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Timberlake Wetland
Restoration Project

Privately owned carbon mitigation bank

Row-crop agricultural land starting in 1985,
drained by active surface water pumping

Native vegetation restored and reflooded in
2007

Seasonal brackish surface water intrusion
driven by wind tides



Timberlake Wetland
Restoration Project

Overarching biogeochemical questions:

What is the state and trajectory of nutrient
and trace gas emissions resulting from the
restoration?

How might this state and trajectory be
altered by brackish water influence (e.g.
influence of sulfate)?




Timberlake Wetland
Restoration Project

Question at hand:

How do we predict the trajectory when we
cannot interpolate from former states of the
system?

Approach:

Mechanistic modeling of microbial
metabolism in soils




Timberlake Wetland
Restoration Project

Challenge:

Existing models are too
detailed for typical whole-
ecosystem methods

Data on specific enzymes and
microbial species are
impractical for whole-system
predictions
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carbon oxidation

TABLE 1. CHARACTERISTICS OF ECOSYSTEM GROWTH AND DEVELOPMENT

Reaction

As ecosystem organization increases, grows and develops we expect the following system
changes (the appropriate measures are in italics):

. More energy capture. inflow
. More effective use of energy. Exergy destruction rate
. More energy flow activity within the system. Total system throughput (TST)
. More cycling of energy and material:
(a) Greater number of cycles; number of cycles
{b} Longer cycles; average cycle length
{c} The amount of matenal flowing in cycles (as v straight-through flow) increases; Finn cycfing
index
(d) Turnover time of cycles, or cycling rate, decreases; decrease in production/biomass {PIB)
ratio
(e) Lessleaking of material out of the ecosystem. Exports
. Higher average trophic structure:
(a) Longer trophic food chains; number of trophic levels in the Lindemann spine
(b} Species will occupy higher average trophic levels
c} Greater trophic efficiencies
. More articulated fooa web. Asce
. Higher respiration
. Higher transpiration in terrestrial systems
. Larger ecosystem biomass
. More types of organisms. Diversity




Growth optimization

Sum of energy Energy needed to Energy needed to
from reactions maintain biomass produce biomass

Biomass Reactant
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Dependency chart legend:
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Growth optimization: energy balance
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Growth optimization: mass balance biomass

Biyat = Be+G —D

Change in biomass
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Dependency chart legend:
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Growth optimization: mass balance biomass
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Growth optimization: mass balance compounds
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Growth optimization: mass balance compounds
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Simulation model

Dissimilative
metabolism
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Simulation model
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Batch reactor simulations
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Batch reactor simulations: parameters

Variable Value Unit
Monod parameters
UxB max 0.435 (mmol X)
(mmol C biomass)™ hr’
CX,half 2.83 mmol L_l

1

Peil and Gaudy, Jr., 1971



Batch reactor simulations: parameters

Variable Unit
Monod parameters
UXB,max (mmOI X)
(mmol C biomass)™ hr*
CX,half . mmol L_l
Energy demand
Enu . kJ (mol C biomass)™ hr™

Tijhuis et al., 1971



Batch reactor simulations: parameters

Variable Unit

Monod parameters
UXB,max (mmOI X)

(mmol C biomass)™ hr*

CX,half . mmol L_l

Energy demand

_LEouy kJ (mol C biomass)™ hr™

ErG auto kJ (mol C growth)™
ERG hetero kJ (mol C growth)™
ERG,met hano kJ (mOI C gl’OW’[h)_l

Tijhuis et al., 1971



Batch reactor simulations: parameters

Variable Unit

Monod parameters
UXB,max (mmol X)

(mmol C biomass)™ hr*

Cx half : mmol L™

Energy demand
Epy kJ (mol C biomass)™ hr™
Er¢ auto kJ (mol C growth)™
ErG netero kJ (mol C growth)™
Epg et hana kJ (mol C growth)™
Erc.pon kJ (mol N assimilated)™
ErG ammon kJ (mol N assimilated)™
ERG mitrite kJ (mol N assimilated)™
B i kJ (mol N assimilated)™




Model demonstration: thermodynamics

Favor heterotrophic reactions

Initial biomass = 0.56 mmol C
SIR analysis of Timberlake sample site 601

Initial DOC=1.3 mmol CL!
Soil water extractions from Timberlake site 601

Initial 0,, NO;, SO,2 = 0.28 mmol L?
Saturation of O, in freshwater at 20°C




Model demonstration: thermodynamics

Aerobic Respiration

| Methanogenesis
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Model demonstration: thermodynamics

Aerobic Respiration |

| Methanogenesis
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Model demonstration: stoichiometry

Favor heterotrophic assimilation of DIN

Biomass C:N = 106:16
Redfield Ratio

Initial DOC C:N = 106:4
Redfield Ratio x 4




Model demonstration: stoichiometry

<—| Nitrate assimilation |

Nitrite assimilation |

| Ammonium assimilation |
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Model demonstration: stoichiometry
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Concluding remarks

All models are wrong, some are useful
Benchmark in parsimony
Next steps

Compare with real slurry batch reactor data

Integrate with hydrologic model
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