
A Research Plan to Characterize, Evaluate, and Predict the

Impacts of Behavioral Decay in Design Patterns
Derek Reimanis and Clemente Izurieta (Advisor)

Department of Computer Science
Montana State University

Bozeman, MT 59717-3880
1+ (406) 994-4780

{derek.reimanis, clemente.izurieta}@cs.montana.edu

ABSTRACT

We propose a research plan to further the understanding of design

pattern evolution. Current research into design pattern evolution

focuses on the structural elements of decay, which is realized as

structural grime. We plan to expand the current state of research

by introducing the notion of behavioral grime, or unwanted

artifacts that appear at run-time in a pattern. This form of grime

may be transparent to the current analysis models. We seek to

classify types of grime into taxonomy, evaluate each type in terms

of impacts on technical debt and quality in the pattern and system

as a whole, and predict future occurrences of behavioral grime.

Studies are designed for each of these respective goals. The

results of this research will further the understanding of design

patterns, assisting practitioners and researchers alike.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification –

Formal Methods; D.2.8 [Software Engineering]: Metrics –

product metrics; D.2.11 [Software Engineering]: Software

Architectures – Patterns

General Terms

 Measurement, Design, Experimentation, Verification.

Keywords

Software Behavior, Software Architecture, Design Patterns,

Formalization, Software Decay, Technical Debt

1. INTRODUCTION
Design patterns embody recurring solutions to common object-

oriented problems in software development. Patterns are design

decisions that are reusable, maintainable, and attempt to minimize

re-design in the future [12]. However, the evolution of design

patterns is controversial. The original intent of the pattern may

become obscured for many reasons, including new developers

contributing to a pattern, or the unforeseen changes to elements

participating in the pattern. Empirical work has shown that the

structure of a pattern has the potential to decay as the pattern ages

[14] [15] [17] [18] [19]. Furthermore, research has shown that the

structural decay of patterns results in decreased system quality and

increased technical debt [8].

Although significant work has been made towards understanding

design pattern structural decay, little work has been made towards

understanding behavioral decay. Behavioral decay refers to the

deterioration of the runtime design of a system. Behavioral decay

is complementary to structural decay, yet a large gap and dearth of

research is evident. The exploration of behavioral decay in design

patterns will yield greater insights into the benefits and detriments

of utilizing design patterns.

This paper is organized as follows: Section 2 discusses related

work. Section 3 outlines the current challenges in the field,

including research gaps and relevant problems. Section 4 outlines

research objectives. Section 5 describes the approach. Section 6

identifies the threats to the validity of the proposed study, and

section 7 provides concluding remarks.

2. BACKGROUND AND RELATED WORK

2.1 Technical Debt
Technical debt (TD) is a metaphor coined by Ward Cunningham

to describe the gap between the current state of a software system

and the ideal state [7]. TD captures the effects of decisions that

sacrifice good design principles for on-time delivery. Many times

these decisions take the form of shortcuts or workarounds in code

that complete the task at hand, but at the expense of decreased

quality. Principal and interest are two attributes of TD. Given a

task to implement, principal refers to the cost in effort to complete

the task. Interest refers to the gap between maintenance costs

under ideal conditions versus conditions where maintenance is

higher due to accrued debt from tasks where TD is not repaid.

Effectively managing TD is multi-faceted problem, where the

need to implement new features must be leveraged with the need

to refactor.

Tom et al. performed a systematic literature review of the current

state of TD in academic literature [29]. The study reports that

many of the difficulties of managing TD are a result of poor

problem definition and representative models. As an outcome of

this study, Tom et al. propose a fundamental framework of TD;

this work follows this framework.

Tom et al.’s framework identifies architectural technical debt

(ATD) as a specific type of TD that focuses on items originating

from the design or architecture of a software project. These are

items such as modularity violations [30], architecture dependency

issues [26], and design pattern decay [4] [14] [15] [17] [18] [19].

Several operational models for estimating TD have recently

surfaced in the field [6] [13] [23] [24] [25], however no single

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ESEM’15, October 21, 2015, Beijing, China.

Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

method has surfaced as a clear better approach, possibly because

they fail to capture domain specific information in a system.

2.2 Software Quality
Software quality has been categorized into a set of characteristics,

each of which is composed of related sub-characteristics. The

ISO-IEC 25010 Software Quality Specification formalizes a set of

eight characteristics to form an abstract model for measuring

quality [16]. These characteristics, or attributes, are evaluated to

the extent to which a system realizes that characteristic. Several

domain-agnostic quality models that realize this specification

have been developed. Two quality models, QMOOD and a robust

alternative QUAMOCO, have surfaced as operational quality

models [2] [31].

2.3 Software Behavior
Preliminary research reveals that software behavior can be of two

types; internal and external. Internal behavior refers to the interior

mechanisms and API calls that occur during system runtime.

Internal behaviors are not necessarily seen except at the point in

time in which they are executing. In this manner, internal

behaviors are more a temporary artifact that exists only for the

duration of their execution. External behavior refers to the

external and observable result that the system produces. These

may be represented as system goals, and are the consequences of

internal behaviors. That is, internal behaviors cause external

behaviors.

2.4 Software Decay
Code decay is a term that refers to the case where code is “harder

to change than it should be” [9]. Similarly, software decay refers

to software that is more difficult to change than it should. Several

types of software decay have been identified, including code

smells, anti-patterns, and design pattern decay [4] [10] [17] [18]

[19]. Design pattern decay refers to implementations of design

patterns that gain undesired elements or lose desired elements as

they evolve. In this sense, the benefits that the pattern offers are

lost as its design becomes obfuscated. Studies have found that

design pattern decay negatively impacts testability and

understandability of systems [4] [17].

Previous work in design pattern decay has focused on the

structure of patterns [8] [14] [15] [17] [18] [19]. These are

realized as unwanted or missing artifacts that do not follow the

structural specification of the pattern. When these artifacts

obscure the implementation of a pattern while still maintaining

some of the integrity of the original pattern, they are referred to as

design pattern grime. Alternatively, when these artifacts obscure

an implementation of a pattern to such an extent that the integrity

of the pattern is entirely lost, they are referred to as design pattern

rot. Empirical studies have only confirmed the existence of

pattern grime.

Further work has classified the types of design pattern grime into

three disjoint categories: class grime, modular grime, and

organizational grime [15] [17] [18] [19]. Of these, Schanz and

Izurieta expanded the modular grime category, identifying

strength, scope, and direction as attributes of modular grime [27].

Additionally, Griffith and Izurieta expanded the class grime

category, identifying strength, scope, and direction/context as

attributes of class grime [15].

2.4.1 Design Pattern Specification
The process of identifying pattern grime consists of recognizing

differences between a pattern instance and a pattern’s

specification. A common language used to specify patterns is the

Role-Based Meta-Modeling Language (RBML) [22]. RBML is

realized in the Unified Modeling Language (UML 2.0)1 and is an

abstract language that generalizes each actor in a pattern to a

single common role. Depending on the type of pattern, there will

be a number of possible roles. For example, the Observer pattern

has a Subject role and an Observer role. Observer pattern

instances have classes that fulfill both these roles.

Dae-Kyoo Kim has shown that RBML alone is not sufficient for

specifying patterns because it lacks constraint templates that limit

the capabilities of roles [21]. In order to combat this, the Object-

Constraint Language (OCL) is used to provide necessary

constraints to RBML models.

3. CURRENT RESEARCH CHALLENGES

3.1 Research Gaps
The current knowledge base of design pattern grime features only

structure-based disconformities, or grime that is captured from a

static snapshot of a pattern instance. This works seeks to extend

the knowledge base of pattern grime by considering behavior-

based disconformities, or grime that is captured during the

runtime execution of a design pattern. In an effort to achieve this

goal, the authors have identified the following research gaps.

1. Characterization of Behavioral Grime: Structural grime

is incapable of capturing whether or not a design pattern is

behaving as intended. A pattern instance may have no

structural grime, but the runtime execution of the pattern

may not match the expected runtime execution of the

pattern. Cases such as this are not captured by the current

knowledge base of pattern grime. This notion forms the

basis for this research. Given this, the characterization of

behavioral grime is a gap that needs clear definitions.

2. Behavioral Grime Taxonomy: To the best knowledge of

the authors, no attempt has been made at categorizing the

types of behavioral grime in the context of design patterns.

3. Impacts on Quality: Previous studies have identified the

impact of structure-based grime on quality attributes,

showing that testability and maintainability are negatively

impacted from structural grime [15] [19]. However, no

attempt has been made at quantifying the impact of

behavioral grime on these quality attributes and the

additional quality attributes featured in the ISO 25010

software quality specification.

4. Impacts on Technical Debt: Dale and Izurieta showed

that the injection of modular grime into patterns increases

the technical debt of the pattern [8]. No work has sought

to capture the impact of behavioral grime on technical

debt.

5. Relationships between Behavioral and Structural

Grime: Several questions arise that are concerned with the

relationships between behavioral and structural grime. For

example: How are structural grime and behavioral grime

related? Is the appearance of structural grime causal to the

1 http://www.uml.org/

existence of behavioral grime? Is the reverse true? Are

there cases where structural grime exists but behavioral

grime does not?

6. Tool Support: Currently, there is no known tool support

to operationalize behavioral concepts. Implementing a tool

is an important contribution to the community.

7. Predicting Pattern Decay: No research has looked into

predicting when a pattern is prone to decaying, or even if

certain patterns are more prone to decay. Bridges to these

two research gaps would give valuable insight to

developers regarding the implementation of patterns, and

even when to be aware that a pattern might be near

decaying/rotting.

3.2 Operational Gaps
A pilot study was performed, in the form of a controlled

experiment; in which realizations of observer patterns were

studied. We created three instances of the observer pattern; one

instance behaved as defined, one instance featured Subjects that

waited a significant amount of time before updating their

Observers when their state changed, and the final instance

featured Subjects that did NOT update their Observers when their

state changed. These three instances exemplify cases where,

respectively, (1) a pattern behaves properly, (2) a pattern behaves

properly but a disharmony exists during its lifetime, and (3) a

pattern behaves significantly different from its intended usage.

The SonarQube [13] tool, used to estimate Technical Debt, and

the inCode tool2, used to identify design flaws, were run across

the pattern instances. Neither of these tools identified a major

difference between the three pattern instances, suggesting that

state-of-the-art tools used to identify issues are not capable of

detecting problems concerning design pattern behavior. This

experiment highlights the need to explore this area further.

3.3 Proposed Contributions
To address current gaps, the following contributions are proposed:

1. The formal characterization of behavioral grime in

design patterns

2. The development of taxonomy to classify behavioral

grime

3. The development of empirical studies to capture the

impacts of grime on TD and quality

4. The identification of patterns that are prone to

behavioral grime

5. The creation of a tool that aids in the detection of

behavioral grime

6. The development of a method that allows predictive

capabilities for recognizing grime

3.4 IDoESE Feedback Sought
Advice on the following topics is sought:

1. Overall Scope: Whilst all topics presented in this paper

are interesting and necessary research items, advice on the

estimation of work and its feasibility is sought. For the scope

of a doctoral-level degree, is this plan too ambitious? If so,

what parts should be prioritized?

2 https://www.intooitus.com/products/incode

2. Automation: Currently, there is very little automation

of these processes. This is a result of exploring a new area of

research. To what extent should we focus on operationalizing

behavioral detection and quantification?

3. Pattern Dataset: The only available dataset of design

pattern instances is the Perceron’s dataset [1]. This dataset

only features instances of 10 unique pattern types, all from

the Java programming language. This means that this

research has limited generalizability. Is it necessary or worth

the effort to look at more pattern types and/or patterns

instances from other languages?

4. OBJECTIVES

4.1 Research Objectives
RG1: Investigate design pattern instances for the purpose of

identifying and characterizing internal and external behavioral

grime with respect to proper pattern behavior as defined by the

design pattern specification from the perspective of the software

system in the context of design patterns in open source and

commercial software.

RQ1.1: Does the behavior of a design pattern instance

deviate from the expected behavior of that pattern type?

Rationale: This is the basic question of this research. If it is

possible to identify design pattern instances where the actual

behavior deviates from expected behavior, then the need to

further explore this phenomenon is apparent.

RQ1.2: Do common types of behavioral grime exist within

multiple instances of a single pattern type?

Rationale: If common grime types can be identified within a

specific pattern, other instances of that pattern may be

circumspect to the same type of grime.

RQ1.3: Do common types of behavioral grime exist across

multiple instances of different pattern types?

Rationale: If common types of behavioral grime exist across

different types of patterns, we will have attained some level

of generalizability that applies to a larger set of pattern types.

RG2: Express the difference between structural and behavioral

grime for the purpose of illustrating the importance of studying

behavioral grime with respect to design pattern instances from the

perspective of design pattern instances in the context of open

source and commercial software.

RQ2.1: To what extent can patterns have both structural and

behavioral grime?

Rationale: Consider the grime quadrant in Table 1. Columns

indicate whether structural grime exists in a pattern, and rows

indicate whether behavioral grime exists in the same pattern.

Current research has identified design patterns with grime,

but those patterns are constrained by cases A and B. This

research needs to be expanded to discover patterns that fall in

cases C and D. This will illustrate that this work is novel.

RQ2.2: Does the current knowledge base of structural grime

instances include cases of behavioral grime?

Rationale: There may be behavioral grime in many of the

patterns that exhibit structural grime.

RQ2.3: What is the relationship between behavioral grime

and structural grime?

Table 1 -- Grime quadrant of possible grime types. For a given

pattern, rows correspond to at least once instance of behavioral

grime existing in the pattern, and columns correspond to at least one

case of structural grime existing in the pattern.

Rationale: Intuitively, it appears a relationship exists

between behavioral and structural grime. Discovering the

precise nature of this relationship will help developers

understand pattern decay in the future.

RG3: Quantify the impact of grime in internal and external design

pattern behavior for the purpose of capturing the effects on system

quality and TD with respect to proper pattern behavior as

defined by the design pattern specification from the perspective of

the software system in the context of design patterns in open

source and commercial software.

RQ3.1: To what extent does behavioral grime affect the

quality attributes of a design pattern?

Rationale: This research question seeks to quantify the

impact behavioral grime has on the quality of the pattern.

RQ3.2: Is the quality of certain types of behavioral grime

worse than other types?

Rationale: This question attempts to identify the forms of

behavioral grime that are worse than others.

RQ3.3: To what extent does behavioral grime affect the TD

of a software project?

Rationale: In essence, TD captures the financial impact of

behavioral grime. Understanding this impact is crucial for

developers and project managers alike so decisions regarding

release timelines or refactorings can be made.

RQ3.4: Is the TD of certain types of behavioral grime worse

than other types?

Rationale: This question attempts to identify the forms of

behavioral grime that are worse than others.

RQ3.5: Are the current TD estimation and quality

measurement tools capable of capturing behavioral grime?

Rationale: Behavioral grime may have an impact on the TD

estimate and quality of the pattern. If the current tools are not

sufficient in capturing these impacts, then the tools need to

be extended in order to reflect the impact.

RG4: Investigate the evolution of internal and external behavior

in design patterns for the purpose of capturing trends of

behavioral grime over time with respect to proper pattern behavior

from the perspective of the software system in the context of

pattern in open source and commercial software.

RQ4.1: Can common trends of behavioral grime be captured

as a pattern evolves?

Rationale: This question identifies if patterns are more prone

to certain behavioral grime types. If we can predict which

patterns tend towards building behavioral grime, then

development efforts can be more pro-active in addressing

pattern evolution.

RQ4.2: Can behavioral grime be predicted?

Rationale: This question focuses on the possibility that

underlying mechanisms may exist that allow us to predict

when a pattern will accumulate behavioral grime in the

future.

4.2 Research Metrics
Following the GQM approach [3], several metrics are identified

that will be used to answer the research questions.

M1: Structural Grime Count (SGC) – The total amount of grime

accumulated in a single pattern realization that is identified from

structural models. This metric will be used to answer RQs 2-4.

M2: Behavioral Grime Count (BGC) -- The total amount of grime

accumulated in a single pattern realization that is identified from

behavioral models. This metric will be used to answer RQs 2-4.

M3: Technical Debt Principal (TDP) – A measure of the cost

required to complete a task. This metric will be used to answer

RQ 3.

M4: Technical Debt Interest (TDI) – A measure of differences in

cost required to complete tasks under ideal conditions versus the

current condition of the system. This metric will be used to

answer RQ 3.

M5: Pattern Quality (PQ) – An aggregated measure of the eight

quality characteristics featured in the ISO 25010 software quality

specification [16]. Each quality characteristic is further broken

down into a number of (sub)-characteristics. This metric reflects

an aggregation of the (sub)-characteristics. This metric will be

used to answer RQ 3.

M6: Probability to Deviate (PD) – The probability that a pattern

will accumulate grime in the future, given its pattern type, past

and current SGC, BGC, TDP, TDI, and PQ. This metric will be

used to answer RQ 4.

4.3 Working Hypotheses
H1: There exist instances of behavioral grime that are not

captured by current structural grime models.

H2: Common forms of behavioral grime exist within the same

pattern type.

H3: Common forms of behavioral grime exist across different

pattern types.

H4: Including behavioral grime in the current grime models will

allow the detection of pattern rot.

H5: Quality and TD

H5.1: Behavioral grime has a negative effect on the quality

of the (a) pattern realization, and (b) software system as a

whole.

H5.2: Behavioral grime has a negative effect on the TD

calculation of the (a) pattern realization, and (b) software

system as a whole.

H6: Given the pattern type, and past and current measurements of

SGC, BGC, TDP, TDI, and PQ, it is possible to predict whether a

pattern will accumulate grime in the future, with a degree of

uncertainty.

 Structural grime

does not exist

Structural grime

exists

Behavioral grime

does not exist

Case A Case B

Behavioral grime

exists

Case C Case D

5. APPROACH

5.1 Data Collection
Design pattern instances will be collected across a variety of open

source and commercial software systems. The Perceron’s dataset

features 4500 pattern instances from Java open source software

systems [1]. The patterns featured in this database will be

downloaded to provide an initial set of design pattern instances.

Additionally, design patterns will be manually extracted from a

commercial software system owned by a local firm with an

established relationship.

Models of each design pattern instance will be captured using

UML class diagrams and UML sequence diagrams3. Class

diagrams capture the structural elements of the pattern instance,

and sequence diagrams capture the behavioral elements of the

pattern instance. Additionally, pattern specifications for each

pattern type will be captured in UML class and sequence

diagrams, using RBML and OCL.

The PQ, TDI, and TDP of each pattern instance will be calculated.

These metrics will be calculated for both individual pattern

instances and the entire software system that the pattern originates

from. This data will be stored in a relational database.

5.2 Research Approach
Once the data collection process is complete, a variety of case

studies and experiments will be used to answer the research

questions. Juristo and Moreno’s guide on experimentation in

software engineering will be used to initially construct

experiments [20].

RQ1.1-3 will be evaluated using a case study, wherein the

taxonomy of design pattern grime will be extended to incorporate

behavioral grime types. All pattern instances will be categorized

according to their behavioral and structural conformance from the

grime quadrant of Table 1. We will manually sort through each

category, identifying design pattern violations. Violations that

share similarities (OCL or RBML) will be grouped.

RQ2.1-3 will be evaluated using a case study. Conformance

checking algorithms will be implemented that validate the

structural conformance and behavioral conformance according to

the work done by [21] [28]. All available pattern instances will be

categorized into one of the four groups defined in Table 1. A

binomial regression model will be fitted from the sample in order

to answer RQ2.3.

RQ3.1-5 will be evaluated using a controlled experiment. Patterns

will be blocked according to pattern type and then randomly

selected from the available dataset. Patterns will be evaluated for

TD and quality using a suite of static and dynamic analysis tools,

as discussed in section 2. After measurements are recorded, forms

of grime will be randomly selected and injected into patterns.

After injecting, we will re-evaluate the TD and quality

measurements. To analyze the data, two ANOVA tests will be

utilized. RQ3.1-4 will be answered by fitting a two mean model,

containing a mean for non-injected patterns and a mean for

injected patterns. That is, the respective TD and quality

measurements from all tools that analyzed non-injected patterns

will be averaged. Respectively, the same analysis will be done for

injected patterns. RQ3.5 will be answered by fitting a separate

means model; that is, each quality analysis tool will have a mean.

3 http://www.uml.org/

Variance will be measured over all the analysis tools, for each of

non-injected and injected patterns.

RQ4.1-2 will be evaluated using an observational study. Patterns

will be divided by pattern type and assessed for the existence of

grime across their lifetime in terms of project releases. For each

release, a record will exist documenting whether that pattern

instance has grime or not. Further, an ARIMA analysis will be

performed. This will give an indication into the tendencies of a

pattern to collect grime as it ages.

6. THREATS TO VALIDITY
There exist several threats to the validity of this study. Internal

validity refers to the ability to recognize a causative relationship

in the study, and not as a result of confounding variables. Internal

validity is threatened because other design defects may exist

alongside grime in a pattern; thus design defects are a

confounding variable in this study. To attempt to remove the

effect of design defects, we utilize a large number of pattern

instances in the analysis and block across pattern type. This

mitigates the chance that a design defect will affect the results of

the study.

External validity refers to the ability to generalize from the results

of the study. External validity is threatened because of the limited

datasets of design pattern instances. To combat this threat, we

have utilized the Perceron’s dataset, which is the only publically

available dataset of patterns that features a large number of

instances (over 4500), and pattern instances from a local

commercial software firm. Patterns from both these datasets are

implemented in Java, and the Perceron’s dataset features only

open source patterns. Therefore, the ability to generalize the

results is limited to the population of patterns in this study.

7. CONCLUSIONS
We have outlined the work that will result in a doctoral

dissertation in hopes that we can receive feedback on the merit of

this research. Research gaps are presented and studies are

designed that fill them. We intend to contribute novel research

that strengthens the current state of empirical software

engineering.

This research is in its early stages. Currently, preliminary research

has been performed, for the purpose of illustrating the research

gaps. This research includes generating pattern instances and

manually injecting grime into them, as described in section 3.2.

Additionally, two potential forms of behavioral grime have been

identified. Next steps call for the analysis of a larger number of

pattern instances that expand the taxonomy of behavioral grime.

8. REFERENCES
[1] Ampatzoglou, A., Michou, O., and Stamelos, I. Building and

mining a repository of design pattern instances: Practical and

research benefits, Entertainment Computing, Volume 4,

Issue 2, April 2013, Pages 131-142, ISSN 1875-9521, DOI=

http://dx.doi.org/10.1016/j.entcom.2012.10.002.

[2] Bansiya, J.; Davis, C.G., A hierarchical model for object-

oriented design quality assessment, Software Engineering,

IEEE Transactions on , vol.28, no.1, pp.4,17, Jan 2002

[3] Basili, V., Caldiera, G., and Rombach, H. D. 1994. The goal

question metric approach. Encyclopedia of Software

Engineering. 2, 528-532. DOI=http://dx.doi.org/

10.1002/0471028959.sof142

http://dx.doi.org/10.1016/j.entcom.2012.10.002
http://dx.doi.org/%2010.1002/0471028959.sof142
http://dx.doi.org/%2010.1002/0471028959.sof142

[4] Bieman, J.M., and Wang, H. 2006. Design pattern coupling,

change proneness, and change coupling: A pilot study.

Technical Report. Colorado State University.

[5] Brown, W. H., Malveau, R. C., McCornnick III, H. W., and

Mowbray, T. J. 1998. Antipatterns: Refactoring Software,

Architectures, and Projects in Crisis. Wiley & Sons, NY.

[6] Curtis, B., Sappidi, J., and Szynkarski, A. Estimating the

Principal of an Application's Technical Debt, IEEE Software,

vol. 29, no. 6, pp. 34-42, Nov.-Dec., 2012 DOI=

http://doi.ieeecomputersociety.org/10.1109/MS.2012.156

[7] Cunningham, W. 1992. The WyCash portfolio management

system. SIGPLAN OOPS Mess. 4, 2 (December 1992), 29-

30. DOI=http://doi.acm.org/10.1145/157710.157715

[8] Dale, M.R., and Izurieta, C. 2014. Impacts of design pattern

decay on system quality. In Proceedings of the 8th

ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM '14). ACM, New

York, NY, USA, Article 37, 4 pages.

DOI=http://doi.acm.org/10.1145/2652524.2652560

[9] Eick, S.G., Graves, T.L., Karr, A.F., Marron, J.S., and

Mockus, A. Does code decay? Assessing the evidence from

change management data, Software Engineering, IEEE

Transactions on, vol.27, no.1, pp.1-12, Jan 2001.

[10] Fowler, M., Beck, K., Brant, J., and Opdyke, W. 1999.

Refactoring: Improving the Design of Existing Code.

Addison-Wesley Longman, Inc., Reading, MA.

[11] France, R.B., Kim, Dae-Kyoo, Ghosh, S., and Song, E. 2004.

A UML-based pattern specification technique, Software

Engineering, IEEE Transactions on, vol.30, no.3, pp.193,

206.

DOI=http://dx.doi.org/10.1109/TSE.2004.1271174

[12] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design

Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley, 1994.

[13] Gaudin, O. Evaluate your technical debt with Sonar, Sonar,

Jun, 2009.

[14] Griffith, I., and Izurieta, C. 2013. Design Pattern Decay: An

Extended Taxonomy and Empirical Study of Grime and its

Impact on Design Pattern Evolution. In Proceedings of the

11th ACM/IEEE International Doctoral Symposium on

Empirical Software Engineering and Measurements, USA

[15] Griffith, I., and Izurieta, C. 2014. Design pattern decay: the

case for class grime. In Proceedings of the 8th ACM/IEEE

International Symposium on Empirical Software

Engineering and Measurement (ESEM '14). ACM, New

York, NY, USA, Article 39, 4 pages.

DOI=http://doi.acm.org/10.1145/2652524.2652570

[16] ISO/IEC 25010: Systems and software engineering. Systems

and Software Quality Requirements and Evaluation

(SQuaRE). System and software quality models, 2011.

[17] Izurieta, C., and Bieman, J. 2007. How software designs

decay: A pilot study of pattern evolution. In Proceedings of

the First Symposium on Empirical Software Engineering and

Measurement (Madrid, Spain, 2007). ESEM 2007. 449-451.

DOI= http://dx.doi.org/10.1109/ESEM.2007.55.

[18] Izurieta, C. 2009. Decay and Grime Buildup in Evolving

Object Oriented Design Patterns. Ph.D. Dissertation.

Colorado State University, Fort Collins, CO, USA.

Advisor(s) James Bieman. AAI3385139.

[19] Izurieta, C., Bieman, J. 2013. A multiple case study of design

pattern decay, grime, and rot in evolving software systems. J.

Software Quality. 21, 2 (Jun. 2013), 289-323. DOI=

http://dx.doi.org/10.1007/s11219-012-9175-x.

[20] Juristo, N., Moreno, A.M. 2013. Basics of Software

Engineering Experimentation. Springer, US.

[21] Kim, D. 2004. A Meta-Modeling Approach to Specifying

Patterns, Ph.D. Dissertation. Colorado State University, Fort

Collins, CO, USA. Advisor(s) Robert France.

[22] Kim, D. The Role-Based Metamodeling Language for

Specifying Design Patterns. In Toufik Taibi, editor, Design

Pattern Formalization Techniques. Idea Group Inc., 2006.

[23] Letouzey, J., Ilkiewicz, M., Managing Technical Debt with

the SQALE Method, IEEE Software, vol. 29, no. 6, pp. 44-

51, Nov.-Dec., 2012.

[24] Marinescu, R., Assessing technical debt by identifying

design flaws in software systems, IBM Journal of Research

and Development , vol.56, no.5, pp.9:1,9:13, Sept.-Oct. 2012

DOI=http://dx.doi.org/10.1147/JRD.2012.2204512

[25] Nugroho, A., Visser, J., and Kuipers, K. 2011. An empirical

model of technical debt and interest. In Proceedings of the

2nd Workshop on Managing Technical Debt (MTD '11).

ACM, New York, NY, USA, 1-8.

DOI=http://doi.acm.org/10.1145/1985362.1985364

[26] Sangal, N., Jordan, E., Sinha, V., and Jackson, D. 2005.

Using dependency models to manage complex software

architecture. In Proceedings of the 20th annual ACM

SIGPLAN conference on Object-oriented programming,

systems, languages, and applications (OOPSLA '05). ACM,

New York, NY, USA, 167-176.

DOI=http://doi.acm.org/10.1145/1094811.1094824

[27] Schanz, T., and Izurieta, C. 2010. Object oriented design

pattern decay: a taxonomy. In Proceedings of the 2010 ACM-

IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM '10). ACM, New

York, NY, USA, Article 7, 8 pages.

DOI=http://doi.acm.org/10.1145/1852786.1852796

[28] Strasser, S., Frederickson, C., Fenger, K., and Izurieta, C.

2011. An automated software tool for validating design

patterns. In Proceedings of the of ISCA 24th International

Conference on Computer Applications in Industry and

Engineering (HI, USA, November 16-18). CAINE'11.

[29] Tom, E., Aurum, A., and Vidgen, R. 2013. An exploration of

technical debt. J. Syst. and Softw. 86, 6 (Jun. 2013), 1498-

1516. DOI=http://dx.doi.org/10.1016/j.jss.2012.12.052.

[30] Wong, S., Cai, Y., Kim, M., and Dalton, M. 2011. Detecting

software modularity violations. In Proceedings of the 33rd

International Conference on Software Engineering

(Honolulu, HI, USA, May 21-28). ICSE’11, 411-420. DOI=

http://doi.acm.org/10.1145/1985793.1985850

[31] Wagner, S., Lochmann, K., Heinemann, L., Kläs, M.,

Trendowicz, A., Plösch, R., Seidl, A., Goeb, A., and Streit, J.

2012. The quamoco product quality modelling and

assessment approach. In Proceedings of the 34th

International Conference on Software Engineering (ICSE

'12). IEEE Press, Piscataway, NJ, USA, 1133-1142.

http://doi.ieeecomputersociety.org/10.1109/MS.2012.156
http://doi.acm.org/10.1145/157710.157715
http://doi.acm.org/10.1145/2652524.2652560
http://dx.doi.org/10.1109/TSE.2004.1271174
http://doi.acm.org/10.1145/2652524.2652570
http://dx.doi.org/10.1109/ESEM.2007.55
http://dx.doi.org/10.1007/s11219-012-9175-x
http://dx.doi.org/10.1147/JRD.2012.2204512
http://doi.acm.org/10.1145/1985362.1985364
http://doi.acm.org/10.1145/1094811.1094824
http://doi.acm.org/10.1145/1985793.1985850

