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ABSTRACT 
Context:  Managing technical debt (TD) associated with potential 
security breaches found during design can lead to catching 
vulnerabilities (i.e., exploitable weaknesses) earlier in the 
software lifecycle; thus, anticipating TD principal and interest that 
can have decidedly negative impacts on businesses. Goal: To 
establish an approach to help assess TD associated with security 
weaknesses by leveraging the Common Weakness Enumeration 
(CWE) and its scoring mechanism, the Common Weakness 
Scoring System (CWSS). Method: We present a position study 
with a five-step approach employing the Quamoco quality model 
to operationalize the scoring of architectural CWEs. Results: We 
use static analysis to detect design level CWEs, calculate their 
CWSS scores, and provide a relative ranking of weaknesses that 
help practitioners identify the highest risks in an organization with 
a potential to impact TD. Conclusion: CWSS is a community 
agreed upon method that should be leveraged to help inform the 
ranking of security related TD items. 

CCS CONCEPTS 
• General and Reference Surveys and overviews • Software 
and its engineering 
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1 INTRODUCTION 
Various techniques have been used to quantify TD; however, 

none have specifically focused on measuring the TD of security 
aspects that affect systems. Given all recent security attacks, and 
the ever-increasing frequency and severity of breaches, companies 
are starting to pay significantly more attention to security threats 
and are shifting resources to address weaknesses earlier in the 
software development lifecycle (i.e. with developers and 
managers). Many tools exist that provide metrics based analysis in 
terms of the number of vulnerabilities found in a system.  
Furthermore, sets of agreed upon rules have been established by 
the greater community (i.e. CVE [1], CWE [2], and CERT [3]) to 
explore these vulnerabilities and weaknesses from different 

perspectives, and over the last few years, organizations have been 
investing in ways to measure the quality of systems.  ISO [4, 5] 
continues to evolve these definitions of quality and many 
companies and academic groups have started operationalizing 
them in open source and commercial tools. For example, 
SonarQube [20] (with SQALE [6] and Quamoco [7]), and CAST 
[8] are amongst the more pervasive. Security is only one of many 
quality aspects that are assessed, yet assessments are merely done 
based on counts of issues found by static analysis tools and 
practitioners are asking for smarter and more intuitive ways to 
assess the quality of security in a system.  

In this position study, we use an operationalization of Security 
embedded in the Quamoco quality model [9] to identify those 
entities that are likely to contribute to TD from a security 
perspective. Further, we offer an approach to help with the 
analysis and prioritization of TD principal and interest associated 
with CWE violations. 

1.1 Motivation and Research Objective 
Our study explores the usage of agreed upon weaknesses 

(CWEs) as a basis for quantifying TD associated with security 
issues. Our motivation stems from the fact that a large community 
effort has already generated a lot of data informed by experts from 
both industry and academia. Specifically, the Common Weakness 
Scoring System (CWSS) [17, 22] already provides a mechanism 
for prioritizing weaknesses according to relevant importance and 
context. CWSS follows the steps of the Common Vulnerability 
Scoring System (CVSS), with the former focusing on weaknesses 
rather than vulnerabilities.  This is an important distinction 
because a weakness is “a shortcoming or imperfection in the 
software code, design, architecture, or deployment that, could, at 
some point become a vulnerability”[2] and vulnerabilities are 
manifestations of weaknesses at runtime. Thus, since TD is a 
phenomenon that is best observed during design (i.e. tradeoffs), 
then CWSS is the appropriate scoring mechanism that should be 
leveraged. CWSS offers different approaches to calculate a 
weakness score, of which the Aggregated and Generalized 
methods offer a one-to-one mapping with our implementation [9] 
of the Quamoco hierarchical quality model. Further, since TD is 
more relevant to design issues, as opposed to code level (non-
design) issues [18], we only focus on those rules (i.e., CWEs) 



TechDebt’18, May 2018, Gothenberg, Sweden   Izurieta et al. 
 

2 
 

associated with design at the architectural level [21]. Thus, our 
goal in this position study is to explore an approach that uses 
CWSS scores relevant to architectural decisions to help rank TD 
issues associated with security weaknesses. 

1.2 Contribution 
Our study provides the following contributions: i) the 

operationalization of a subset of CWEs (i.e., architectural) in the 
Quamoco framework, implemented as a plug-in into the 
SonarQubeTM platform, and ii) an approach to the prioritization of 
TD associated with common weaknesses using the CWSS scoring 
system of design related rules. 

2 BACKGROUND AND RELEVANT WORK 

2.1 Technical Debt Quantification 
In 2016, a group of academics and practitioners participated in 

a Dagstuhl [10] where a new definition for TD was crafted. The 
definition was repurposed to be more focused. Specifically: “In 
software-intensive systems, technical debt is a collection of design 
or implementation constructs that are expedient in the short term, 
but set up a technical context that can make future changes more 
costly or impossible. Technical debt presents an actual or 
contingent liability whose impact is limited to internal system 
qualities, primarily maintainability and evolvability.” 

This definition was needed in order to focus further work in 
our community. Although a comprehensive synthesis of 
definitional literature is beyond the scope of this paper, a notable 
attempt was made by Tom et al. [11].  They found that many 
aspects make up the field of TD, and were able to build agreed 
upon definitions of these numerous features. In particular, they 
found five main components of TD: code debt, design and 
architectural debt, environmental debt, knowledge distribution and 
documentation debt, and testing debt. This meant that anything 
ranging from a poorly written block of code to a programmer 
having a lack of understanding of the history of the system to 
issues with the overall design of the program could compound the 
value of TD for a particular system. Further, additional attempts 
were made to include socio-technical aspects of organizations as a 
form of TD. The work of Tamburri et al. [12] serves as an 
example. 

Four prominent approaches to quantify TD are highlighted –all 
differ in their quantification. 

SonarQube [16] implemented a widget into their framework 
that calculates TD and reports it in terms of days or dollars (i.e. 
cost) necessary to repay the debt.  The TD metric is defined as the 
effort necessary to fix all maintainability issues and its value is 
obtained by examining the source code’s TD ratio.  The ratio is 
defined as: Remediation cost / Development cost. 

Nugroho et al. [13] describe TD as occurrences where 
problems with the quality in software are able to exacerbate and 
lead to bigger problems if they are not fixed in a timely manner. 
They propose a formula to measure TD connected to the 
maintainability of software. By focusing on maintainability, the 
formula gives a measurement of how much effort will be needed 

in order to repair the amount of TD in the software, so the 
software can be easily adapted and improved over time. They use 
a rating classification of a five-star scale to describe the quality of 
the maintainability in the system with one star being low quality 
and five stars being high quality. The TD measurement is found 
by multiplying a rework fraction and a rebuild value. The rework 
fraction is an estimated percentage of the number of lines in the 
code that contribute to the TD. The rebuild value is the estimated 
amount of time (in months) that needs to be spent fixing the TD. 
They also provide a formula to calculate the interest of TD. They 
call this the maintenance effort, and this is found by multiplying 
the percentage of lines of code in a system that will change in a 
year and the rebuild value. The product of this is then divided by a 
quality factor. This interest value can help an organization with an 
estimate of how much TD will cost them in terms of repair effort 
over time. 
Letouzey and Ilkiewicz [14] used the SQALE method, which 

estimates the amount of TD based on a quality model. The quality 
model used in this method is essentially a set of conditions that a 
program needs to meet in order to exhibit “quality.” The SQALE 
method requests the organization to pair each condition of the 
quality model with a remediation function. The remediation 
function’s purpose is to convert the amount of conditions in the 
model that are not met to a remediation cost. Different companies 
have different concerns that affect how they configure 
remediation functions. The SQALE method uses a total of eight 
quality features in its process: testability, reliability, changeability, 
efficiency, security, maintainability, portability, and reusability. 
These features are set up in a pyramid fashion (with testability at 
the bottom and reusability at the top) to guide the order in which 
the remediation of the TD issues should be completed. For 
example, a part of the code that does not meet a condition that is 
associated with the quality feature of testability should be rectified 
before one that is associated with maintainability. In addition to 
requiring the organizations to provide remediation functions 
associated with each unmet condition, the SQALE method also 
requires a non-remediation function with each condition. The non-
remediation function’s purpose is to estimate the consequence of 
not remediating a condition. 

Finally, Curtis et al. [15] introduce a way to measure TD that 
focuses on converting the amount of TD in code to a quantity in 
monetary terms. The formula associates TD with an individual’s 
understanding of economic debt. In order to obtain this monetary 
value, they use the following terms: should-fix violations, 
principal, interest, and TD. Should-fix violations are issues in the 
code that contribute to functional problems, principal is how much 
it will cost to remediate the should-fix violations, interest is how 
much the should-fix violations will cost the longer they are left 
unfixed, and TD is defined as a cost that is comprised of the 
should-fix violations, interest, and principal. They utilize a 
formula to find the “TD-Principal” with the following variables: 
should-fix violations, the estimated amount of hours to fix the 
should-fix violations, and the estimated cost of labor to do so. By 
classifying each of the should-fix violations to be of either low-, 
medium-, or high-severity, the formula assigns a higher weight to 
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the higher severity violations and a lower weight to the lower 
severity violations in the formula. The “TD-Principal” is 
calculated by multiplying each level of severity by the number of 
violations that need to be fixed, the average number of hours it 
will take to fix them, and $75.00 because this was found to be the 
average cost per hour for work in IT organizations. After each 
level of severity is multiplied by these factors to obtain three 
values (one value for each severity level), the sum of the three 
values is used to calculate the “TD-Principal.” 

2.2 Quamoco 
The Quamoco quality model is an extensible meta-model 

based on the ISO/IEC 25010:2011[19]. It allows for quantifiable 
measures to be tied to more abstract quality attributes. “The 
central concept of the model is a factor, meant to represent an 
attribute or property of an entity; where the latter represents an 
important aspect of quality we want to measure. Two types of 
factors exist: quality aspects and product factors. The former 
represents the more abstract qualities found in theoretical models 
such as the ISO standards. The latter represents the measurable 
parts of a software component and has an impact on their 
associated quality aspect. Factors form hierarchies; where 
factors can further refine some aspect of quality.” [9] Because 
the Quamoco definition and operationalization is hierarchical, it 
matches the Aggregated scoring methods from CWSS. 

2.3 The Common Weakness Scoring System 
The Common Weakness Scoring System (CWSS) is a 

recommendation for a community agreed upon set of 
characteristics and technical impacts of software weaknesses. This 
recommendation allows practitioners to use a common language 
when scoring weaknesses in software that could manifest as 
vulnerabilities when a system is operational. CWSS offers a 

quantitative approach to measuring potential weaknesses that is 
based on a formula developed through community involvement. 
The formula is dependent on three metric groups: Base Findings 
(BF), Attack Surface (AS) and Environmental (E), where each 
group is made up of sub-factors.  Each group is assigned a 
numeric value, and when multiplied with each other, generate a 
final CWSS score in the rage of 0-100. For a detailed explanation 
of the formula see [2] and [22]. Explanations are also 
complemented by detailed examples. 

Although CWSS provides a customizable approach to scoring 
weaknesses, results could be highly subjective due to the large 
number of contexts in which software is developed and run. Thus, 
in conjunction with CWSS, the Common Weakness Risk Analysis 
Framework (CWRAF) [23] helps remove some subjectivity in 
scoring by providing vignettes (use cases) in the context of their 
domains to inform the calculation of a CWSS score. Further, 
CWRAF helps generate consistent scores that reflect the mission 
of a specific organization by allowing stakeholders to i) define a 
Business Value Context (BVC), and ii) generate a Technical 
Impact (TI) scorecard. Although defining new BVCs, and 
generating new TI scorecards is possible, this activity requires 
significant development; so many practitioners can use existing 
resources and fine-tune them to their organizations. 

3    PILOT STUDY 
In order to address our ensuing goal to develop an index for 

TD associated with security weaknesses, we have developed the 
following approach (in five steps) depicted in Fig. 1: 

 
1. Define a CWRAF TD vignette by selecting a list of 

relevant CWE entries and map the CWE hierarchy onto a 
Quamoco hierarchical model, 

2. Run static analysis tools on source code to obtain the list 

Security	
TD	

CWE	114	 CWE	391	 CWE	…	

Security	
Tac5c	

Security	TD	
quality	aspect	

CWE	114	 CWE	391	 CWE	…	

Factor	

CAWE/CWE	Architectural	Hierarchy	
																							(catalog)	
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Code	

VigneFe	
Technical	
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…	
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Aggregated	CWSS	Score	

TD	priori5za5on	5	

Figure	1.	Steps	associated	with	approach	to	priori4zing	security	related	technical	debt	items	

CWRAF	

1	



TechDebt’18, May 2018, Gothenberg, Sweden   Izurieta et al. 
 

4 
 

of relevant potential security weaknesses, 
3. Use the CWRAF vignette to inform a CWSS score for 

each weakness, 
4. Aggregate CWSS scores, and 
5. Calculate a relative ranking of CWEs based on the CWSS 

scores to inform the TD prioritization of tasks 

3.1 Rationale 
The CWE hierarchy is composed of over 1000 separate 

weaknesses and many views are provided by the community. A 
view is a way for stakeholders to visualize the hierarchy from a 
chosen perspective. Three major perspectives are provided by 
Mitre®: Research, Development, and Architectural concepts. We 
chose the Architectural view [21] because according to Ernst et al. 
[18], decisions that affect TD occur during the design stages of 
software. Further, the security tactics employed at an architectural 
design level can have significant consequences (in the form of TD 
principal and interest) if not addressed. Santos et al. [21] state that 
“security architectural design decisions are often based on well-
known security tactics,” and these decisions can have decidedly 
negative consequences on the TD of a system as it evolves. Thus, 
the first step in our approach uses the Common Architectural 
Weakness Enumeration (CAWE) [24] that is directly mapped (1-
1) to the CWE Architectural view. The CAWE hierarchy is a 
catalog that contains 224 flaws organized along 11 security 
tactics. The CAWE hierarchy has many levels, where lower level 
nodes represent specializations. This hierarchy represents the 
subset of weaknesses (224/1000+) that influence TD and form 
part of the CWRAF vignette that is used to influence the CWSS 
score from our business perspective. Because the organization of 
these weaknesses is a hierarchy, it facilitates a mapping directly to 
our implementation of the Quamoco quality model. Security 
tactics map to either quality aspects or factors in a Quamoco tree. 
The Quamoco tree represents the operationalization of the 
CWE/CAWE catalog hierarchy. 

The second step in our approach is the static analysis 
assessment of a target source code. Many static analysis tools 
exist to help with the identification of potential weaknesses. Each 
identified weakness has a unique id, and we only focus on those 
weaknesses that can be found on the CWE hierarchy from step 
one (i.e., architectural design decisions). 

In the third step, we use the CWRAF vignette defined in step 
one (i.e., that characterizes our TD domain) to inform the CWSS 
scoring of the node in the tree that represents a specific CWE.  
Our implementation of Quamoco allows for the aggregation of 
quality scores up the hierarchy of a tree. Examples of functions 
for aggregating scores include max, min, average, median, or 
customized functions. The aggregation of CWSS scores is not a 
TD calculation; rather, it is a way to generalize scores to ISO 
defined levels. This is performed in the fourth step and facilitates 
the relative ranking of weaknesses to inform TD prioritization. 

3.2 Example 
To demonstrate our approach, we cut a small contour of the 

CWE hierarchy (see Fig. 2) and followed the steps in our 
approach as follows: 
1. We mapped a subset of the architectural concepts CWE 

catalogue hierarchy to our Quamoco implementation –
manual step 

2. We ran a static analysis tool (FxCop) to detect security 
issues, and selected two weaknesses (CWE 114 and 391) 
–automated step 

3. We used an existing CWRAF vignette from the financial 
trading domain to inform scoring for each weakness –
automated step 

4. We aggregated the CWE 114 and CWE 391 scores into 
categories CWE 1011, and CWE 1020 respectively. The 
categories represent security tactics –automated step 

5. Produce relative ranking of CWEs to inform TD 
prioritization of tasks –manual step 
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Authorize Actors
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usage
determines 

CWE-391 Unchecked Error 
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Figure 2. Example of Architectural CWE Hierarchy 
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4 POSITION ON TECHNICAL DEBT 
The position we take on the development of a security index 

for TD is as follows: the quantification of an index is a difficult 
problem because it is highly dependent on context; however, 
taking advantage of a community informed mechanism that 
specifically takes into account environmental factors and technical 
impacts according to specific domains is a process that needs to 
be leveraged. Further, the comprehensive catalogue of weaknesses 
maintained by Mitre® is robust and our pilot study reveals that 
using a hierarchical quality model (i.e., Quamoco) to 
operationalize the CWE catalogue from an architectural 
perspective (i.e. the CAWE hierarchy) is a natural mapping that 
provides choices in how measures can be aggregated. The 
development of a view that focuses on architectural concerns 
alone narrows down the CWE hierarchy to only capture 
weaknesses that may impact the design of software and thus TD. 
Vignettes provide input to the scoring mechanism by removing 
subjectivity. It does this through technical impact and business 
value scores. Thus,  

 
PrincipalTD-Security = Cost of the maintenance and refactoring 

associated with fixing architectural CWEs 
 
The scoring generated by CWSS allows for a relative ranking 

of CWEs; which also allows practitioners to address TD items that 
may be of higher consequence to their organization. Addressing 
architectural issues early is directly aligned with reducing TD at 
design time, before the weaknesses represented by CWEs turn 
into actionable vulnerabilities. The longer a weakness remains 
unaddressed in a system, the higher the chances of it becoming a 
vulnerability. If a weakness turns into a vulnerability, then the 
technical and business impact have the potential to significantly 
increase the costs incurred by an organization because cost will 
not only be measured in terms of maintenance but also in terms of 
other factors that affect the technical capital of an organization 
(e.g., market share, reputation, loss of customers, etc.). The 
interest associated with the TD principal of a CWE is also hard to 
quantify, however, our position is that regardless of the equation 
used to model TD interest, there exists a significant event in the 
lifecycle of a CWE, which occurs when the weakness is exploited 
(i.e., it turns into a vulnerability). At that point in time, the cost of 
refactoring the CWE increases significantly due to the potentially 
irreparable impacts to an organization. 

6    CONCLUSION AND FUTURE WORK 
 Although the Dagstuhl definition of TD limits contingencies to 
internal quality attributes, it is our position that security is a 
special case. When security weaknesses are identified in software, 
it is imperative that they are addressed expediently because 
although the maintenance associated with fixing a design flaw 
(i.e., TD principal) may not be cost prohibitive, the potential for 
damage to a business is. If a weakness is successfully exploited 
(as a vulnerability), then repairing the damage can be very costly. 

The TD interest associated with such a weakness can grow 
significantly at the moment an attacker is successful. The 
approach we have presented leverages an existing catalog and 
scoring mechanism to aid practitioners in prioritizing weaknesses 
as technical debt items hopefully informing the decision making 
process.  We have successfully mapped a CWE hierarchy to an 
operationalization of Quamoco and have provided an example of 
using CWSS as a way to help prioritize TD items. 
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