback measurements. Every time
heartbeat commands are received from the engineering station
or verification tool, it samples a 12-bit resolution binary value



read in from RadPC’s Analog-to-Digital-Converter, which
reads across the battery’s voltage, and the logic converts it
to a decimal representation that includes a tens place digit, a
ones place digit, and a tenths place digit. Using this decimal
representation, it checks the current decimal voltage value
against the desired maximum and minimum voltage value
limits and turns the control signal off or on accordingly by
altering the GPIO value. This results in a system that can
alternate back and forth between the minimum and maximum
charges to maintain a desired range of operation.

C. Engineering Station

The Engineering Station program allows the engineer to:
(1) send in a value that will change the desired range of
operation for the charging system or (2) send in a prede-
termined bitstream to bootload the logic code on the RadPC
controller. The program allows the engineer to choose to set
either the maximum or the minimum voltage, allowing for
precision up to the first decimal point. The maximum voltage
is allowed to be up to 9.5V and the minimum voltage must be
greater than 1.0V. For any commands or firmware files being
sent, the engineering station program tacks on the uncommon
byte ’\x7f’, a hex representation of Delete, to the data, just
before the terminating ’\n’. This allows the verification tool
to identify the end of individual transmissions to RadPC.
In cases where the program is not being actively used, a
heartbeat command is sent out to keep RadPC’s logic code
from stalling, as RadPC does not currently support timeout
logic for receiving data. Additionally, the engineering station
is always listening for possible attack reporting from the
verification tool. Multithreading was implemented to allow the
station process data concurrently.

D. Attacker

Attackers in ICS commonly seek to achieve the Impair Pro-
cess Control tactic, with the end goal of affecting a system’s
availability. If the battery charger PCS was part of a larger
ICS and the role of the battery was to provide power to an
ICS component, attackers could prevent normal performance
of the whole ICS by attacking the battery PCS. For example,
an attacker may provide unauthorized command messages to
the FPGA, such as improper maximum or minimum voltage
limits, or their own harmful bitstream, which may instruct the
charger signal to be off when it should be on or vice versa.
These attacks could result in a dead battery or an overcharged
battery, achieving the Impair Process Control tactic.

For ease of use in this system, the attacker is implemented
as a separate functionality within the Python engineering
station program, to allow access to the communication channel
between the station and the RadPC controller. This allows the
attacker to send in both malicious commands and malicious
logic code. Some malicious commands include providing
illogical voltage limits, which are too high, too low, or contrary
to each other. The malicious logic code is sent as a compiled
firmware file. For these attacks, it is assumed that the attacker
may be aware of the proper forms for commands.

E. Verification Tool

The verification tool should run on a separate computer from
the engineering station to remain isolated from the network.
However, it must be connected to the station to send attack
reports. It receives data from RadPC’s UART00 port through
hardware functionality. This is done by forwarding the data to
RadPC’s UART01 port, which is connected to the verification
tool host by a FTDI Chip C232HD-DDHSP-0 USB to UART
cable. The verification host is then able to receive the incoming
serial transmission and transmit it to the verification tool. The
serial port for communication was configured to the serial
data requirements of the RadPC, specifying a baud rate of
115200, 8-bit data, no parity, and no flow control. Prior to
being connected to the computer, an Analog Discovery 2 was
used to confirm the UART signal being forwarded. When
receiving data, the verification tool looks for the terminating
bytes ’\x7f’ to separate individual transmissions.

All versions of the verification tool look for expected trans-
missions to be sent by the engineering station, and validate
incoming transmissions against expected transmission formats.
Any anomalous transmissions detected are logged and reported
on its user interface. The tool focuses on verifying commands
and logic code, rather than firmware. The verification tool
ensures that voltage limit changes follow the correct for-
mat and comply with engineering station rules by tracking
and validating the current voltage limits. Any commands or
voltage values that don’t agree with expected good values
are saved to a log file invalid command log.text. The tool
also verifies incoming logic code, by recording incoming
bitstreams and performing checksums using SHA-256. The
hash of the recorded bitstream is checked against the hash
of a predetermined good bitstream, which was compiled from
pre-approved logic code. If the incoming hash is not equal to
the good hash, it is recorded to a log file invalid bin log.text.
Multi-threading was used to allow the tool to receive and
process data while sending back information at the same time.

Mitigation for DoS attacks was also considered as a po-
tential problem with serial communication used by the veri-
fication tool. The bounds of the information being sent were
considered, and it was determined that the longest a potential
set of good data would be was the size of the trusted firmware
file in bytes, plus its terminating byte. This size was set as the
limit for the serial reading function, restricting it to read only
up to that number of bytes before processing the data.

Two versions of the verification tool were implemented.
The first version provided only passive detection, monitoring
traffic sent to execute in the FPGA and reporting if an attack
was detected. The second version provides both detection and
prevention, requiring verification of traffic sent to the FPGA
before it is executed, as well as reporting attacks back to the
engineering station.

1) Version 1: Passive Detection: When unexpected trans-
missions are received, the verification tool logs the offending
transmissions and alerts to possible attacks on it and the
engineering station display. Passive detection reports potential



attacks but does not mitigate them, except for DoS prevention.
No additional functionality is added beyond the base features.
The FPGA also activates an LED to signal an attack, and the
tool offers no prevention beyond DoS protection.

2) Version 2: Detection with Mitigation: This version of
the verification tool adds prevention functionality. In practice,
prevention is a combination of detection and response to
prevent the effects of attacks. There are slight differences in the
processing of communication for components in this version
of the verification tool.

The FPGA cannot receive commands directly from the
engineering station and instead receives them from the ver-
ification tool. The verification tool receives commands from
the engineering station, which it verifies before forwarding
them to be executed on the FPGA. To the engineering station
however, commands appear to still be directly sent from itself
to the FPGA’s UART00. As the FPGA no longer looks to
the engineering station for its commands, the engineering
station program no longer sends a heartbeat signal. Instead,
the verification tool provides a heartbeat signal in the absence
of other commands to send to the FPGA.

IV. RESULTS

Experimental data yielded promising results, with the verifi-
cation tool successfully providing prevention and detection for
the FPGA controller against unauthorized command message
attacks on the serial communication channel between the
engineering station and FPGA.

A. System Operation

A baseline of normal operation of the PCS was established
by using the probes of a Digilent Analog Discovery 2, which
reported voltage values back to a Python program. Mainte-
nance of battery voltage by the PCS is confirmed with voltage
charts. Figure 3 displays the battery voltage in blue and the
charger control signal voltage in orange. The maximum and
minimum voltage limits were changed every 2000 seconds,
starting at voltage limits of 6.5 V to 8.0 V, then 6.8 V to 7.7
V, and ending at 7.0 V to 7.5 V. It was also confirmed that
the FPGA could successfully bootload trusted firmware when
requested by the engineer. Figure 4 shows normal operation
of the engineering station, verification tool, and FPGA. The
engineer sends in a low voltage limit of 1.3 V and a high
voltage limit of 9.3 V, which are validated by the tool. It also
shows successful updating of the voltage limits and charger
control signal on the FPGA, which displays, in volts, the
current voltage, the maximum voltage limit, and the minimum
voltage limit, as well as the boolean charger control signal
value, on its seven-segment display.

B. Detection

Three attack cases were sent to the FPGA: two out-of-
bounds voltage limit commands, one for high and one for
low, and a harmful firmware file. In all cases, the verification
tool was able to passively detect and log, but not prevent the
possible attacks, while displaying a detection message on its

Fig. 3. Maintenance of three battery voltage ranges by the PCS

Fig. 4. Normal operation of the PCS experimental testbed.

user interface. Both versions were able to inform the FPGA
and the engineering station of the attack. The reporting was
done by sending a message to the engineering station and
lighting an indicator LED on the FPGA.

Detection was achieved in all three attack cases. An example
of the system’s response to an out-of-bounds limit attacks
is shown in Figure 5, which graphs the battery voltage and
the charger control signal. In this case, the maximum voltage
limit was 6.5V and the minimum voltage was 5.6V. The
attacker sent in an unauthorized command message that set
the maximum voltage limit to 9.9V. The system ran as normal
for the first 60 seconds, until the attacker sent the harmful
voltage limit. Because our system has physical limiters for
the maximum voltage of the battery, this attack resulted in
the battery never being able to hit that maximum limit and
discharge again. In a system without a physical limiter, this
may have resulted in an overcharged battery.

Fig. 5. Failure of battery maintenance after unauthorized command attack.

C. Prevention

Beyond detection, successful results were also achieved for
prevention, where the attack needed to be addressed before it
reached the FPGA. The second version of the verification tool



was able to prevent all three attacks from reaching the FPGA
controller while allowing the system to perform as if the tool
was not there. In every case, the tool successfully identified the
data as part of an attack and blocked it from being forwarded.
The battery’s SoC maintenance was monitored and performed
exactly as expected. Figure 6 displays the experimental PCS
setup after the attacker sends malicious firmware, showing the
verification tool’s detection, the engineering tool’s received
attack report, and the FPGA running unaffected firmware.
Figure 7 shows the setup after a malicious voltage limit has
been sent by the attacker, requesting 9.9V as the maximum
limit. It displays the verification tool’s detection, the engineer-
ing tool’s received attack report, and the FPGA’s unchanged
voltage limits.

Fig. 6. Detection & mitigation of malicious firmware upload.

Fig. 7. Detection & mitigation of malicious voltage limit commands.

V. CONCLUSIONS

In conclusion, a verification tool was successfully developed
which detects attacks using unauthorized command message
techniques and provides mitigation against the attacks affect-
ing a RISC-V FPGA controlled PCS. The key contribution is
the development of mitigation functionality for the verification
tool, which can be applied to other verification tools for PCS
controllers that previously focused only on detection. Because
the tool only requires the hardware inclusion of a passive serial
tap to a system to monitor its traffic, it would be physically
easy to incorporate this system into a PCS. However, rerouting
communication to pass through the tool before it is forwarded
to the controller for execution may prove more difficult.
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