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Abstract—Ensuring software quality is essential to the software
development and deployment process. Evaluating software for
known vulnerabilities and weaknesses is a method of assessing
the quality of software. However, the existence of a large number
of vulnerabilities and weaknesses can hinder decision-making
and mitigation. To address this, hierarchical software quality
models aggregate quantitative weakness measures into qualitative
characteristics to simplify decision making. However, challenges
exist when mapping quantitative measures to qualitative charac-
teristics, especially when the relationship between measures and
characteristics is ill-defined/unknown or when prior knowledge
is absent, thus posing threats to the construct validity of the
mapping. This paper presents a pseudo-label-based regression
framework to generate qualitative values when given a set
of quantitative measurements. To exemplify this research, we
created a use case where we applied the framework to binary
program analysis.

Index Terms—Software Quality, Quality Assurance, Machine
Learning

I. INTRODUCTION

There has been growing interest in quality-aware software
development in recent years due to the threat of cybersecurity
vulnerabilities in critical infrastructures. The quality of the
software must be an integral part of software development
and deployment. Several frameworks have been proposed to
address software quality evaluation [1]. The “ISO/IEC 25000
- System and Software Quality Requirements and Evaluation
(SQuaRE)” is a series of standards and a theoretical framework
for software quality assurance. Likewise, the ISO 25010 stan-
dard [2] provides the structure and definitions of the quality
characteristics.

Figure 1 shows a simplified view of the abstract levels of a
generic Hierarchical Software Quality Model (HSQM). At the
base, low-level measures provide a quantitative assessment of
a specific area of interest. In the middle, a set of high-level
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Fig. 1. Simplified HSQM structure. The bottom row shows a collection
of quantitative measures. The middle row shows a collection of qualitative
characteristics. The top row shows the Total Quality Index (TQI). The arrows
show the direction of information flow for aggregation.

qualitative characteristics is presented. At the top of the model
tree, the total quality index provides an overall score. The
number of abstract layers may vary depending on the quality
model, the domain, and the levels of abstraction chosen by the
modeler. Only a few operationalized models exist for practical
use in the software development process; Q-rapids [4], VALUE
[5], QUAMOCO [6], QATCH [7], and SQALE [8] are some
example frameworks. Comparison of these frameworks has
also exposed the benefits and weaknesses [9] of these models.
The Platform for Investigative software Quality Understanding
and Evaluation (PIQUE) [3], [10], [11] is a modern generalized
model that mitigates some of the shortcomings of earlier
models. One such shortcoming is the mapping of quantitative
measures to qualitative characteristics. The relative weighting
of the contributions that sub-characteristics have on higher-
level characteristics was traditionally performed manually,
while PIQUE introduces a data-based approach for this map-
ping.

Data-based methods are most effective when prior training
data is available with qualitative characteristic scores (labels)
[4]. However, when developing a new quality model, prior
scores (labels) are not available. For example, one objective
of software quality may involve improving “Integrity”. Labels
for training software packages with respect to “Integrity” may
be unavailable and/or subjective. Hence, a method is needed



Fig. 2. Workflow of Initial approach and Machine Learning approach from Izurieta et al. [3], for the specific example of mapping CWE 117 and CWE
1024 to the quality aspect “Integrity.” Measures CWE-117 and CWE-1024 are drawn in the axes in an abstract space, and the quality aspect (Integrity) is
represented as a function in that space. The left column shows the available data, the middle column shows the two approaches, and the right column shows
the HSQM tree structure. The Machine Learning approach considers the relative measure scores from a benchmark dataset when determining the qualitative
characteristic score of a new software program.

to calculate qualitative characteristic scores in the absence of
prior training label data. Regression is a common machine
learning (ML) technique that utilizes training data with known
labels to predict scores for new data. Using regression in the
absence of labels for mapping scores was first introduced as a
theoretical framework in the PIQUE model [3]. This paper
provides the experimental results of applying the proposed
theoretical machine learning framework with examples. Sev-
eral regression models were tested on a benchmark dataset to
evaluate their effectiveness.

II. BACKGROUND

Our work focuses on contributing an approach to help with
the mapping between measures and characteristics. Although
definitions of measures usually describe “which” character-
istics they affect, definitions fail to explain “how much” a
measure affects a characteristic. This problem becomes even
worse when multiple measures affect a single characteris-
tic. For example, consider two software weakness measures
(i.e., CWE-117 and CWE-1024) used in the PIQUE-bin1

model. According to the definition from the MITRE, Common
Weaknesses Enumeration(CWE) 2, these weaknesses affect the
software security characteristic “Integrity.” The definition only
states that higher counts of CWE-1173 and CWE-10244 should
be correlated with the “Integrity” characteristic. However, the
definition does not state how much each CWE should affect
the “Integrity” characteristic.

1https://github.com/MSUSEL/msusel-pique-bin-docker
2https://cwe.mitre.org/about/new to cwe.html
3https://cwe.mitre.org/data/definitions/117.html
4https://cwe.mitre.org/data/definitions/1024.html

Several previous methods have been proposed to address
this issue in the context of value-based predictive maintenance
[12]. The most common approach is an aggregated sum
of measures. The weights are calculated either manually or
(more commonly) using Bayesian Networks [13] based on the
weighted sum algorithm (WSA) [14]. Measure probabilities
are calculated using historical data, and the characteristic value
is inferred using the Bayesian rule. Reinhold et al. [15] also
used probability density functions to calculate more accurate
scores that mitigate the effects of variability associated with
aggregation. However, most applications calculate probabil-
ities according to a set of discrete value bins (e.g., Low,
Medium, and High) and with prior expert knowledge.

III. APPROACH

Our approach provides alternative methods to generate
relationships using a benchmark dataset with minimum prior
knowledge transfer, especially when a new quality model
needs to be developed. Our approach provides a straight-
forward setup with a semi-automated process. The complete
source code of the experiment is available at https://github.
com/MSUSEL/msusel pique ML.

The proposed framework consists of two approaches. The
initial approach involved pseudo-label generation based on
prior knowledge and assumptions. The second is a machine
learning approach: training a regressor with a benchmark
dataset. Figure 2 provides an overview of the framework from
Izurieta et al. [3]. The available information is displayed in
the left panel, which includes the definitional relationship of
the measures to the characteristics and benchmark dataset
from the project domain. The top middle section shows the
initial approach with an equal weighting approach. The bottom



middle section shows how the initial approach can be supple-
mented with a benchmark dataset. Then, pseudo-labels can be
generated to train a regressor that will better fit the benchmark
data. The learned regressor can be used to predict characteristic
values for new projects under analysis. The right panel shows
how the two approaches structurally relate to an HSQM. Note
that the Machine Learning approach considers the relative
measure scores from a benchmark dataset when determining
the qualitative characteristic score of a new software program.

A. Problem Formulation
Assume there is a set of n measures: [M1,M2, . . . ,Mn].

Each measure has a corresponding node value:
[α1, α2, . . . , αn]. We assume all reported measure values are
between zero and one (αi ∈ [0, 1]). Finally, we consider
a set of m qualitative characteristics: [C1, C2, . . . , Cm].
Each characteristic also has a corresponding node value:
[y1, y2, . . . , ym] with yj ∈ [0, 1]. Now, let [P 1, P 2, . . . , P k]
be a set of k benchmark projects in the respective domain.
When we analyze the set of projects through analysis tools
and retrieve quantitative results for n measures and m
characteristics, the results can be summarized as shown in
Table I.

TABLE I
MEASURE VALUES FOR THE SET OF PROJECTS IN BENCHMARK DATASET

Measures Characteristics label (Y)
M1 M2 M3 Mn C1 C2 Cm

P 1 α1
1 α1

2 α1
3 α1

n y11 y12 y1m
P 2 α2

1 α2
2 α2

3 α2
n y21 y22 y2m

...
Pk αk

1 . . . . . . αk
n yk1 yk2 ykm

In normal regression operations, a set of training labels Y
would be provided, which associates each project P k with
characteristics Cj with a value ykj . With this information,
we can train a regression function for each Characteristic:
{f1, f2, · · · , fm} However, in practice, these label values are
unavailable due to a lack of previous knowledge. Thus, we
first need to estimate a pseudo-label for each project and each
Characteristic node value (ỹkj ). The pseudo-labels, along with
the benchmark projects, measure node values, and measure-
characteristic definitions are used to generate the regression
function for each characteristic (fj).

B. Pseudo-label assignment
As an initial approach, the weights are assigned manually by

analyzing the definition of each measure or product factor and
creating a binary indicator function connecting each measure
with each characteristic: Ii,j is 1 if Mi is related to Cj ,
otherwise, it is 0. The pseudo-label is then given as the average
value of the relevant measure node values:

ỹkj =

∑n
i=1 Ii,jα

k
i∑n

i=1 Ii,j
. (1)

For the application of software quality, a linear relationship
is justified, as improvements in each of the measures lead

to an improvement in the characteristic. Although we realize
some CWEs may affect quality aspects to varying degrees, this
estimate is generally accurate, as even if some CWEs affect
quality aspects more and some less, the mean of these values
will only vary slightly.

C. Regressor training

In the regression approach, we supplement the initial ap-
proach with a representative benchmark dataset in the appli-
cation domain to establish an informed relationship between
measures and characteristics. We look at the data distribution
of the benchmark dataset and update the weights from the
initial model to fit the distribution. Thus, the regression output
scores are relative to the benchmark repository and better
represent the project under analysis. This allows us to capture
the dependencies between the measures and identify trends in
practical implementations. We also normalize the regression
function to force the output scores to be between 0 and 1.

In summary, in order to train a regression function fj for
characteristic Cj , we need:

• the node values for all measures and all projects: the α’s
• the pseudo-labels for Cj : [ỹ1j , . . . , ỹ

k
j ]

• the binary indicator between all measures and Cj :
[I1,j . . . In,j ].

After training, the function fj will take the measure values
αnew for a new, non-benchmark project Pnew and return a
characteristic value for that project: ŷnewj .

IV. EXPERIMENTS AND RESULTS

To evaluate the effectiveness of different regressor models,
we experimented with several regressor models. This experi-
ment utilizes a library of Scikit-Learn [16] regression models
and GridSearchCV for cross-validation. A benchmark repos-
itory of training data is used to train the regression models.5

The training data includes hundreds of example programs
and their corresponding CWE values that were yielded from
statistical analysis tools. The programs are a collection of
binary files from a Kali-Linux operating system.6 Detailed
discussion about the benchmark data, the static analysis tools,
and the measure value calculation has been conducted previ-
ously [3], [11], [15]. For this study, the measures with constant
values were not considered as they do not provide additional
information.

Although characteristics are correlated, when evaluating,
each quality characteristic can be assumed as independent
of each other. Hence, a separate model, fj , was trained
for each characteristic to ensure precision and accuracy in
the final quality score. Each measure (CWE value) impact-
ing a characteristic (Ii,j ≥ 0) is fed to the corresponding
model, where the model is trained to predict a ŷj value.
The quality characteristics considered were “Access Control”,
“Confidentiality”, “Integrity”, “Availability”, “Authorization”,
“Non-repudiation”, and “Other”. In this application, a value of

5https://github.com/MSUSEL/benchmarks
6https://www.kali.org/



TABLE II
PROJECT QUALITY CHARACTERISTICS VALUES FROM PSEUDO-LABELS AND RANDOM-FOREST REGRESSOR

Programs Access Control Confidentiality Integrity Availability Authorization Non-repudiation Other
Pseudo Reg. Pseudo Reg. Pseudo Reg. Pseudo Reg. Pseudo Reg. Pseudo Reg. Pseudo Reg.

tr 0.5418 0.543 0.5631 0.559 0.5625 0.552 0.5413 0.391 0.5472 1.0 0.5560 0.639 0.5587 0.596
pmspike 0.4739 0.283 0.5111 0.362 0.5135 0.357 0.4726 0.166 0.5472 1.0 0.5560 0.639 0.4780 0.29
mpstat 0.5086 0.416 0.5570 0.540 0.5567 0.533 0.5355 0.369 0.5472 1.0 0.5560 0.639 0.5426 0.255
xgc 0.5418 0.543 0.5822 0.636 0.5809 0.628 0.5596 0.452 0.5472 1.0 0.5560 0.639 0.5651 0.620

Fig. 3. The left figure shows the pseudo-label contour lines generated for access control by averaging the input features for the quality characteristic “Access
Control” in the input space of CWE-94 and CWE-560 measures. The middle figure shows the scattered benchmark projects used for training a regressor
with the pseudo labels. In the right figure, contour lines show the learned Random Forest regressor label values. The contour lines shown here are generated
assuming the rest of the measure values are one.

0 is considered “bad”, and a value of 1 is considered “good”
for both measures and characteristics.

Before training the model, a grid search was conducted on
the training dataset, yielding suitable hyperparameters. After
training the model, it was tested with twenty percent of the
dataset, and an R2 value was calculated.

An example output of initial pseudo-labels and the Random
Forest regressor predictions for the corresponding quality
characteristics are shown in Table II. Recall that the pseudo-
labels (ỹkj ) are generated using the linear model in Eq. 1. In
contrast, the regression-generated labels (ŷkj ) use the linear
model as a baseline but also incorporate information about
the benchmark dataset into the prediction.

V. DISCUSSION

Experimental results show the validity of the proposed
theoretical model of using pseudo-labels for mapping quanti-
tative measures to qualitative characteristics. Some regression
models discussed in this paper are effective at incorporating
information from a benchmark dataset to consider quality
characteristic values. Rather than simply averaging the results
from the measure values, the regression models have the ability
to perform a meaningful comparison between a software under
analysis and a corpus of benchmark data. Our results show the
viability of the proposed theoretical framework on real-world
data with different regressor models when training labels are
unavailable.

First, as an example, consider the quality characteristic
“Access Control” for the PIQUE-Bin model. Twelve measures
(CWE-560, CWE-94, CWE-191, CWE-290, CWE-190, CWE-
332, CWE-59, CWE-273, CWE-426, CWE-190, CWE-310

and CWE266) are identified as related to “Access control”
by evaluating the CWE definitions. The base assumption is
that “CWE measure values are linearly related to the Access
Control score”.

Figure 3 (left panel) shows how the contour lines were
generated by the initial approach. Note that the contour lines
are calculated for the given input space by considering all the
other input feature values to be set to one. In other words,
if all the other features are equal to one, how does changing
CWE-94 and CWE-560 affect the “Access Control” score?
The initial method of averaging creates parallel contour lines
with a slope of −1. At the top-right point of the plot (where
CWE-94 and CWE-560, in addition to the other 10 CWEs that
are not visualized, have a score of 1), the “Access Control”
score is also 1. As either CWE-94 or CWE-560 decreases, the
“Access Control” score also decreases, in a linear fashion.

Figure 3 (middle panel) shows the CWE-94 and CWE-560
measure values for four benchmark training projects. Since the
“Access Control” labels for these benchmark projects do not
exist, we must use an initial approach to generate pseudo-label
values.

Figure 3 (right panel) shows the training dataset and the
learned Random Forest regressor contour lines for the quality
characteristic “Access Control”. The regressor has contour
lines that better reflect the CWE distribution of the benchmark
data. It can be seen that the sensitivity of “Access Control”
to CWE-560 is minimum or almost constant. This is because
the majority of the benchmark data have the same CWE-560
value. Because of this, if a new software under analysis has a
different CWE-560 score, the regression algorithm has greater



TABLE III
REGRESSION MODELS R-SQUARED VALUES

Model Access Control Confidentiality Integrity Availability Authorization Non-rep. Other
Linear 1.000 0.904 0.640 0.3573 1.000 1.000 1.000

Ridge [17] 1.000 0.999 0.999 0.999 1.000 1.000 1.000
SGD [18] 0.976 0.994 0.994 0.994 0.397 0.9145 0.990

Decision-Tree [19] 0.943 0.862 0.819 0.916 1.000 0.961 0.981
Lasso [17], [20] 1.000 0.998 0.999 0.997 1.000 1.000 1.000
Elastic-Net [17] 1.000 0.998 0.998 0.999 0.993 0.999 1.000

Random-Forest [21] 0.943 0.890 0.872 0.949 0.982 0.956 0.982
Extra-Trees [19], [22] 0.951 0.905 0.889 0.963 1.000 0.961 0.959

Kernel-Ridge [23] 1.000 1.000 1.000 1.000 1.000 1.000 1.000
OMP [24] 0.737 0.563 0.618 0.641 1.000 0.913 0.632
K-NN [25] 0.943 0.920 0.903 0.964 1.000 0.967 0.967

Gradient Boost [26] 0.958 0.933 0.919 0.969 -0.024 0.9696 0.986

Fig. 4. The left figure shows contour lines generated by different regressor models in the input features for the quality characteristic “Access Control” in the
input space of CVE-CWE-94 and CWE-560 measures. The Ridge, SGD, Gradient Boost, Random Forest, and Extra Trees regressors with their R2 scores
are shown.

uncertainty with respect to its impact on “Access Control.”
The CWE-94 measure has a slightly higher sensitivity on the
characteristic score because the benchmark dataset has greater
variance for this measure. Thus, the magnitudes of the contour
lines are changing with the CWE-94 changes. This shows that
the regression model fine-tunes the output predictions to match
the distribution of the benchmark dataset.

The results for each model’s R2 score are shown in Table
III. It was observed that when a regression model has an R2

value of 1, the model ignores the data and mostly imitates
the initial pseudo-label assumption. Hence, a model with a
slightly lower R2 value strikes a balance between holding true
to the initial assumption and adapting to the benchmark data.
Figure 4 shows the contour lines of different regressors and
their respective R2 values. It should be noted that Ridge and
SGD are linear models, and the others are nonlinear models.
The linear models with R2 = 1 always fit to the pseudo-
labels; R2 < 1 indicates that the models learn a different
weighting. For the nonlinear models, the R2 value is almost
always less than 1. Note that all the nonlinear models have
identified that a change of CWE-560 after a value of 0.5 does
not contribute to the characteristic score. This is justified as
we do not have any benchmark data to support the assumption
that a higher CWE-560 measure value could have an impact
on the characteristic score. Hence, the predicted characteristic
score will provide insight into the quality of the project under
analysis with respect to the known benchmark project corpus.

In Table III, the “Authorization” characteristic has the most
inconsistent behavior across regression models. When investi-
gated, only a single measure was associated with authorization.
In addition, that particular measure had little variance in the
benchmark dataset, making it difficult for a regression algo-
rithm to generalize in a nonlinear fashion. This indicates the
distribution of the projects for each measure has an impact on
the performance of the regressor. In summary, the results show
that the proposed framework was able to achieve a balance
between the initial assumptions and the benchmark data. The
selection of the regressor is dependent on the application and
the intended simplicity of the overall quality score. However,
a selection criterion has yet to be developed to identify the
best-suited regression model for the application.

By observing the results, several future directions were
identified for the practical application of the proposed frame-
work. First, a metric needs to be introduced to evaluate the
regression models’ prediction “balance” between the pseudo-
labels and benchmark data. This will help modelers to decide
which regression models to use and how much a regressor
is “balanced”. Second, a metric to asses the quality of the
input benchmark dataset must be developed. This will give
users confidence in the predicted score with respect to the
benchmark dataset. Finally, a guideline will be developed
on how to interpret the generated results and use the scores
for decision-making. This will help in identifying trends and
common practices in the application domain.



VI. THREATS TO VALIDITY

Several identified threats to validity must be considered
when using regression methods for node value predictions. An
internal threat to validity occurs when regression models do
not guarantee a monotonically increasing function. To mitigate
this threat, we are exploring a post-processing function to
force the regression output to monotonically increase. Also,
if a new program has vastly different measure values than the
benchmark data distribution, the model will try to provide a
score that closely matches a benchmark datum. This could
obfuscate the new project’s difference in the characteristic
score prediction. To mitigate this, highlighting the measure
input value differences will allow users to conduct further
analysis.

External threats to validity exist because the developed
method was only tested with the PIQUE-bin benchmark data,
and the results cannot be generalized. We are planning to
test with other PIQUE models. The effects of the benchmark
dataset are still unknown, so metamorphic testing on the ML
model is planned. In particular, the impact of identical CWE
findings and constant CWE values must be studied further.
Currently, CWEs that produce constant findings are omitted
from the regression model.

As a threat to construct validity, the initial assumption of a
linear relationship and the selection of the regression model
may lead to variations in the model’s behavior. To mitigate
this threat, selection criteria will be developed for the users.

VII. CONCLUSION

This paper presents a framework that maps low-level quan-
titative measures to high-level qualitative characteristics. A
pseudo-label-based regression method is presented. First, the
initial weighting of the manual assignment is used to estimate
characteristic values (pseudo-labels). These pseudo-labels, in
combination with a benchmark dataset, are used to train the
regression model. The trained regression model was used to
predict updated characteristic values. Each characteristic was
predicted using an independently trained regressor. Several
linear and nonlinear regression models were evaluated. The
framework is discussed, and several threats to validity were
identified. The main benefits of this proposed framework
are (1) the input and output can easily be compared using
the regression model and (2) the regression model considers
both the natural linearity assumption and the quality values
of a benchmark dataset when making characteristic value
predictions. In the future, this framework will be integrated
into PIQUE as the default method with an option for the user
to customize parameters.
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