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Abstract—We perform an experimental evaluation of two
popular cloud-based speech recognition systems. Cloud-based
speech recognition systems enhances Web surfing, transportation,
health care, etc. Using voice commands helps drivers stay
connected to the Internet by avoiding traffic safety risks. Thus,
performance of these type of applications should be robust
under difficult network conditions. User frustration with network
traffic problems can affect the usability of these applications.
We evaluate the performance of two popular cloud-based speech
recognition applications, Apple Siri and Google Speech Recogni-
tion (GSR) under various network conditions. We evaluate the
delay of each application under different packet loss and jitter
values. Results of our study show that performance of cloud-
based speech recognition systems can be affected by jitter and
packet loss; which are commonly occurring in WiFi and cellular
network connections. Our results also show that Google Speech
Recognition has better performance under different network
conditions.

Index Terms—Cloud Speech Recognition, Quality of Experi-
ence, Software Measurement, Streaming Media, Real-time Sys-
tems.

I. INTRODUCTION

Performance evaluation of cloud-based speech recognition
systems under different network conditions has received much
less attention than other streaming systems. Although Apple
Siri and Google Speech Recognition (GSR) are very popular
applications that help users to interact with search engines
using voice commands, an experimental evaluation of these
applications is noticeably missing.

Delay in the voice recognition process is an important
parameter that affects the quality a user’s experience with
cloud-based speech recognition applications. Streaming voice
from the client to the server and converting it to text are two
phases of this process and should have the minimum possible
delay in order to satisfy the quality of a user’s experience.
Delays of this process should also be consistent under all
different network conditions.

To date, there has not been an extensive evaluation of how
Siri and GSR perform under different network conditions.

1A brief experimental study on Siri and Google Speech Recognition is
reported in ”Impact of the network performance on cloud-based speech
recognition systems” in which, a solution that uses network coding to improve
the performance of cloud-based speech recognition applications has been
proposed. The aforementioned paper is going to be published in ICCCN
2015 [4]. In this paper, we design and implement an extensive experimental
evaluation of Apple Siri and Google Speech Recognition under different
network conditions to compare the performance of these applications under
different conditions.

In this paper, we design and implement an experimental
evaluation of Siri and GSR. We evaluate these applications
under different packet loss and jitter values and measure
the delay of each under difficult network conditions. More
specifically, we employ two models to evaluate the effects of
packet loss and jitter, respectively. Each model is designed to
evaluate two factors (jitter or packet loss) with one blocking
variable on the response variable –delay. The blocking variable
is the application (GSR and Siri), for both of the experiments.
An ANOVA test is used to evaluate effects of packet loss and
jitter for each experiment respectively.

Results of our study show that delays in both applications
are affected by packet loss and jitter.

The remainder of this paper is organized as follows. In
section II we describe our experimental methods. We evaluate
Siri and GSR through extensive experiments. In section III
we describe overall results. In section IV we describe our
experimental design and the mathematical model used to ana-
lyze experimental data. Section V provides an ANOVA, while
section VI discusses threats to validity of our experiment.
Finally, in section VII we explore related work, and conclude
in section VIII.

II. EXPERIMENTAL TESTBED METHODS

We design and implement our evaluation setup to study
the performance of Apple Siri and GSR by evaluating delay.
Clients transmit voice data through a network traffic shaper
which is able to change jitter and packet loss values in
the communication network. We set a bandwidth of 2Mbps
which is typical on 3G connections [12]. The server receives
voice data, translates the voice into text, and sends the text
and search results based on the converted text to the client.
The client calculates the delay of the results after it receives
the text. To calculate the accuracy of the transcript we use
Levenshtein distance [22]. Accuracy is measured as the match
percentage of the original string used to generate the voice
and the resulting text from the speech recognizer. The client
uses Wireshark Version 1.12.4 to timestamp the traffic of
voice transmission to and from the server [3]. We developed a
Windows application using Visual C# to timestamp the voice
playback. All experiments are performed on a Windows 7
platform for GSR, and on iOS 7.0 for Siri. The traffic shaper
is a netem box which runs the Fedora Linux operating system.
We ran our experiment 30 times for each value of loss and
jitter and for each application.
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Figure 1: Experimental testbed for GSR.

A. Experimental testbed for GSR

We use the GSR service that is available in Google Chrome.
There is also another alternative for using Google voice
recognition. Google offers a voice recognition web service
that can be used in windows applications. Figure 1 shows the
architecture of our experimental setup.

Clients transmit voice packets to the Google server through
the netem box that is able to change network traffic per-
formance. We used a recorded voice with a length of 26.4
seconds among all experiments in order to have a consistent
measurement. Google starts to recognize voice as soon as it
receives the first voice packet, and sends converted text back to
the client. The client records the time of each packet and also
voice transmission time to calculate the roundtrip time of the
experiment. The client also compares the resulting text to the
original string; which was used to generate the voice command
and calculates the accuracy of the transmission. Clients use the
Levenshtein distance to calculate the accuracy of the result.

The Levenshtein distance between two words or strings is
the minimum number of insertions, deletions, or substitutions
that are needed to convert a word or string to another one [22].

B. Experimental testbed for Apple Siri

The experimental setup for Siri is similar to GSR. We use
an iPhone as the client. A client is connected to the Internet
through a WiFi router then to a netem box. Here we also used
Wireshark to timestamp the transmission of voice packets and
reception of results from the Siri server. Figure 2 depicts this
setup.

III. OVERALL RESULTS

To investigate the effect of packet loss and jitter on delay
and accuracy, we generate packet loss from 1% to 5% and jitter
from 20 ms to 200 ms respectively on our testbeds and observe
the resulting accuracy and delay. Siri and GSR both keep 100%
accuracy under high values of packet loss and jitter, so we just
consider delay values in the rest of our study. Overall results
are shown in Figures 3 to 6, where the y axis displays delay(s),
and the x axis displays packet loss (percentile) and jitter (ms),
respectively. There are increasing trends as packet loss and
jitter increases, for both Siri and GSR. For GSR, an increase
of 1 packet loss unit (percentile), leads to delay increases in
the range of 0-100 ms. An increase of 1 unit (20 ms) in packet
loss leads to increases in delay from 0-100 ms. In addition,

Figure 2: Experimental testbed for Siri.

the variance of delay also increases as packet loss and jitter
increase, indicating a trend of instability. For Siri, the increase
in 1 unit (percentile) packet loss leads to increases in delay of
200 ms; which is worse than GSR. On the other hand, jitter
has less impact on delay. In addition, the variance of delay is
unchanged, compared to GSR.

IV. EXPERIMENTAL DESIGN

We evaluate our results and data using mathematical mod-
els and an ANOVA test. Our response variable is delay of
transcription and our factors are loss and jitter.

A. Model

Since data is collected by varying jitter and packet loss
respectively, we designed two models to assess the effect of
jitter and packet loss on delay. Also, since data is collected
from two applications (i.e., Siri and GSR), we treat the
application as a blocking variable. Hence, we set up two
models for jitter and packet loss respectively. Each model
contains one factor and one blocking variable. For the first
model, the response variable is delay, the independent variable
is jitter and the blocking variable is application. Also, to
guarantee that the assumptions still hold for the following
ANOVA tests, we apply a logarithmic transformation on the
response variable. Hence, the first model can be expressed as:

log(yij) = µ+ αi + βj + eij (1)

where α is the jitter, and β represents the application. Simi-
larly, the second model can be expressed as:

log(yij) = µ+ γi + βj + eij (2)

where γ is the packet loss, and β represents the application.
For model 1, the factor (jitter) has 10 alternatives; which

are the jitter duration values ranging from 20 to 200 ms. For
model 2, the factor (packet loss) has 5 alternatives; which are
the proportion of lost packets ranging from 1% to 5%. The
blocking variable for both models has 2 alternatives; which
are GSR and Siri, respectively.

B. Assumption of Normality Check

Some assumptions should be checked before conducting the
ANOVA tests. In this section, the interaction of independent
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variables, the normality of errors and the constant variance of
errors are tested for normality.

We first test the interaction between factors. In Figures 7
and 8, the errors (residuals) give us confidence that they are
constantly distributed as the fitted values change, indicating
that the interactions between the blocking variable and factor
are trivial for both jitter (Eq. 1) and packet loss models (Eq. 2).

Secondly, the error variance of each model also appears
constant. Figures 9 through 12 show that errors (residuals)
appear constant as the independent variables (jitter/packet loss
and application) change, indicating that the error of models 1
and 2 are constant.

Finally, figures 13 and 14 show that the error distributions
for model 1 and model 2 are normal, indicating that the
assumption of normally distributed errors holds for both of
the models.

In summary, all the the assumptions for conducting an
ANOVA test hold for both models (Eq. 1 and Eq. 2).

Table I: Statistical Findings of Jitter and Packet Loss

Jitter Df Sum Sq Mean Sq F value Pr(<F)
Jitter 9 1.013 0.113 34.27 <2e-16
App 1 7.77 7.77 2364.79 <2e-16

errors (residuals) 177 0.582 0.003 – –
Packet Loss Df Sum Sq Mean Sq F value Pr(<F)
Packet Loss 4 1.056 0.264 27.66 <2e-16

App 1 17.025 17.025 1782.7 <2e-16
errors (residuals) 135 1.289 0.010 – –

V. RESULTS

Table I provides conclusive evidence that roundtrip delay
of GSR and Siri are affected by both jitter (p-value = 2e-16,
f-value =34.27 on 9 df.) and packet loss (p-value = 2e-16,
f-value =27.66 on 4 df.). Jitter causes packets to arrive out
of order and TCP needs to reorder packets before delivering
them to the application layer. TCP also re-transmits lost
packets. Both packet loss and jitter reduce the voice stream
quality which in turn affects the performance of the speech
recognition.

The application, on the other hand, affects the delay much
more seriously. Specifically, the f-values of application for
jitter and packet loss are 1782.7 and 2364.79 on 1 df.,
respectively. To test the difference between Siri and GSR on
delay, we also employ a Walch t-test to compare the samples
obtained from Siri and GSR. The mean difference between
Siri and GSR is 1.666s, with 95% confidence interval from
-1.736 to -1.600, (p-value < 2.2e-16). This suggests that there
exists a statistically significant difference between GSR and
Siri. By examining the response variable for each application
separately, Siri causes much more delay than GSR. This is
because the algorithm employed by Siri keeps the resulting
text accurate by starting the speech recognition process just
after receiving the voice date. That means Siri needs to receive
the entire voice stream before starting to generate the text. As
a result, this increases the delay in processing the whole text
and accounts for the majority of the total delay. GSR, on the
other hand, keeps the result accurate by adaptively adjusting
the transport and application layers and so it offers less delay

even under high values of packet loss and jitter compared to
Siri.

VI. THREATS TO VALIDITY

A. Threats to Internal Validity

One of the possible threats to internal validity is the
hardware limitations of the devices running GSR and Siri.
More specifically, the processing speed of memory and CPU
will affect the processing of data streams in a PC. Another
possible threat is the status of the PC. For example, when the
OS is busy, it does not have enough time to respond to the
interruptions generated from GSR or Siri, hence generating
and thus affecting delay.

B. Threats to External Validity

All of the experiments were conducted in our lab and
through our campus network. It is likely that the configuration
of our campus network is different from other networks, such
as firewalls and TCP/UDP controls. Hence, the conclusion ob-
tained from the experiment cannot be generalized to common
network environments. In addition, the available bandwidth of
different regions in United States is different. It is possible that
this diversity affects the conclusion that it cannot be applied to
the other regions in United States. Finally, the sample is small
(the evaluation is run on one desktop in a laboratory setting).
A larger scale experiment running on more desktops, as well
as laptops and smart phones, will lessen external threats.

C. Threats to Construct Validity

Since the delay generated by the Internet (e.g., router, DNS,
etc.) is complicated and unpredictable, it is hard to say the
extent to which packet loss and jitter impact delay. Also,
the transportation and routing layers employ self-adaptive
mechanisms to adjust the performance of specific applications,
e.g., GSR and Siri. In the end, both the jitter and the packet
loss are generated by a specific program (i.e., simulated),
rather than real network conditions. It is hard to know whether
the simulated impact has the same effects of real jitter or
packet loss.

VII. RELATED WORK

A measurement study on Google+, iChat, and Skype was
performed by Yang Xu et al. [21]. They explored the ar-
chitectural features of these applications. Using passive and
active experiments, the authors unveiled some performance
details of these applications such as video generation and
adaption techniques, packet loss recovery solutions, and end-
to-end delays. Based on their experiments the server location
had a significant impact on user performance and also loss
recovery in server-based applications. They also argued that
using batched re-transmissions was a good alternative for real
time applications instead of using Forward Error Correction
(FEC) –an error control technique in streaming over unreliable
network connections.

Te-Yuan Huang et al. did a measurement study on the
performance of Skype’s FEC mechanism [14]. They studied
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Figure 3: Impact of packet loss on
delay of GSR

Figure 4: Impact of jitter on delay of
GSR

Figure 5: Impact of packet loss on
delay of Siri

Figure 6: Impact of jitter on delay of
Siri

Figure 7: Jitter: Fitted Values vs. Errors
(Residuals)

Figure 8: Packet Loss: Fitted Values vs.
Errors (Residuals)

Figure 9: Jitter: Fitted Values vs. Errors
(Residuals)

Figure 10: Application (Jitter): Fitted
Values vs.Errors (Residuals)

Figure 11: Packet Loss: Fitted Values
vs.Errors (Residuals)
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Figure 12: Application (Packet Loss):
Fitted Values vs.Errors (Residuals) Figure 13: Normality of Jitter Figure 14: Normality of Packet Loss

the amount of the redundancy added by the FEC mechanism
and the trade-offs between the quality of the users’ experience
and also the resulting redundancy due to FEC. They tried to
find an optimal level of redundancy to achieve the maximum
quality of the users’ experience.

Te-Yuan Huang et al. also performed a study on voice rate
adaption of Skype under different network conditions [13].
Results of this study showed that using public domain codecs
was not an ideal choice for users’ satisfaction. In this study,
they considered different levels of packet loss to run their ex-
periment and came up with a model to control the redundancy
under different packet loss conditions.

Kuan-Ta Chen et al. proposed a framework for users’
QoE measurement [6]. Their proposed framework was called
OneClick, and provided a dedicated key that could be pressed
by users whenever they felt unsatisfied by the network con-
ditions with streaming media. OneClick was implemented on
two applications –instant messaging applications, and shooter
games.

Another framework that quantified the quality of a user’s
experience was proposed by Kuan-Ta Chen et al [7]. The
proposed system was able to verify participants’ inputs, so it
supported crowd-sourcing. Participation is made easy in this
framework, and it also generates interval-scale scores. They
argue that researchers can use this framework for measuring
the quality of a users’ experience without affecting quality of
the results and achieve a higher level of diversity in users’
participation while also keeping a cost low.

A delayed-based congestion control is proposed and devel-
oped by Lukasz Budzisz et al. [5]. The proposed system offers
low standing queues and delay in homogeneous networks, and
balanced delay-based and loss-based flows in heterogeneous
networks. They argue that this system can achieve these
properties under different loss values, and outperform TCP
flows. Using experiments and analysis, they demonstrate that
this system guarantees aforementioned properties.

Hayes et al. proposed an algorithm which tolerates non-
congestion related packet loss [11]. They proved experimen-
tally that the proposed algorithm improves the throughput by
150% under packet loss of 1% and improves the ability to
share the capacity by more than 50%.

Akhshabi et al. proposed an experimental evaluation of

rate adaption algorithms for streaming over HTTP [1], [2].
They experimentally evaluated three common video streaming
applications under a range of bandwidth values. Results of this
study showed that congestion control of TCP and its reliability
requirement does not necessarily affect the performance of
such streaming applications. Interaction of rate-adaption logic
and TCP congestion control is left as an open research
problem.

Chen et al. experimentally studied performance of multipath
TCP over wireless networks [8]. They measured the latency
resulting from different cellular data providers. Results of this
study show that Multipath TCP offers a robust data transport
under various network traffic conditions. Studying the energy
costs and performance trade-offs should be considered as a
possible extension of this study.

Google is currently working on a new transport protocol
for the Internet which is called QUIC(Quick UDP Internet
Connections) [16]. QUIC uses UDP and solves problems
of packet delay under different packet loss values in TCP
connections. QUIC solves this problem by multiplexing and
FEC.

An experimental investigation on the Google Congestion
Control (GCC) in the RTCWeb IETF WG was performed by
Cicco et al. [9]. They implemented a controlled testbed for
their experiment. Results of this experimental study show that
the proposed algorithm works well but it does not utilize the
bandwidth fairly when it is shared by two GCC flows or a
GCC and a TCP flow.

Cicco et al. have also experimentally investigated the High
Definition (HD) video distribution of Akamai [10]. They
explained details of Akamai’s client-server protocol which
implements the quality adaption algorithm. Their study shows
that the proposed technique encodes any video at five different
bit rates and stores all of them at the server. Server selects the
bit rate that matches the bandwidth that is measured based on
the signal receiving from the cilent. The bitrate level adaptively
changes based on the available bandwidth. Authors of the
paper also evaluated the dynamics of the algorithm in three
scenarios.

Winkler et al. ran a set of experiments to asses quality of ex-
perience on television and mobile applications [19], [20]. Their
proposed subjective experiment considers different bitrates,
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contents, codec, and network traffic conditions. Authors of
the paper used Single Stimulus Continous Quality Evaluation
(SSCQE) and Double Stimulus Impairment Scale (DSIS) on
the same set of materials and compared these methods and
analyzed results of experiments in view of codec performance.

A mesh-pull-based P2P video streaming using Fountain
codes is proposed by Oh et al. [15]. The proposed system
offers fast and smooth streaming with low complexity. Exper-
imental evaluations show that the proposed system has better
performance than existing buffer-map-based video streaming
systems under packet loss values. Considering jitter as another
important factor and evaluation of behavior of proposed system
considering jitter values can be a potential extension of this
study.

Application of Fountain Multiple Description Coding
(MDC) in video streaming over a heterogeneous peer to peer
networks is considered by Smith et al. [17]. They conclude that
Fountain MDC codes are favorable in such cases, but there are
some restrictions in real-world P2P streaming systems.

Finally, Vukobratovic et al. proposed a novel multicast
streaming system that is based on Expanding Window Foun-
tain (EWF) codes for real-time multicast [18]. Using Raptor-
like precoding has been addressed as a potential improvement
in this area.

VIII. CONCLUSIONS AND FUTURE WORK

We designed and implemented experimental evaluations of
Siri and GSR. Using the collected data from our experiments,
we designed two models to evaluate the effects of jitter
and packet loss separately. After conducting ANOVA tests
for each experiment, we found that the effects of packet
loss and jitter on delay are statistically significant but the
impact is not important compared to the one that comes from
the application, because from the table we can see that the
application generated most of the impact. In addition, we
found that GSR performs better than Siri when measuring
delay.

Delay of both applications is affected by packet loss and
jitter. In order to design and implement real-time cloud speech
recognition applications for more critical tasks, there should be
mechanisms to measure loss/jitter tolerant systems. Network
coding is a possible solution which can be used to reduce the
effect of packet loss and jitter [4], [15], [17], [18]. Using TCP
keeps these applications accurate under packet loss and jitter
values, but as we saw in our results, it affects the roundtrip
delay. By using UDP and network coding, we can keep the
system accurate under different values of jitter and packet
loss while we reduce the resulting delay. Future cloud based
speech recognition applications that use cellular networks are
still required to overcome this problem; which is due to the
presence of jitter from packet transmission over different paths.

Running the experimental setup over a wide geographical
range of clients and also using different cellular data providers
can result in more accurate results. Considering clients with
a diversity of hardware and software configurations can be
another extension for this research.
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