
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

How do Technical Debt Payment Practices Relate to

the Effects of the Presence of Debt Items in

Software Projects?

Abstract—Context: Knowing the effects of technical debt (TD)

can support software development teams in the prioritization of

TD items to pay off. However, little is known about the relations

between the effects of TD and TD payment practices. Having this

knowledge can provide valuable information for decision making

about which payment practice can be applied given the presence

of specific effects of TD. Aims: To investigate, from the point of

view of software practitioners, (i) which TD payment practices

have been used when certain effects of the presence of debt are felt

in software projects and (ii) the reasons for not paying debt items

despite the effects they are causing to the project. Method: We

analyze quantitatively and qualitatively data collected from a

survey with 432 practitioners across four countries. Results:

Among the identified relations, the practice “code refactoring” is

commonly used to pay debt items off when the effects “delivery

delay” and “rework” are felt in software projects. On the other

hand, when practitioners face the TD effects “low external

quality” and “delivery delay”, they commonly justify the non-

payment of the debt items indicating the need of “focusing on

short term goals”. Conclusion: We organize the relationship

between TD effects, and payment practices and reasons for not

eliminating debt items. All this information is structured in an

alluvial diagram, which can facilitate the visualization of the

identified relations.

Keywords—technical debt, technical debt effects, technical

debt management, technical debt payment

I. INTRODUCTION

Technical debt (TD) refers to the problem of pending or
incomplete tasks and artifacts that bring short-term gains to a
software project but may have to be paid with interest later on
in its life cycle [1, 2]. Knowing the possible effects of TD and
performing TD management activities are necessary to deal
with the drawbacks of the presence of debt items [3,4]. Having
information about TD effects can support software
development teams in prioritizing debt items for payment and
identifying payment practices to eliminate those items [4,5].
Moreover, knowing the relationship between TD effects and
payment practices can provide valuable information for
decision making on which payment practice can be applied
given the presence of specific effects of TD.

Several works have investigated TD effects [4-8] and TD
payment practices [7,9-11]. For example, Martini and Bosh
[5] investigated the effects of architecture debt conducting a
case study in five large companies, and Apa et al. [10]
identified the practices for eliminating TD by applying a
survey in software startups. Although these studies presented
findings on TD effects and payment practices, they did not
focus on the possible relationship between them.

In this work, we bridge this knowledge gap by
investigating, from the point of view of software practitioners,
(i) which TD payment practices have been used when certain
effects of the presence of debt are felt in software projects and

(ii) the reasons for not paying debt items despite the effects
they are causing to the project. We use data collected in the
InsighTD Project’ context, a globally distributed family of
industrial surveys to investigate causes, effects, and
management of TD. In total, 432 practitioners answered the
survey conducted in Brazil, Colombia, Chile, and the United
States. We analyzed these answers, both quantitatively and
qualitatively.

We ground this work in two others from the InsighTD
Project. In [4], we investigated the effects of TD considering
only the Brazilian replication of InsighTD. Thus, we revisited
its results to include the data from the other three replications.
In [11], we approached the TD payment practices and the
reasons for the non-payment of debt items. This last work
considers all the four replications; thus, we used its findings
(lists of practices and reasons) to investigate the relationship
between them and the effects of TD.

Results show that delivery delay, low maintainability, and
rework are the most common effects felt by practitioners.
Concerning the relationship of effects with TD payment
practices and reasons for not paying TD items, we discuss the
identified relations between practitioner’s top 10 (most
commonly found in software projects) lists. Among others, the
practice code refactoring is commonly used to pay debt items
when the effects delivery delay and rework are felt in software
projects. On the other hand, when practitioners face the TD
effects low external quality and delivery delay, they
commonly justify the non-payment of debt items indicating a
need for focusing on short term goals. We represented the
identified relationships using an alluvial diagram.

This paper is organized as follows. Section II presents
some background information. Section III presents the
research method. Section IV presents the results. Section V
presents the alluvial diagram for supporting the visualization
of the relationships between effects, TD payment practices,
and reasons. Section VI discusses the implications of the study
for researchers and practitioners. Section VII discusses the
threats to validity. Finally, Section VIII presents the future
work.

II. BACKGROUND

Several works have approached the topics of TD effects
and payment practices. Concerning the effects of TD, Yli-
Huumo et al. [6] conducted interviews with 17 practitioners
from two software companies and reported that workarounds,
hours, cost, and poor quality are effects of TD. The mapping
study performed by Li et al. [7] identified that TD affects
software quality attributes, such as maintainability, reliability,
security, portability, and performance efficiency.

Martini and Bosch [5] conducted a case study in six large
software companies for investigating the effects caused by the

presence of architecture debt. As a result, the authors defined
a model of effects that can be used to prioritize architecture
debt items. In another work on the area, Besker et al. [8]
performed a systematic review on the effects of architecture
debt and identified the following items: flexibility,
maintenance and evolvability, innovation and system growth,
performance degradation, and reliability.

Finally, in [4] we report the effects of TD as cited by 107
practitioners from the Brazilian software industry. The top 10
most commonly cited were: low quality, delivery delay, low
maintainability, rework, financial loss, team demotivation,
stakeholder dissatisfaction, inadequate documentation, low
performance, and bad code.

Concerning TD payment, Li et al. [7] identified the
following categories of TD payment practices: refactoring,
rewriting, automation, reengineering, repackaging, bug fixing,
and fault tolerance. In another systematic literature review,
Behutiye et al. [9] investigated TD payment practices used in
agile software development. The authors indicated that
refactoring was the most used practice. Lastly, Apa et al. [10]
applied a survey for investigating TD in startups. The authors
identified that refactoring, redesign, and rewrite of code are
TD payment practices used in startups.

In our previous work [11], based on 432 answers from
Brazilian, Chilean, Colombian, and North American
practitioners, we identified a set of 34 TD payment practices
and 28 reasons for the non-application of those practices. We
reviewed these results, resulting in a slight update on the
number of occurrences of each practice and reason. Table I
summarizes the 10 most commonly cited practices, reporting
the practice name and the total number (i.e., count) of citations
(#CP). The column %PP presents the percentage of #CP in
relation to the total of all projects, revealing how frequently
each practice was used in software projects.

TABLE I. TOP 10 TD PAYMENT-RELATED PRACTICES [11].

NO Practice #CP %PP

1st Code refactoring 59 39.1%
2nd Investing effort on TD payment activities 23 15.2%
3rd Design refactoring 16 10.6%
4th Investing effort on testing activities 15 9.9%
5th Prioritizing TD items 12 7.9%
6th Monitoring and controlling project activities 10 6.6%
7th Negotiating deadline extension 9 6.0%
8th Increasing the project budget 8 5.3%
9th Solving technical issues 8 5.3%
10th Update system documentation 8 5.3%

Table II summarizes the 10 most commonly cited reasons
for non-payment. This table reports the reason name and the
total number (i.e., count) of citations (#CR). The column
%PR presents the percentage of #CR in relation to the total
of all projects.

TABLE II. TOP 10 REASONS FOR NON-PAYMENT OF TD ITEMS [11].

NO Reason #CR %PR

1st Focusing on short term goals 52 30.8%
2nd Lack of organizational interest 35 20.7%
3rd Cost 24 14.2%
4th Lack of time 19 11.2%
5th Customer decision 11 6.5%
6th Lack of resources 8 4.7%
7th Complexity of the TD item 7 4.1%
8th Complexity of the project 5 3.0%
9th Insufficient management view about TD payment 5 3.0%
10th The project was discontinued 5 3.0%

Although these studies reported several findings on TD
effects and payment, none of them investigated the
relationship between effects and TD payment practices and
reasons for TD non-payment. We address this knowledge gap
in this paper. For that, we revisit the list of effects from [4], by
considering data from three new replications of InsighTD, and
use the results on TD payment practices and reasons from [11]
as is.

III. RESEARCH METHOD

This section presents the research questions and explains
the data collection and analysis procedures.

A. Research Questions

Our main research question (RQ) is “How do technical
debt payment practices, and the reasons for not applying
them, relate to the effects of the presence of debt items in
software projects?”. This question aims to identify the
practices used to pay TD items off when practitioners are
aware of TD effects. Besides, the RQ also seeks to recognize
the reasons for not paying TD items off when practitioners feel
these items’ effects on their projects. To investigate this RQ,
we derived the following questions:

• RQ1: What are the primary TD effects felt by software
practitioners in their projects?

• RQ2: What are the leading payment practices used for
software practitioners when they felt TD effects in their
projects?

• RQ3: What are the leading reasons considered by
software practitioners to justify the non-payment of TD
when they face TD effects in their projects?

B. Data Collection

This work uses data collected from the InsighTD survey.
Although the survey is composed of 28 questions [4], we use
a subset of its questions, as presented in Table III. The
characterization of the participants and their workspace are
captured in Q1 to Q8. In Q13, the participants described an
example of TD. Based on the example, the participants
discussed TD effects in Q20 and TD payment in Q26 and Q27.

The survey invitation was sent by e-mail using LinkedIn,
industry-affiliated member groups, mailing lists, and industry
partners. Only practitioners were invited to participate.

TABLE III. SUBSET OF THE INSIGHTD SURVEY’S QUESTIONS RELATED

TO TD EFFECTS AND TD PAYMENT (ADAPTED FROM [4])

No. Question (Q) Description Type

Q1 What is the size of your company? Closed
Q2 In which country you are currently working? Closed
Q3 What is the size of the system being developed in that project? Closed
Q4 What is the total number of people of this project? Closed
Q5 What is the age of this system up to now? Closed
Q6 To which project role are you assigned in this project? Closed
Q7 How do you rate your experience in this role? Closed
Q8 Which of the following most closely describes the

development process model you follow on this project?
Closed

Q13 Give an example of TD that had a significant impact on the
project that you have chosen to tell us about:

Open

Q20 Considering the TD item you described in question 13, what
were the impacts felt in the project?

Open

Q26 Has the debt item been paid off (eliminated) from the project? Closed
Q27 If yes, how? If not, why? Open

C. Data Analysis

Due to the questionnaire being composed of closed and
open-ended questions, we performed different data analysis
procedures. For closed questions, we used descriptive
statistics to calculate the mode and median statistics and the
share of participants choosing each option. These procedures
were applied for the characterization questions.

For the open-ended questions, we applied qualitative data
analysis techniques [12]. In answers given to Q20 and Q27,
following the process previously described in [4] and [11], we
applied manual open coding resulting in a set of codes. These
codes were divided into three subsets. The first subset was
composed of the effects identified in Q20 (RQ1). The second
and third subsets was formed based on the answers to Q26
(yes/no question). If the answer was positive, the code was
associated with TD payment practices (RQ2), otherwise, the
code was associated to reasons for not paying TD items (RQ3).
This analysis was performed iteratively until no new codes
were identified, resulting in three subsets with their list of
codes and their respective frequency. All the analyses were
performed by at least three researchers, two of them acting as
coders and one of them as reviewer. For example, the effects
schedules are impacted significantly, not meeting deadlines,
and missed deadlines were cited by three survey participants.
As these answers are associated with problems in meeting
deadlines, they were unified under the code delivery delay.

As the answers given to Q20 and Q27 were related to the
example of TD item described in Q13, we can relate the
effects with TD payment practices (RQ2) and the reasons for
not paying TD items off (RQ3). For instance, in the response
of a participant, we found the effects delivery delay and team
demotivation in answers given to Q20. The same participant
indicated the practice code refactoring in her/his answer to
Q27. Then, we identified two relationships between effects
and practices: delivery delay and code refactoring, and team
demotivation and code refactoring. This relationship indicates
the existence of a co-occurrence among them, i.e., the
participant used code refactoring for paying a TD item off,
whose effects caused in the project were delivery delay and
team demotivation. This analysis procedure resulted in two
lists containing the relationships between effects and
practices, and effects and reasons for not paying TD items off
along with their respective number of occurrences.

IV. RESULTS

The survey received 432 valid answers: 107 from Brazil,
92 from Chile, 134 from Colombia, and 99 from the United
States.

A. Demographics

The majority of the participants worked in medium-sized
organizations (38%, organizations with 51 to 1000
employees), followed by large (33%, more than 1000
employees) and small (29%, up to 50 employees). The
participants followed mainly hybrid process model (44%),
followed by agile (41%), and traditional (15%). Besides, they
worked in teams composed of 5-9 people (31%), followed by
teams with 10-20 people (25%), more than 30 people (19%),
less than 5 people (17%), and 21-30 people (8%).

Concerning the role performed by the participants, 42% of
are developers, but we found project leaders or managers
(19%), software architects (17%), testers (8%), requirement
analysts (4%), process analysts (3%), and others (7%). Most

respondents identified themselves as having high-level of
experience (59%), followed by middle (29%) and low-level of
experience (12%).

Systems mentioned by participants were mainly age
between 2 and 5 years (35%), followed by ones with 1 to 2
years of age (23%), 5 to 10 years old (16%), less than 1-year-
old (16%) and more than ten years old (10%). Besides, the
system size was generally between 10 KLOC and 1 million
LOC (63%), followed by systems with size between 1 to 10
million LOC (16%), less than 10 KLOC (14%), and more than
10 million LOC (7%).

B. TD Effects felt in Software Projects (RQ1)

We identified 80 TD effects, available at
https://bit.ly/2IGfKZB. Table IV summarizes the 10 most
commonly cited ones. This table reports the effect name and
the total number (i.e., count) of citations (#CE). #CE also
indicates the number of projects that felt a TD effect. The
column %PE presents the percentage of #CE in relation to the
total of all projects (432), revealing how frequently each effect
was felt in software projects.

The most cited effect is delivery delay, which impacts 25%
of the software projects, followed by low maintainability,
rework, and low external quality, impacting about 18% of the
projects.

TABLE IV. TOP 10 TD EFFECTS

NO Effect #CE %PE

1st Delivery delay 99 25.0%
2nd Low maintainability 78 19.7%
3rd Rework 70 17.7%
4th Low external quality 68 17.2%
5th Increased effort 31 7.8%
6th Increased cost 28 7.1%
7th Low performance 25 6.3%
8th Need of refactoring 23 5.8%
9th Stress with stakeholders 22 5.6%
10th Team demotivation 20 5.1%

C. Relationship between TD Effects and Payment Practices

(RQ2)

Table V presents the relationship between the top 10
effects and the top 10 payment practices, indicating the
number of times that each relationship occurred. The table
containing all relationships is available at
https://bit.ly/2IGfKZB. We can observe that the practices
code refactoring and investing effort on TD payment activities
stand out, both are used for eliminating TD items when a
project faces all the top 10 effects. Besides, these practices
along with design refactoring, monitoring and controlling
project activities, and increase the project budge were most
commonly used when a project faced the effect delivery delay.

When software teams feel the effect low external quality,
they commonly use the practices investing effort on testing
activities and monitoring and controlling project activities.
The practice prioritizing TD items is commonly used when the
effect low maintainability is felt in a project. Lastly, when
practitioners feel the effect rework, they commonly use the
practices increasing the project budget, negotiating deadline
extension, solving technical issues, and update system
documentation.

https://bit.ly/2IGfKZB
https://bit.ly/2IGfKZB

TABLE V. RELATIONSHIP BETWEEN TOP 10 EFFECTS AND TOP 10 TD

PAYMENT-RELATED PRACTICES

Payment Practice

Effect

D
el

iv
er

y
 d

el
ay

L
o
w

 m
ai

n
ta

in
ab

il
it

y

R
ew

o
rk

L
o
w

 e
x
te

rn
al

 q
u
al

it
y

In
cr

ea
se

d
 e

ff
o
rt

In
cr

ea
se

d
 c

o
st

L
o
w

 p
er

fo
rm

an
ce

N
ee

d
 o

f
re

fa
ct

o
ri

n
g

S
tr

es
s

w
it

h
 s

ta
k
eh

o
ld

er
s

T
ea

m
 d

em
o
ti

v
at

io
n

Code refactoring 16 7 12 7 2 3 6 7 2 1

Investing effort on TD

payment activities

7 4 5 5 4 2 3 1 2 1

Design refactoring 7 2 2 3 1 1 1 2 0 1

Investing effort on testing 3 0 3 4 2 0 0 2 0 0

Prioritizing TD items 1 3 2 1 0 0 1 1 1 1

Monitoring and controlling

project activities

2 1 0 2 0 0 0 2 0 0

Negotiating deadline extension 3 0 4 0 0 2 0 0 1 0

Increasing the project budget 4 0 4 0 0 4 0 0 2 0

Solving technical issues 2 1 4 0 0 0 0 0 0 1

Update system doc. 1 1 2 1 1 0 0 0 0 0

D. Relationship between TD Effects and Reasons for not

paying TD off (RQ3)

Table VI presents the relationship between the top 10
effects and the top 10 reasons for not paying TD items off,
indicating the number of times that each relationship occurred.
The complete table is available at https://bit.ly/2IGfKZB. We
notice that the reasons focusing on short term goals and lack
of organizational interest are used for explaining the non-
payment of TD items when a project faced all top 10 effects.

When software teams feel the effect delivery delay, they
commonly justify the non-payment of TD using the reasons
lack of time, insufficient management view about TD payment,
and the project was discontinued. The reasons lack of
organizational interest, cost, lack of time, customer decision,
and lack of resources are used for explaining the non-payment
of TD items when a software project faced the effect low
maintainability. When a project feels the effect low external
quality, the team justify the non-elimination of TD using the
reasons focusing on short term goals and complexity of the TD
item. Lastly, the reasons lack of time, lack of resources,
complexity of the project, and the project was discontinued are
used for explaining the non-payment of TD when software
teams feel the effects rework, low external quality, increased
cost, and low performance, respectively.

TABLE VI. RELATIONSHIP BETWEEN TOP 10 EFFECTS AND TOP 10

REASONS FOR NON-PAYMENT OF TD ITEMS

Reason

Effect

D
el

iv
er

y
 d

el
ay

L
o
w

 m
ai

n
ta

in
ab

il
it

y

R
ew

o
rk

L
o
w

 e
x
te

rn
al

 q
u
al

it
y

In
cr

ea
se

d
 e

ff
o
rt

In
cr

ea
se

d
 c

o
st

L
o
w

 p
er

fo
rm

an
ce

N
ee

d
 o

f
re

fa
ct

o
ri

n
g

S
tr

es
s

w
it

h
 s

ta
k
eh

o
ld

er
s

T
ea

m
 d

em
o
ti

v
at

io
n

Focusing on short term goals 11 8 7 12 5 4 4 2 1 1

Lack of organizational interest 1 9 5 4 5 4 1 1 3 2
Cost 2 7 4 3 4 2 2 1 0 2

Lack of time 4 4 4 3 2 2 2 1 0 0

Customer decision 1 4 1 2 1 0 0 0 0 1

Lack of resources 1 2 0 1 1 2 0 0 0 1

Complexity of the TD item 1 0 1 3 1 0 0 1 0 1

Complexity of the project 0 1 0 0 0 0 2 0 0 0

Insufficient management view

about TD payment

3 1 0 0 1 0 0 0 0 1

The project was discontinued 2 1 1 1 0 0 0 0 2 0

V. DISCUSSION

We organized the relationships between TD effects, TD
payment-related practices, and reasons for not paying TD
items in an alluvial diagram. This diagram is composed of
nodes and links. A node represents a source, while a link
shows a relation between nodes. Further, a link can have a
magnitude. The greater this magnitude, the wider the link.

The effects, payment practices, and reasons were
represented as nodes and the relationships between them as
links. We also defined the magnitude of each link. To
calculate it, we identified all practices related to each effect.
Considering each effect, we summed the number of
occurrences of each relationship between the effect and each
practice (frequency of relationship with a practice). Also, we
summed the number of relationships between the effect and
all their practices (frequency of relationship with all
practices). To calculate each relationship’s value, we divided
the frequency of relationship with a practice by the frequency
of relationship with all practices. The obtained result is
multiplied by 100. For example, the effect delivery delay was
related to the practice design refactoring seven times; then, the
frequency of relationship with a practice is seven. As that
effect has 64 relationships in total with practices, its frequency
of relationship with all practices is 64. The percentage of the
relationship between need of refactoring and code refactoring
is 7/64*100 = ~11%. We also followed this procedure for
computing the magnitude of each relationship between effects
and their reasons for not paying TD items.

Fig. 1 shows the alluvial diagram considering the top 10
effects and their top 3 practices and reasons. The complete
diagram is available at https://bit.ly/3kALUm0. Analyzing the
diagram, we notice that the practices code refactoring and
investing effort on TD payment activities are the most used for
eliminating TD items when a software project faces the top 10
effects. On the other hand, the reasons for not paying TD items
off focusing on short term goals, lack of organizational
interest, lack of time, and cost are the most used for explaining
the TD non-payment when a software project faces the top 10
effects. Visualizing the relationships, the diagram also
presents the percentage of each relationship. Let us consider
the effect need of refactoring. Comparing the link’s width of
its practices, we can notice that code refactoring is the most
common practice used by software teams when this effect is
felt, and the magnitude of this relationship is 32%.

This information can be useful in two scenarios. Firstly, if
a team is starting to manage TD, it can learn about the effects
of TD and its relationship to (i) practices for eliminating them
and (ii) reasons for not eliminating them. Secondly, if a team
has experience in TD management, the diagram can reveal
new effects, practices, or reasons for not paying TD items off.
In both situations, this knowledge can be used to improve the
team's workspace, facilitating the inclusion or continuity of
TD management activities in its daily activities.

VI. IMPLICATIONS FOR PRACTITIONERS AND RESEARCHERS

Practitioners can use the list of TD effects to support the
prioritization of TD items to pay off. The relationship between
effects and practices give directions on which practices can be
applied given the presence of specific effects. Also, the
relationship between effects and reasons can shed some light
on why TD items have not been paid due to the presence of
some effects.

https://bit.ly/2IGfKZB
https://bit.ly/3kALUm0

 For researchers, our findings support new research on the
relationship between TD effects and TD payment practices in
a problem-driven way. For example, can the prioritization of
TD items consider the impact of both their effects and the
payment practices related to these effects?

VII. THREATS TO VALIDITY

We identified some threats to validity following the
categorization of Wohlin et al. [13]. About the conclusion
validity, a threat arises from the coding process as it is
subjective. To mitigate this threat, the coding process was
performed by two researchers and disagreements were
resolved by a third researcher. We reduced the external
validity threats by inviting practitioners from different
workspaces and countries. Although the survey was answered
by a good number of participants (#432), we are not be able to
estimate the representativeness of our sample given the lack
of empirical data characterizing the population. We intend to
use more data from other InsighTD replications to reach more
reliable and empirically founded results. Other threats to
validity that affect the InsighTD project are further discussed
in [4].

VIII. FINAL REMARKS

This work identifies the effects felt by software
practitioners due to the presence of TD items in their projects.
Further, we investigated the co-occurrence between TD
payment practices and reasons for not paying TD off, and TD
effects. Our results can support practitioners and researchers to
understand why some effects are not paid off and identify the
practices commonly used for eliminating each of these effects.

The next steps of this work include: (i) to improve the
external validity considering more data from other InsighTD
replications, and (ii) to run other analysis to investigate if the
relationships are impacted by other variables, such as type of
debt, used process model, participant experience and role, and
organization/project size.

REFERENCES

[1] C. Izurieta, A. Vetrò, N. Zazworka, Y. Cai, C. Seaman and F. Shull,
“Organizing the technical debt landscape,” 2012 Third Int. Workshop
on Managing Technical Debt (MTD), Zurich, 2012, pp. 23-26.

[2] R.O. Spínola, N. Zazworka, A. Vetrò, F. Shull and C. Seaman,
“Understanding automated and human based technical debt
identification approaches-a two-phase study,”. Journal of the Brazilian
Computer Society, 25 (5), 2019, doi: 10.1186/s13173-019-0087-5.

[3] P. Kruchten, R.L. Nord and I. Ozkaya, “Technical debt: from metaphor
to theory and practice,” IEEE Software, vol. 29, no. 6, pp. 18-21, Nov.-
Dec. 2012, doi: 10.1109/MS.2012.167.

[4] Not presented due to double blind review.

[5] A. Martini and L. Bosch, “On the interest of architectural technical
debt: Uncovering the contagious debt phenomenon,” Journal of
Software: Evolution and Process, 29:e1877, 2017.

[6] J. Yli-Huumo, A. Maglyas and K. Smolander, “The benefits and
consequences of workarounds in software development projects,” 2015
6th Int. Conference of Software Business (ICSBO), p. 1–16, 2015.

[7] Z. Li, P. Avgeriou and P. Liang, “A systematic mapping study on
technical debt and its management,” Journal of Systems and Software,
v. 101, p. 193–220, 2015, doi: 10.1016/j.jss.2014.12.027.

[8] T. Besker, A. Martini and J. Bosch, “Managing architectural technical
debt: A unified model and systematic literature review,” Journal of
Systems and Software, v. 135, p. 1–16, 2018.

[9] W.N. Behutiye, P. Rodríguez, M. Oivo and A. Tosun, “Analyzing the
concept of technical debt in the context of agile software development:
A systematic literature review,” Information and Software Technology,
v. 82, p. 139-158, 2017.

[10] C. Apa, H. Jeronimo, L.M. Nascimento, D. Vallespir and G.H.
Travassos, “The Perception and Management of Technical Debt in
Software Startups,” Nguyen-Duc A., Münch J., Prikladnicki R., Wang
X., Abrahamsson P. (eds) Fundamentals of Software Startups.
Springer, Cham, 2020, doi: 10.1007/978-3-030-35983-6_4.

[11] Not presented due to double blind review.

[12] C. Seaman, “Qualitative methods in empirical studies of software
engineering,” IEEE Trans. on Soft. Engineering, 25(4):557-572, 1999.

[13] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell and A.
Wesslén, “Experimentation in Software Engineering: An
Introduction,” Springer, 2012.

Fig. 1. Alluvial diagram for the top 10 TD effects and their top 3 TD payment-related practices and top 3 reasons for TD non-payment.

