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ABSTRACT

Industrial Control Systems (ICSs) are a crucial critical infrastructure component and a
popular cyberattack target. While most research in this area focuses on the defense of large-
scale networks of ICSs, it is critical to also expand research on the small-scale networks of
Process Control Systems (PCSs), which attackers may target to remain undetectable from the
security of the more extensive network. One potential protection method for PCS networks
is the use of veri�cation tools; however, existing research on veri�cation tools focuses solely
on detecting attacks without mitigation. This research describes two instantiations of a
veri�cation tool for a PCS controlled by a RISC-V computer implemented on an FPGA.
An experimental testbed was developed to test the tools, consisting of (1) a circuit to
charge a battery, (2) an FPGA controller that controls charge/discharge based on user input,
(3) an engineering station that provides control data and updates �rmware to the FPGA;
and (4) a veri�cation tool that veri�es input forwarded by a passive serial tap, connected
through the FPGA's hardware. The �rst version of the veri�cation tool provides passive
detection, whereby it detects and informs the engineering station of an attack. The second
version provides detection and mitigation against unauthorized command messages and
malicious software downloads. The experimental data yielded promising results, with the tool
successfully providing mitigation and detection against attacks on the serial communication
channel between the engineering station and FPGA. This approach applies to standard ICS
computer devices, such as programmable logic controllers (PLCs).
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INTRODUCTION

Industrial Control Systems (ICSs) are an integral part of a nation's infrastructure

and are expected to operate continuously and without error. Many industrial systems

were originally established as independent and standalone Operational Technology (OT)

systems. Still, the rise of modern-day Information Technology (IT) has allowed them to

become increasingly interconnected with each other through local networks and the Internet.

Although this interconnectedness allows for new advances in ease of use and access to a

system, it also increases the surface area of attacks. Most of the research on security around

ICSs focuses on their larger network systems to prevent attackers from gaining large-scale

access to the control system. However, this can lead to neglect of well-rounded security for

smaller system components, as it is assumed that attacks will be stopped well before they

reach that level.

One of these smaller components, and an essential subcomponent of ICSs, is the Process

Control System (PCS). PCSs control simple, singular processes within a larger ICS, such as

raising or lowering the level of a water tank within a sewage plant. They are typically

controlled with Programmable Logic Controllers (PLCs), which use the innately insecure

Modbus communication protocol [18]. Attacks against PCSs are well documented within

the �eld, with the Stuxnet attack against an Iranian nuclear facility in 2010 being one

such notable example [5]. This attack caused physical damage to the facility through a

vulnerability found within a Siemens PLC-controlled PCS. In particular, many attacks take

advantage of PCSs due to their lack of comprehensive implementation of security protocols.

An area that is lacking is the Internet-facing security on PLCs and other components, which is

sometimes ignored or disabled because it interferes with the operations of the components. A
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constant issue faced when adding more security to control systems occurs when incorporating

security measures, which has a negative impact on the availability of the systems.

One interesting method to ensure the integrity of measurement data and control logic

delivered along communication channels to PLCs without impacting the operation of the

system is veri�cation tools. This is due to the passive nature of veri�cation tools, which

monitor the control data that is provided to a PLC or similar controller without preventing

or delaying its arrival to the controller. Research on veri�cation tools currently explores the

ability to detect attacks that have occurred, but research on their use to prevent attacks has

not received the same attention.

The goal of this research is to create a veri�cation tool that provides mitigation of

these attacks in addition to detection without negatively impacting the control system's

availability. This thesis describes two instantiations of a veri�cation tool for a PCS controlled

by a RISC-V computer implemented on a Field Programmable Gate Array (FPGA).

Separately, these instantiations provide protection against attacks: passive detection, where

the tool detects and informs the engineering station of an attack, and detection with

mitigation, where the attacks never reach the controller and the engineering station is

informed. These tools operate in the presence of unauthorized command message attacks

in which an attacker aims to modify the control logic of the controller within the system.

Though this tool was developed for a RISC-V FPGA, the approach applies to other standard

ICS computer devices, such as programmable logic controllers (PLCs), as it uses the serial

communication protocol commonly used by these devices.

This thesis is organized as follows. Section 2 covers background and related literature.

Section 3 describes the technical descriptions of the designs for each component in the

experimental testbed. The results of the implemented design are provided in Section 4.

Conclusions of the thesis are given in Section 5, and possibilities for future work are covered

in Section 6.
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BACKGROUND AND MOTIVATION

An ICS comprises complex hardware and software components designed to automate

processes within physical industrial systems. Within the cybersecurity landscape, ICSs have

received signi�cant attention, primarily because of their role in national infrastructures and

the surge in highly visible and harmful cyber-assaults targeting these systems. In particular,

Stuxnet stands out as one of the most documented examples of such attacks [5].

The Stuxnet attack occurred in 2010 and targeted an Iranian nuclear facility, causing

physical damage to the facility by taking advantage of a vulnerability within the facility's

Siemens PLC controlled PCSs to spread malicious control logic. PLCs are one of the common

components used in ICS PCSs. These peripheral devices used in PCSs are typically equipped

with internet-facing components but are not always secure by default. This allows attackers

to have direct access to logic controls with the added advantage of avoiding the security of

the more extensive ICS network. These attacks have become increasingly commonplace as

traditionally separate OTs and ITs converge, exposing legacy systems to new threat vectors.

We discuss basic background information on PCSs, including common weaknesses, attack

techniques, and defense techniques, as well as developing a fundamental understanding of

current research and development of veri�cation tools for ICS controllers.

Process Control Systems

In ICSs, a PCS is an individual control system within the larger ICS that controls a

simple process. For example, in a water treatment facility, a PCS would control a simple

process within the system, such as raising or lowering the level of a water tank. Currently, a

large majority of research for PCSs focuses on PLCs [3], which are traditionally programmed

using ladder logic.

Other implementations of PCSs typically rely on components such as Remote Terminal
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Units (RTUs) and Programmable Automation Controllers (PACs) to serve as their controllers

[33, 39]. RTUs are microprocessor-controlled electrical devices that can monitor and control

connected devices by communicating telemetry data to a control system and changing the

states of devices based on received control messages. In general, they are similar in function

to PLCs but are typically more durable and thus preferred for use in remote locations and

environments with extreme temperatures [7, 20]. PLCs and RTUs usually make use of the

Modbus communication protocol, which lacks built-in strong authentication and encryption

mechanisms [18]. Lastly, PACs are also similar in function to PLCs, but are more powerful

and intricate, with processors, memory, and software similar to a PC. PLCs are typically

programmed in C or C++ rather than ladder logic [10].

For simplicity of programming, as the internal logic of many PLCs is not easily accessible

or available from vendors, this research focuses on a control system where the controller is

implemented with an FPGA. FPGAs are built around a matrix of con�gurable logic that

allows them to be programmed and reprogrammed as needed. Thus, they can be specialized

to �t the speci�c needs of a control system. Although FPGAs are used less commonly as

controllers in ICSs, as PLCs tend to be cheaper and easier to use, FPGAs can be programmed

to perform the same functionality within an ICS as a PLC [30, 31]. As noted in this review

[29], FPGAs have been used in many ICSs and continue to be considered as controllers by

an increasing number of designers in various �elds. In particular, the speci�c RISC-V-based

FPGA computer used in this research would be more useful as an ICS controller utilized in

the presence of radiation, as its functionality has fail-safes against radiation [12].

Weaknesses

When discussing PCS weaknesses, we refer to the nomenclature used in the MITRE

CWE, Common Weakness Enumeration, a collection of software and hardware weaknesses

that refers to common weaknesses that may lead to vulnerability incidents [15]. In recent



5

years, PCSs within ICSs have been implemented with greater interconnectivity, which

improves their ease of use and remote use. In conjunction with these improvements, though,

comes more exploitable vulnerabilities on the PCSs, which had previously faced mainly

internal attack vectors owing to protective air gaps in the system.

To incorporate internet-facing PLCs into PCSs without negative e�ects on the control

system's performance, many systems chose to ignore or disable their security features, leaving

them further open to attacks [25]. This relates to CWE-655: Insu�cient Psychological

Acceptability, where a product has a protection mechanism that is too di�cult or

inconvenient to use, encouraging non-malicious users to disable or bypass the mechanism,

whether by accident or on purpose. With this lack of adequately implemented anomaly

detection for PLCs to identify irregular control logic and measurements, methods of anomaly

detection for PCSs have been a well-studied topic [9].

Another common weakness experienced in PCSs is based on a lack of proper

authentication and encryption that is innate to its communication protocols. Many systems

use the Modbus communication protocol, which does not o�er built-in encryption or strong

authentication mechanisms [5, 44]. This relates to weakness CWE-311: Missing Encryption

of Sensitive Data and allows attackers easy access to gather information on a system's

measurements and commands, allowing for easier fabrication of attacks.

PCSs also experience weaknesses due to human factors, such as malicious personnel

and inexperienced users. Before the 2000s, when the air gap between OT and IT was still

largely present, these internal human factors were the most prevalent weaknesses. However,

as explored above, with increasing integration between OT and IT, external attacks have

come to far outnumber internal attacks [6].
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Attack Techniques

There are a plethora of attack techniques available against PCSs. Most attacks on

PCSs have the end goal of a�ecting the availability portion of the CIA triad, which consists

of Con�dentiality, Integrity, and Availability [3]. The concept of ICS availability is best

described with a discrete math function that answers the question: What is the probability

that a system is up and running at some point in time? Availability for ICSs is critical, as

systems need to run uninterrupted to maintain proper functionality. The availability of an

entire ICS can even be a�ected through just one of its PCSs, as many ICSs depend upon

the constant and correct operation of individual processes. The previously cited Stuxnet

example is one such attack in which the availability of an ICS was targeted through a PCS,

causing a delay in power generation at the Iranian nuclear power plant.

Although Stuxnet is the most infamous, the �rst recorded case of a deliberate

cyberattack against critical infrastructure, targeting its control system, was in 2000. A

dissatis�ed contractor at a Queensland sewer injected false commands and data into a

wastewater station, causing one million liters of wastewater to be expelled into nearby

waterways [35]. A less impactful but more recent example is from 2023. In this case,

cyber actors using the persona �CyberAv3ngers� began actively targeting and compromising

Israeli-made Unitronics Vision Series PLCs and engineering stations, which are commonly

used in water and wastewater systems and other important industries [22]. These actors

left a defacement image, which didn't cause physical harm to the PCSs. However, with

this type of access, more profound cyber-physical e�ects on the PCS could be performed if

desired. It's believed that the actors took advantage of poor password security and exposure

to the internet on the devices, and connected to them remotely using Unitronic's engineering

workstation software to download the malicious project to the PLC. One American critical

infrastructure system included in these attacks was the Municipal Water Authority of
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Aliquippa in Pennsylvania, which provides water treatment to facilities in multiple townships

[43]. The ICS's programmable logic controllers can be used to turn o� pumps at a pump

station to �ll tanks and reservoirs, �ow the pace of chemicals, and gather monthly compliance

data. Because of this, an attack by these actors with the intent of physical damage could

negatively impact the water supply of the city.

A frequent form of attack launched against PCSs is Adversary-in-the-Middle (AiTM),

also known as Man-in-the-Middle, attacks, especially those with internet-facing PLCs [45].

In AiTM attacks, attackers with privileged network access can read or spoof network

tra�c. A large portion of attacks on PCSs consist of false data injection and control logic

injection attacks, which are typically a form of AiTM attacks. In the ICS ATT&CK Matrix,

these correspond to the Spoof Reporting Message and Unauthorized Command Message

techniques, which fall within the Impair Process Control tactic (a�ecting availability) [16]. A

portion of the matrix with highlighted attacks is given in Figure 1. With the spoof reporting

message technique, an attacker seeks to cause harm by altering reported measurement data

used as feedback to control a system, causing improper commands to be performed in

response. A specialized form of spoof reporting attacks is replay attacks, in which an attacker

who has obtained legitimate past measurements from a sensor sends that data back into the

sensor in place of actual current measurements [42]. With unauthorized command message

attacks, an attacker sends malicious commands to cause assets within the system to perform

actions that are not aligned with the current state of the system or completely beyond its

normal bounds [2].

Lastly, we'll consider the Denial of Service (DoS) attack technique. These attacks

disrupt a system's ability to respond appropriately to actions within it by sending a high

volume of tra�c that the system is incapable of handling. Some notable attacks against

PCSs have occurred. One such incident was the 2003 attack on the Divs-Besse nuclear

power plant in Oak Harbor, Ohio [18]. The plant was infected with the 'Slammer' worm,
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Figure 1: A portion of the MITRE ICS ATT&CK Matrix relevant to PCS attacks. The
matrix contains columns of attack techniques labeled by their intended tactic. The
highlighted techniques include Adversary-in-the-Middle and two techniques it furthers that
seek to impair process control and may cause physical impact to an ICS through its PCS.

which resulted in a tra�c overload on the site network, leaving the safety monitoring system

of the plant inaccessible for about �ve hours.

Defense Techniques

Current defense techniques typically focus on either detection or mitigation of in-

trusions, also referred to as prevention, with the majority of techniques focusing on the

former [3]. Detection techniques focus on recognizing or identifying attack tactics. Among

the standard intrusion detection methods are honeypots, veri�cation tools, and dynamic

watermarking. Honeypots are intended to lure attackers in and allow an attack to occur in a

safe setting so that information can be safely collected on the attack [28]. Another method

being explored is including more thorough network tra�c inspection, such as overshadowing

that can monitor for control logic code in ICS network tra�c [46]. Machine learning has also

been explored as a method for identifying attacks that involve false data measurements or
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control logic [34].

In addition to detection techniques, mitigation techniques serve as another form of

defense in PCSs. These techniques focus on preventing or reducing harm from an attack

tactic. One such mitigation technique is encryption for ICS networks. This technique

typically addresses the problem of lacking encryption protocols within the system's network

protocols, which often send plain text, by protecting content with encryption algorithms

before it is sent. However, this technique can have high computational overheads [3].

Veri�cation tools work to con�rm the veracity of the �rmware or software within the PCS,

detecting malicious actions if any of these facets have been altered, typically falling within

the Validate Program Inputs technique [27]. Dynamic watermarking attempts to determine

the veracity of a signal within the PCS [24]. Within the system, the data is altered with a

noise signal, which is expected within the system. The system will then alert to an attack if

proper alteration to the signal is not detected.

Many PCS components are proprietary, and therefore, it can be challenging to develop

generalized defense techniques that adapt quickly to separate types. In particular, this often

prevents proper understanding of the operational logic and internal mechanisms of these

embedded systems when developing defense techniques [41]. Thus, an area that needs to be

further developed for PCS and its components is open-source, �exible defense techniques.

Serial Communication

The majority of PCS components use the Modbus protocol to communicate, and

Modbus is used primarily over serial lines. Serial communication sends data over a line

as a series of bits [26]. Serial data standards such as the 1962 Recommended Standard 232

(RS-232) standard and the 1996 Universal Serial Bus (USB) standard specify how serial data

is transmitted over serial communication channels. RS-232 is no longer commonly used with

most general computers, replaced by USB, but is still widely used in industrial monitoring
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and embedded systems such as PLCs [17].

A network Test Access Point (TAP) is a device that connects directly to cabling

infrastructure to split or copy packets for use in things such as analysis and security [19]. In

particular, this project uses a network component that behaves like a passive serial tap. A

serial tap is a network tap specialized for serial communication. Any passive tap is invisible

to the rest of the network it is connected to, so it may monitor tra�c undetected. Passive

serial taps are fairly standard devices within PCSs, as serial communication is shared among

its components. Typically, these taps exist as separate devices that can be physically wired

and/or connected to the communication channels of the PCS.

RISC-V Architecture

RISC-V is a relatively new open standard instruction set architecture, introduced in

2014, which focuses on reduced instruction set computer concepts. A reduced instruction

set computer is a computer architecture design that aims to simplify instruction sets while

improving execution. Other features of RISC architectures typically include single-cycle

execution, load-store architecture, many general-purpose registers, and pipelining, all helping

towards the goal of e�cient execution. RISC-V, in particular, has 32, 64, or 128-bit address

spaces, and the integer core is extended with �oating point, atomics, and vector processing.

It is also designed to be modular and customizable, so it can be expanded upon with new

instructions for networking, I/O, and data processing, among others [38].

RISC-V was a compelling choice for this research, as it is intended to be usable for

most practical computer use cases, and it is not over-specialized towards any speci�c use

case. RISC-V can be helpful when there is a need to reduce power consumption, code

size, and memory use. The reduced code size of RISC-V, especially when using compressed

instructions, can reduce the binary size of code for use on small computers. Thus, it is

a reasonable consideration for use on deeply embedded systems like those we frequently
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encounter in ICS. RISC-V heavily features modularity, beginning as a limited base instruction

set that can be made more complex with optional extensions and/or the addition of custom

instructions.

In this research, we selected the RadPC edge computer, developed by Resilient

Computing, as our controller [12]. RadPC is implemented onto a Xilinx Nexys Artix-7

FPGA and its processor architecture is RISC-V RV32I ISA, which supports basic integer

operations with 32-bit registers. For this work, it provided an I/O rich platform that looked

like a single RISC-V CPU to the developer. The �rmware of RadPC for this project is

considered a black box. RadPC may also be con�gured to provide obfuscation as a form

of protection against local code tampering. Additionally, it has fault-mitigation procedures

that help it to continue operating in extreme environments.

Veri�cation Tools

When concerning FPGAs, veri�cation is typically used as part of the software

development process to verify that an FPGA's logic code performs as expected and is a

part of general FPGA Design Methodology [29]. However, this paper explores a di�erent

style of veri�cation tools that may be used with controllers such as FPGAs and PLCs, a

style that seeks to verify the integrity of remote code, such as logic code and �rmware, sent

to an FPGA or controller over an untrusted or unencrypted communication channel. One

paper uses time for its veri�cation function, which is built such that any modi�cation of the

program increases its runtime, alerting the tool of possible tampering [4].

Two papers heavily inspired the direction of research for this thesis. In PCS, remote

codes are vulnerable to alteration by attackers along the routes of communication. One such

paper that uses a veri�cation tool to con�rm the integrity of remote-code is [4]. This paper

uses checksums to provide �ngerprints for the remote codes. Another uses a veri�cation

tool to con�rm just the �rmware uploaded to PLCs over RS232 serial communication in
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[27]. This paper uses SHA-256 hashing to provide �ngerprints for the code. SHA-256 is a

cryptographic hash algorithm that produces an almost unique 256-bit signature for a text

or data �le that can then be used to ensure �le integrity [37]. Some newer papers explore

using side-channel power analysis to inform their veri�cation tools [21]. The development

of a veri�cation tool for remote code to the board code provides protection against remote

tampering of code as well.

Rechargeable Batteries

Batteries can provide electrical energy to devices by converting stored chemical energy

to electrical energy. Nickel-Metal Hydride (NiMH) batteries are a common type of

rechargeable standard-size battery. Rechargeable batteries, once depleted, can convert

supplied electrical energy back to stored chemical energy within themselves [32]. A battery

discharges when it supplies more current across a load than it receives, and it charges when

it receives more current than it supplies.

There are a few terms that will be de�ned to better describe working systems involving

batteries. A battery's nominal voltage is the average voltage it may output when fully

charged. A battery's capacity is the amount of electrical energy it can store and deliver

by providing a certain discharge current from a fully charged state to a depleted state for

a period of time. It is given in amp hours (Ah). The state of charge (SoC) of a battery

expresses its remaining capacity as a percentage of its maximum capacity. The charge rate (C

rate) of a battery describes the rate at which the battery discharges or charges in proportion

to its maximum capacity, with 1C being a rate that will fully discharge the battery in one

hour [40].
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Montana State University Contributions

This research further expands upon the work of Montana State University's Software

Engineering and Cybersecurity Laboratory (SECL)1 and Resilient Computing2. SECL is an

interdisciplinary team of computer and data scientists and software engineers researching

problems using convergent scienti�c and engineering approaches in an Applied Research

Lab for classi�ed research. One focus of the lab is software quality assurance approaches

to cybersecurity regarding both software and hardware prior to its deployment in critical

infrastructure. Another has been the development of resilient computers with redundant

hardware that monitor malicious activity, which continue to be developed in tandem with

Resilient Computing.

Resilient Computing is a Montana State University spin-o� company that commercial-

izes edge computing technologies used in space and critical infrastructure. Namely, Resilient

Computing has commercialized SECL's RadPC computer[12], a computer developed to

reliably operate in the presence of space radiation, and Cybershield, which allows the

computer to perform malware detection by using obfuscated instruction codes in the

functionally equivalent processors [36]. Contributions from the SECL lab used in the

development of this research include the previously developed RadPC core for use on Xilinx

FPGAs and the related work�ow toolchain for this core [13].

Motivation & Goal

PCSs are a popular target of attacks today, often through their PLCs. Many PLCs still

lack signi�cant protections, such as encryption of communication and anomaly detection

of received communication. Even when some forms of protection are available, they are

1https://www.montana.edu/cyber/
2https://resilient-computing.com/
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sometimes unused as they may negatively a�ect the control system's performance. This thesis

was motivated by the need for more convenient prevention options against these attacks, as

the availability of PCSs and ICSs is imperative to our nation's critical infrastructure.

One potential form of anomaly detection that may be applied to PLCs without

negatively a�ecting their performance is through the use of veri�cation tools. These tools

have only provided detection of attacks in past research. The goal of this research is to expand

the capability of this tool to provide mitigation as well as detection while having no impact

on the performance of its PCS. This goal is worthwhile because, in PCSs, attacks must be

prevented to ensure the PCS performs appropriately, but at the same time, the prevention

methods cannot negatively impact the availability of the system. The tool presented in this

thesis addresses both issues.
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SYSTEM DESIGN

Overview

In this section, we de�ne the PCS and the veri�cation tool applied in this research. As

the veri�cation tools explored in this study pertain to PCSs, it was preferable to develop

the veri�cation tool in the scope of a simple PCS. Thus, a simple PCS was created in which

the system controls the charge and discharge of a 9 V NiHM rechargeable battery, and the

development of the veri�cation tool was applied to this experimental testbed. Two di�erent

versions of the veri�cation tool were designed, with the �rst providing passive detection

and the second providing detection with mitigation. As some of the system's components

vary for each veri�cation tool version, a base description will �rst be given for each of

the components, and then further description will be provided if there are di�erences or

additional details pertaining to the separate versions of the tool.

System Components

We will give a quick overview of the hardware and software components that make up

the system. The battery within the plant system is a NiMH 9 V rechargeable battery with a

nominal voltage of 8.4 V, of which the speci�cation sheet has been included in the footnote.

The voltage sensor is provided by the FPGA analog input, which uses control logic provided

by an engineer to turn the system's charger on or o�. The battery charger is implemented as

a variable voltage source, which is set to 12 V. The capacity of the 9V battery is 200 mAh,

so the system was designed to not exceed a 200 mAh charging current or 1C charge rate.

An output from the RadPC FPGA will allow the battery's charge �ow to be turned on and

o�, depending on the battery's charge. A seven-segment display on RADPC indicates the

current voltage of the battery, maximum and minimum limits for voltage charging, and the
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current state of the charge signal.

Software components utilized in this project include a prebuilt RISC-V GCC Toolchain

for Linux[5], a compiler that supports an RISC-V RV32I core, within a Windows Subsystem

for Linux environment. This is used as part of a software toolchain work�ow for the RadPC

Reach RV32I softcore processor. Currently, we use a RadPC core designed by Resilient

Computing, implemented onto a Xilinx Nexys Artix-7 FPGA. The processor architecture is

RISC-V RV32I ISA, which supports basic integer operations with 32-bit registers.

In an earlier iteration of this project, a single Nexys A7 FPGA that hosts a RadPC core

was used as a controller for the PCS, and another without RadPC was used as a peripheral

voltage sensor. This was done to address the issue of RadPC not yet including an analog-to-

digital converter (ADC) component. In the �nal stages of the project, ADC capability was

developed for the RadPC, so the voltage sensor and the controller were both instantiated on

the single Nexys A7 FPGA hosting RadPC instead. Additionally, an FTDI Chip C232HD-

DDHSP-0 USB to UART Serial cable was used to provide an additional source of UART

communication that will be explored more in the FPGA Logic section. Diagrams showing

the connections of all system components for the initial and �nalized designs are included

in Figures 2 and 3. They show connections where PCS components are connected with

wire, indicated with dotted ends, as well as the cable connections between the USB ports

of the PCS components. Individual components of the �nalized design will be covered more

thoroughly in later design subsections.

Control System Design

The control system is represented as a negative feedback loop within the control

block diagrams pictured in Figures 4 and 5. In Figure 4, we show a traditional negative

feedback loop, which describes the PCS without external ICS parts, veri�cation, and attack

components. Figure 5 shows a modi�ed version of the control loop, which shows how the
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Figure 2: A schematic diagram of the initial process control system (PCS) design. The
PCS was originally designed with two FPGAs, one with a RadPC core for controlling the
PCS and one with the original Nexys A7 core as a peripheral for monitoring voltage. The
GPIO of the boards consists of the labeled PMOD rectangles, with the individual pins
labeled in the squares. Dots on the diagram represent where multiple components are
joined. USB connections for communication are designated with a single line.

external components communicate with the control system. Components within the main

control loop are colored black, whereas external components that communicate with the

control system are depicted in color. The legitimate external sources of communication in

this diagram are represented by green arrows, whereas adversary sources are represented by

red arrows.

We �rst describe the components in the diagram that exist within the traditional control

loop, which features �ve components. Components are represented within the control loop

as rectangles. The Engineering Station block allows human users to send and receive data

from the FPGA controller through a USB to UART bridge. The FPGA Controller block

component outputs an on/o� signal for the battery charger based on feedback logic from the
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Figure 3: A schematic diagram of the revised process control system (PCS) design. The
PCS was redesigned to contain one FPGA with a RadPC core that both controlled the
system and monitored voltage. The GPIO of the board consists of the labeled PMOD
rectangles, with the individual pins labeled in the squares. Dots on the diagram represent
where multiple components are joined. USB connections for communication are designated
with a single line. Analog Discovery 2 provides voltage monitoring to con�rm the proper
performance of the system in tests.

battery state of the charge sensor. It can send and receive data from the engineering station.

The State of Charge Sensor block measures the voltage across the battery to provide the

current SoC for the battery. The Battery Charger block serves as an actuator, charging or

discharging the Battery block based on the feedback logic from the SoC Sensor block.

The external components are an Attacker block, which has access to send and read

data from the channel between the engineering station and the FPGA, and a Veri�cation
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Figure 4: A block diagram of a simple closed-control loop that uses feedback to maintain a
setpoint. The loop's set point is control logic that would produce the desired behavior from
the system based on feedback measurements. The loop's feedback is the state of charge for
the 9 V battery provided by the sensor. The summing point into the controller takes in the
set point and feedback.

Figure 5: A block diagram of a closed-control loop that uses feedback to maintain a
setpoint and includes exterior components that communicate with the control loop. The
traditional control block components are lined in black. The exterior components are lined
with green if they're trusted and red if they are malicious.

Tool block, which has access to read from the aforementioned channel and send data to

the FPGA and engineering station. In this system, the attacker will attempt to send in

malicious commands and measurements to force the system to respond in a way that does

not align with its current state. For example, higher voltage measurement reports could be

sent in when the battery is actually low, resulting in the battery not receiving charge when

necessary. Furthermore, attackers could send new logic code into the FPGA, for example,

code to always send the o� signal to the charger, regardless of the battery's reported SoC.



20

Recall that Figure 3 shows the connections where the PCS components are connected with

wire, indicated with dotted ends, as well as the cable connections between the USB ports of

the PCS components.

Circuit Design

To take a closer look at the physical design of the charging circuit, a diagram of the

circuit has been included in Figure 6. There are three voltage sources within the circuit: a

12 V nominal voltage wall source, a 9 V battery, and a controlling voltage source for the

bipolar junction transistor (BJT), which puts out either 0 or 3.3 V provided by the RadPC

FPGA. The 12 V wall source provides 12.3 V in real-world operation. The �rst portion of

the circuit, after the 12 V source, contains four 1N4001 diodes in series and resistor R1.

The four diodes drop around 2.8 V altogether and act as a physical fail-safe to ensure a 9 V

battery cannot be charged beyond 9.5 V. The resistor R1 is used to control the amount of

current supplied to the parallel battery portion of the circuit.

The parallel battery portion of the circuit has three branches. The �rst branch contains

the 9 V battery. The second branch includes a load provided by the R2 resistor. The current

for this load can either be supplied by the battery when the circuit is in the discharging

state or provided by a 12 V wall source when the circuit is in the charging state. As such,

the values of R1 and R2 a�ected the allowable range of charge voltage for the battery due

to the net of their charging and discharging current. The �nal branch in the parallel portion

contains a voltage divider and voltmeter. To make the current through this branch negligible,

the resistors are set to exceptionally large values, with R3 set to 750 kΩ and R4 set to 75

kΩ. This divider allows a voltmeter across R3 to read in a value of 1/10 of the 9 V battery's

voltage. The voltmeter is provided by an analog-to-digital converter on a Nexys A7 FPGA

board, which can read in values of 0 V to 1 V.

To allow the circuit to turn battery charging on and o� based on a digital signal from
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Figure 6: A schematic diagram of the process control system's battery charging circuit.
The circuit is designed such that using a control signal the battery can be set to either a
charging or discharging state. Additionally, safeguards are present to prevent overcharging
of the battery.

the FPGA, a 2N3904 Negative-Positive-Negative (NPN) type BJT transistor is placed before

the 12 V wall source and used as a switch. The RadPC FPGA board provides a voltage

signal to the base of the BJT, of either 0 V or 3.3 V, and resistor R5 controls the current

into its base. The value of R5 is chosen so that current into the base is su�cient for the BJT

to enter the saturation region, considering the chart shown in Figure 7 1. The RadPC board

provides a common ground for the circuit as well, to address issues with �oating ground.

When a 3.3 V is provided by the board to the BJT's base, it enters the saturation region and

acts like a closed switch, allowing the 12 V source to charge the battery. When the board

supplies 0 volts, then the BJT is in the cuto� region and acts like an open switch, separating

the parallel portion of the circuit from the 12 V source and causing the battery to use up its

charge to power the load instead of charging.

Within this base circuit, the resistors R1 and R2 can be swapped to produce di�erent

1http://www.secosgmbh.com/datasheet/products/SSMPTransistor/TO-92/2N3904.pdf
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Figure 7: A clipping of the collector saturation region chart taken from the 2N3904 NPN
BJT datasheet. This chart was used to choose an R5 value in the circuit such that the base
current was su�cient for the BJT to be in the saturation region.

ranges of charge for the battery. Two sets of values were designed. The �rst set R1 to 68 Ω

and set R2 to 500 Ω, which physically allowed for a lower voltage operation range of 5.2 V to

6.9 V. The second set R1 to 22 Ω and set R2 to 750 Ω, which physically allowed for a higher

voltage operation range of 6.5 V to 8.0 V. The charge rate of the battery provided by these

values �uctuates based on the current voltage of the battery. Graphs have been included in

Figures 8, 9, 10, and 11, mapping the full discharge and charge of the battery using the two

resistor combos.

Engineering Station Design

The Engineering Station was designed as a Python �le in Visual Studio Code and

executed on a Ubuntu Linux operating system. The engineer can use the program to either

(1) send in a value that will change the desired range of operation for the charging system or

(2) send in a predetermined bitstream to bootload the logic code on the RadPC controller.

The program allows the engineer to choose to set either the maximum voltage or the minimum
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Figure 8: A graph of the 9 V battery's voltage as the process control system takes it from
depleted to charged. In this case, the chosen values of R1 and R2 resulted in a lower
maximum voltage than the resistor values used in Figure 9.

Figure 9: A graph of the 9 V battery's voltage as the process control system takes it from
depleted to charged. In this case, the chosen values of R1 and R2 resulted in a higher
maximum voltage than the resistor values used in Figure 8.

voltage, allowing for precision up to the �rst decimal point. The maximum voltage is

only allowed to be set up to 9.5 V and the minimum voltage must be greater than 1.0 V.

Additionally, the maximum voltage must always be set to greater than the minimum voltage
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Figure 10: A graph of the 9 V battery's voltage as the process control system takes it from
charged to depleted. In this case, the chosen values of R1 and R2 resulted in a lower
minimum voltage than the resistor values used in Figure 11.

Figure 11: A graph of the 9 V battery's voltage as the process control system takes it from
charged to depleted. In this case, the chosen values of R1 and R2 resulted in a higher
minimum voltage than the resistor values used in Figure 10

and the minimum to less than the maximum. For any commands or �rmware �les being sent,

the engineering station program tacks on the uncommon byte '\x7f ', a hex representation

of Delete, to the data just before the terminating '\n'. This allows the veri�cation tool to

identify the end of individual transmissions to RadPC. In cases where the program is not



25

being actively used by an engineer, a heartbeat command is sent out to keep RadPC's logic

code from stalling, as RadPC does not currently support timeout logic for receiving data.

Additionally, the engineering station is always listening for possible attack reporting

from the veri�cation tool. Multithreading was implemented to allow the station to receive

and process this data concurrently with sending data. Multithreading describes the ability

of a processor to run multiple threads, each performing di�erent functions separately but

in quickly interleaving turns, such that they appear to run simultaneously. With the use of

threading, if one thread is waiting to send or receive, the other thread can send or receive

while the �rst thread is inactive.

Field-Programmable Gate Array Logic

A base level of logic code for the board was designed as bitstreams for RadPC,

synthesized from hardware description language (HDL) �les in Vivado. Vivado was also

used to upload the resulting bitstreams to both boards. The logic code was developed from

the base HDL �les provided for the boards by the Resilient Computing lab for RadPC.

Alterations include altered logic to control the �ow of UART tra�c that is received by

RadPC's two UART ports, logic to output an on or o� signal for the charger on a GPIO pin

and led, and logic to output an on or o� signal for an attack indicator on another GPIO pin

and led.

Alterations of UART tra�c �ow to RadPC varied for the di�erent versions of the

veri�cation tool. For the detection version of the tool, all signals sent to the FPGA from the

engineering station are received by the RX line of the primary UART and saved to its RX

register as normal. The signals are additionally saved to the secondary UART's TX register

to be forwarded to the veri�cation tool through its TX line. For the mitigation version of

the tool, all signals being sent to the FPGA from the engineering station are received by

the RX line of the primary UART, but not saved to its RX register. The signals are instead
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saved to the secondary UART's TX register to be forwarded to the veri�cation tool through

its TX line. Lastly, the RX register of the primary UART saves data received by the RX line

of the secondary UART from the veri�cation tool. This �ow of UART tra�c is necessary, as

it simulates the passive serial tap used by the veri�cation tool. It also allows the secondary

UART to send control logic to be bootloaded onto the board, which only allows control logic

saved to the primary UART's RX register to be bootloaded.

A secondary, higher level of logic code was designed as a C �le in Visual Studio Code

and executed on the RadPC board. The code was compiled using RadPC's software work�ow

environment and sent over a UART cable to be bootloaded on the RadPC board. The logic

code provides the operating control logic for the PCS based on feedback measurements.

Every time heartbeat commands are received from the engineering station or veri�cation

tool, it samples a 12-bit resolution binary value read in from RadPC's Analog-to-Digital-

Converter, which reads across the battery's voltage, and the logic converts it to a decimal

representation that includes a tens place digit, a ones place digit, and a tenths place digit.

Using this decimal representation, the current decimal voltage value is checked against the

desired maximum and minimum voltage value limits. It turns the BJT base control signal

o� or on accordingly by altering the GPIO value provided to the I/O pin.

If the charger signal is o� and the current voltage is below the minimum voltage, the

signal will turn on. If the charger signal is on and the current voltage is any value below

the maximum voltage, the charger will remain on. In contrast, if the charger signal is o�

and the current voltage is anywhere above the minimum value, the charger will stay o�.

Lastly, if the charger signal is o� and the current voltage is any value below the minimum

voltage, the charger will be turned on. This results in a system that can bounce back and

forth between the minimum and maximum charges to maintain a desired range of operation,

usually outside the battery's range of depletion, to improve performance.
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Attacker Design

Attackers in ICS commonly seek to achieve the Impair Process Control tactic, MITRE

ID TA0106, with the end goal of a�ecting the availability of a system. If the battery charger

PCS was part of a larger ICS and the role of the battery was to provide power to an ICS

component, attackers could prevent the expected performance of the ICS by attacking the

battery PCS. For example, an attacker may provide unauthorized command messages to the

FPGA, such as improper maximum or minimum voltage limits or their harmful bitstream,

which could instruct the charger signal to be o� when it should be on or vice versa. Thus,

these attacks could result in a dead battery or an overcharged battery, achieving the Impair

Process Control tactic.

For ease of use in this system, the attacker is implemented as a separate functionality

within the Python engineering station program to allow access to the communication channel

between the station and the RadPC controller. This allows the attacker to send in both

malicious commands and malicious logic code. Some malicious commands include providing

illogical voltage limits, which are too high, too low, or contrary to each other. The malicious

logic code is sent over as a compiled �rmware �le. For these attacks, it is assumed that the

attacker may be aware of the proper forms for commands, including the '\x7f ' terminating

byte.

Veri�cation Tool Design

The veri�cation tool for the system was designed as a Python �le in Visual Studio Code

and executed on an Ubuntu Linux operating system. Ideally, the veri�cation tool is run on a

separate computer, so it is separate from the engineering station network, but in practice, it

may be run on the same computer. The veri�cation tool is also connected to the engineering

station so that it can send in reports on detected attacks. The veri�cation tool forwards
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data received by RadPC's primary UART port through hardware functionality. This is

done by forwarding the data to RadPC's secondary UART port, which is connected to the

veri�cation tool host using an FTDI Chip C232HD-DDHSP-0 USB to UART cable [11]. The

connections of this UART cable are shown in Figure 12. This setup was implemented to

behave similarly to a passive serial communication tap between the engineering station and

the RadPC FPGA.

Figure 12: A clipping of the cable connection chart from the FTDI Chip C232HD USB to
UART Cable Datasheet. This cable was used to physically wire the passive serial tap
between the process control system controller and the veri�cation tool computer.

The veri�cation computer is then able to receive the incoming serial transmission and

transmit it to the veri�cation tool. The serial port for communication was con�gured to

the serial data requirements of the RadPC, specifying a baud rate of 115200, 8-bit data, no

parity, and no �ow control. Prior to being connected to the computer, an Analog Discovery

was used to con�rm the UART signal being forwarded. When receiving data, the veri�cation

tool looks for the terminating bytes '\x7f ' to separate individual transmissions.

There was base functionality for the veri�cation tool that applies to all versions. All

versions of the veri�cation tool look for expected transmissions to be sent by the engineering
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station and validate any incoming transmissions against the expected transmission. If any

anomalous transmissions are detected, they are logged. It focuses on verifying commands

and logic code rather than �rmware. It veri�es that any engineer commands being sent to

the board match up to the pre-approved good commands. Additionally, for any commands

sent in that follow the correct format to change the voltage limits, it veri�es the new voltage

limit being set. To do this, the veri�cation tool keeps track of the current set maximum

and minimum voltage limits and checks that the voltage value �ts the same rules required

by the engineering station input program. If any commands or voltage values don't agree

with expected good values, they are saved to a log �le invalid_command_log.text. This �le

provides part of the tool's detection functionality.

Mitigation for DoS attacks was also focused on, as it posed a potential problem with

serial communication used by the veri�cation tool. To address this, the bounds of the

information being sent were considered, and it was identi�ed that the longest a potential

set of data would be was the size of the trusted �rmware �le in bytes, plus one byte for the

terminating byte. Thus, the trusted �rmware size was chosen as a limit for the serial reading

function, only allowing it to read up to that number of characters before processing data.

Additionally, the veri�cation tool also veri�es incoming logic code. It does so by

recording incoming bitstreams and performing checksums on them. The captured bitstream

is checked against a predetermined good bitstream compiled from a pre-approved logic code.

Speci�cally, the two �les are veri�ed using a process with the SHA-256 algorithm. The two

�les are both hashed, and checking is done to see if the two hashes are equal. If the incoming

hash is not equal to the good hash, it is permanently saved to a log �le invalid_bin_log.text.

This �le provides another part of the tool's detection functionality. Multi-threading was

implemented to allow the tool to receive and process data while sending back information

at the same time. The engineering station, logic code, and �rmware perform precisely as

described in their component sections.
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Two versions of the veri�cation tool were implemented on the base design described

above. The �rst version provided only passive detection, monitoring tra�c being sent to

execute in the FPGA and reporting if an attack was detected on its computer. The �nal

version provides both reactive detection and prevention, requiring veri�cation of tra�c sent

to the FPGA before it is sent back in for execution and reporting attacks back to the

engineering station. To support these di�erent versions, the code for the engineering station

and the logic code for the FPGA have slight variations.

Version 1: Passive Detection

For the passive detection version, if transmissions outside the expected are being

received, the veri�cation tool logs the o�ending transmissions and alerts to a possible attack

on its computer. Additionally, the tool reports information on the attack back to the

engineering station. This provides passive detection that includes reporting for potential

attacks but does not provide any prevention against detected attacks besides the base

protection against DoS attacks. No functionality of note has been added to this code beyond

that of the base functionality. Additionally, the FPGA turns on an LED to indicate that

an attack occurred. However, similarly to the �rst version, the tool does not provide any

prevention against detected attacks besides DoS.

Version 2: Detection with Mitigation

For the �nal version of the veri�cation tool, prevention functionality was added to the

detection functionality of the �rst version. In practice, prevention is typically a combination

of the detection of attacks and a response to prevent the e�ects of attacks. Upon researching

the topic, it seems PCS veri�cation tools are focused primarily on detection rather than

prevention, so this was included to further expand upon the subject. There are slight

di�erences in the communication processing for components in this version of the veri�cation

tool.
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In this version, the FPGA cannot receive commands directly from the engineering

station and instead receives them from the veri�cation tool. The veri�cation tool forwarded

commands from the engineering station instead, which it veri�es before allowing those

commands to be forwarded and executed on the FPGA. To the eyes of the engineering station,

however, commands still appear to be directly sent from itself to the FPGA's primary UART

without any interference. As the FPGA no longer looks to the engineering station for its

commands, the engineering station program no longer sends a heartbeat signal. Instead, the

veri�cation tool provides a heartbeat signal in the absence of other commands to send to

the FPGA.
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RESULTS

Experimental data yielded promising results, with the veri�cation tool successfully

providing prevention and detection for the FPGA controller against unauthorized command

message attacks on the serial communication channel between the engineering station and

FPGA. We will explore the results of this data in the following sections.

Normal Operation

A baseline of normal operation of the PCS was established by using the probes of an

Analog Discovery 2, which reported voltage values back to a Python program. Successful

maintenance of battery voltage by the PCS for both resistor combos is displayed in voltage

charts, which display the battery voltage in blue and the control signal of the charger in

orange, with high meaning the charger is on and low meaning it is o�. For the lower voltage

range shown in Figure 13, the maximum and minimum voltage limits were changed every

700 seconds, starting at voltage limits of 5.2 V to 6.9 V, then 5.4 V to 6.7 V, and �nally

ending at 5.6 V to 6.5 V. For the higher voltage range shown in Figure 14, the maximum

and minimum voltage limits were changed every 2000 seconds, starting at voltage limits of

6.5 V to 8.0 V, then 6.8 V to 7.7 V, and �nally ending at 7.0 V to 7.5 V.

It was also con�rmed that the FPGA could be successfully bootloaded with the trusted

�rmware �le when the engineering station requested. Figure 15 shows the normal operation

of the engineering station, the veri�cation tool, and the FPGA. It shows the engineer sending

in a low voltage limit of 1.3 V and a high voltage limit of 9.3 V, as well as the detection of

valid commands by the veri�cation tool. Lastly, it shows successful updating of the voltage

limits and the charger control signal on the FPGA, which displays the current voltage in

volts, the maximum voltage limit in volts, the minimum voltage limit in volts, and the

charger control signal value on its seven-segment display.
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Figure 13: A graph that shows maintenance of the battery's voltage limits for three
di�erent ranges by the process control system (PCS) with resistor values chosen for R1 and
R2 that result in a lower permittable voltage range than in Figure 14. In this graph, we see
that the battery voltage begins to charge or discharge in correspondence with the PCS's
charger control signal, con�rming the expected performance of the system.

Figure 14: A graph that shows maintenance of the battery's voltage limits for three
di�erent ranges by the process control system (PCS) with resistor values chosen for R1 and
R2 that result in a higher permittable voltage range than in Figure 13. In this graph we
see that the battery voltage begins to charge or discharge in correspondence with the
PCS's charger control signal, con�rming expected performance of the system.

Detection

Three attack cases were sent into the FPGA by the attacker: two voltage setting

commands that went out of bounds, one for high and one for low, and a harmful �rmware
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Figure 15: The process control system testbed under normal operation. User interfaces are
shown for the engineering station and the veri�cation tool. The physical controller is also
shown, and its seven-segment display shows relevant information for the system. These
displayed interfaces show the engineer sent in new maximum and minimum limits for
voltage maintenance and that the values across all three displays were correctly updated.

�le. In all these cases, the veri�cation tool was able to passively detect and log the possible

attacks. For the tool, successful detection was denoted with a message on its commands

window, recording to its log �le and reporting to the engineer station. Both versions were able

to successfully inform the FPGA and the engineering station of the attack. This reporting

was given as a message being sent back to the engineering station and an indicator LED

being lit on the FPGA.

Detection was also achieved in all three attack cases. An example was recorded to

show the system's response to out-of-bounds limit attacks. For this case, the maximum

limit was only allowed to be set up to 6.5 V, and the minimum voltage was only allowed

to be set as low as 5.6 V, and the lower range resistor combo was used. The attacker sent
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an unauthorized command message that set the max voltage limit to 9.9 V, well above the

allowable limit. The resulting graph of battery voltage and the charger control signal is

shown in Figure 16. The system ran normally for the �rst 60 seconds when the attacker

sent in the harmful voltage limit. Because our system has physical limiters for the maximum

voltage of the battery in the form of dropped voltage by diodes and will only charge as long

as the current into the battery is greater than the current provided to the load, this resulted

in the battery never being able to hit that maximum limit and discharge again. In a system

without a physical limiter on the battery's charge, this may have resulted in an overcharged

battery. Figure 17 shows the response of the physical PCS and its user interfaces to the

attack. A detection report is visible on the user interfaces of the engineering station and

the veri�cation tool. On the FPGA display, we can see that the maximum limit has been

updated to 9.9 V, which is above the maximum limit normally allowed by the system.

Figure 16: The graphed response of the process control system to an unauthorized
command attack that sets its maximum voltage limit to 9.9 V. In this case, the veri�cation
tool which provides only detection was used, so the attack was not prevented. In its
response, we see that the normal behavior of the system is disrupted. It no longer
maintains the battery's voltage between the two expected limits. Instead, the charge signal
remains on inde�nitely, and the battery voltage stays in a charging state. In the designed
process control system, the battery will never reach 9.9 V, so the battery will remain
physically unharmed. Still, in the system without a physical limiter, this may result in
overcharging of the battery.
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Figure 17: The response of the physical process control system and its user interfaces to an
unauthorized command attack that sets its maximum voltage limit to 9.9 V. In this case,
the veri�cation tool which provides only detection was used, so the attack was not
prevented. A detection report is visible on the user interfaces of the engineering station
and the veri�cation tool. On the FPGA display, we can see that the maximum limit has
been updated to 9.9 V, which is above the maximum limit normally allowed by the system.

Prevention

Beyond detection, successful results were also achieved for prevention, for which the

attack needed to be addressed before reaching the FPGA. The second version of the

veri�cation tool was able to prevent all three of these attacks from reaching the FPGA

controller while allowing the system to perform as if the veri�cation tool was not there. In

all cases, it was able to identify that the data being sent in belonged to a given attack and

prevented it from being forwarded. The maintenance of SoC for the battery was once again

monitored, and it behaved precisely according to the expected maintenance performance.

Figure 18 shows the experimental setup after malicious �rmware has been sent by the

attacker. It shows the initial detection by the veri�cation tool, the noti�cation of the attack
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report by the engineering tool, and the una�ected �rmware performing on the FPGA. Figure

19 shows the experimental setup after malicious voltage limits have been sent by the attacker,

with values of 0.5 V for the minimum limit and 9.9 V for the maximum limit. It shows the

initial detections by the veri�cation tool, the receiving noti�cations of the attacks report by

the engineering tool, and the una�ected voltage limits on the FPGA.

Figure 18: This �gure con�rms the successful detection and mitigation of an attempted
malicious logic code upload on the process control system by the detection with prevention
version of the veri�cation tool. Detection of the attack is reported on the user interface of
both the veri�cation tool and the engineering station. We also see that the normal program
remains running on the FPGA controller, so the malicious logic code was prevented from
bootloading on the controller.

Evaluation of Performance

This provides details of the evaluations of the battery charging PCS's performance,

using CSV �le records and graphs of the system's battery voltage and charger control signal

voltage. Multiple instances of voltage overshoot from the battery were observed, where the

voltage went above the upper limit and below the lower limits, as shown in the charts of
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Figure 19: This �gure con�rms the successful detection and mitigation of an attack which
sends in a malicious maximum voltage limit. Detection of the attack is reported on the
user interface of both the veri�cation tool and the engineering station. We also see that the
malicious maximum limit is not set on the FPGA controller, because it was prevented from
being set in the controller.

Figures 13 and 14, were observed. In control systems, overshoot is the behavior where the

actual output of the system exceeds the target value. In part due to this overshooting,

the elapsed time of charge-discharge cycles was varied. The performance of the PCS was

recorded using voltage charts. Figure 21 shows the recording of the performance of the

system without the veri�cation tool, and Figure 20 shows the recording of the performance

with the veri�cation tool. For the �rst voltage range, each system experienced about four

charge-discharge cycles within the �rst 200 seconds. After 200 seconds, when the voltage

range was updated, the system without the tool experienced 18 charge-discharge cycles, and

the system with the tool experienced 15 cycles. Considering the present variation of the

charge-discharge cycle, the di�erence in performance time for the tool appears negligible.

This is con�rmed in the next section using statistical analysis.
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Figure 20: This �gure graphs the battery voltage and charger signal voltage for the battery
charging PCS without the veri�cation tool. At the start, the maximum voltage limit is 7.7
V and the minimum limit is 6.8 V. After 200 seconds, the limits are updated to be 7.5 V
and 7.0 V. The system response and performance is visibly similar to that of the chart in
Figure 20.

Figure 21: This �gure graphs the battery voltage and charger signal voltage for the battery
charging PCS with the veri�cation tool. At the start, the maximum voltage limit is 7.7 V
and the minimum limit is 6.8 V. After 200 seconds, the limits are updated to be 7.5 V and
7.0 V. The system response and performance is visibly similar to that of the chart in
Figure 21.

Statistical Analysis of Performance

The tables in Figure 22 on this page show the results obtained from running statistical

analysis on PCS performance data using the R programming language. For the speci�c code
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used, please refer to the appendix. Statistical tests were performed on data showing the

performance for the PCS without a veri�cation tool and the PCS with the veri�cation tool,

and with both the systems maintaining the battery voltage at 6.8 V to 7.7 V for the �rst

200 seconds and then 7.0 V to 7.5 V for the last 200 seconds. There were four columns in

the combined data, indicating: inclusion or exclusion of the tool, the runtime of the system

in seconds, the voltage of the BJT control signal in volts, and the voltage of the battery

in volts. I performed two tailed multiple linear regression analysis on the PCS performance

data. The null hypothesis of the test is that the performance of the PCS which uses the

veri�cation tool is equivalent to the performance of the PCS not using the veri�cation tool.

I chose this test because linear regression is optimal for continuous independent variables

and I had multiple independent variables. Two-tailed analysis provides a measure of how

much evidence there is to reject the null hypothesis. The test has three independent variables

which a�ect the value of the battery's voltage: the time in seconds is a continuous variable,

the inclusion or exclusion of the veri�cation tool is given as a numerical 0 or 1, and the

BJT control voltage is a continuous variable. The dependent variable that is a�ected by

the independent variables, battery voltage, is continuous as well. Multiple Repeated Anova

testing was also considered for this analysis, but wasn't used because the independent time

variable is continuous, and anova works best with class based independent variables.

When analyzing the dataset, the p-value for the "Has Tool" variable was much greater

than 0.05, and thus did not show statistical signi�cance to the dependent value of the battery

voltage. This is in agreement with the null hypothesis and thus suggests that the performance

of the system with the veri�cation tool is similar to the performance of the system without

the veri�cation tool, so the tool can be used in the system without a�ecting performance.

On the other hand, the p-values for �Time� and �Control Voltage� were much smaller than

0.05, which suggests that they are statistically signi�cant to the dependent value of the

battery value. This is as expected, since the battery voltage is known to change with time
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and in accordance to the control signal, which turns the charger on and o�. I also performed

simple linear regression on each of the independent variables separately, to con�rm their

likely e�ects on the voltage without any sway from the other independent variables. The

results of the simple linear regressions, based on their p-values, were in agreement with the

�ndings of the multiple linear regression analysis. Overall, these �ndings suggest that the

presence of my veri�cation tool does not have a signi�cant e�ect on the performance of the

process control system, and thus the tool can be included without a�ecting performance.

Results Discussion

All research goals of the project were met. The veri�cation tool was shown to provide

mitigation as well as detection. The PCS featuring the veri�cation tool was able to update

its voltage limits and bootload the trusted �rmware to the FPGA when requested, just as

the original version of the PCS was able to. This suggests availability, when availability is

de�ned for PCSs as the probability that a system is up and running as expected at some point

in time. When including the veri�cation tool, the execution time of the control system was

negligibly impacted, as shown in the Figure 20 and 21 voltage charts. Thus, the tool was

added to the PCS without negatively a�ecting the performance of the PCS, when considering

performance as the the time for command execution and the correct execution of commands.

Threats to Validity

Three types of threats to validity were explored in this research, which was grounded

on the classi�cation scheme of Campbell & Cook (1979) [14] and Campbell & Stanley (2015)

[8]. These threat types include (1) internal threats to validity, which refer to undesired

relationships, speci�cally regarding the extent of con�dence that independent variables cause

e�ects on dependent variables; (2) construct threats to validity, which refer to how well a
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Figure 22: Tables containing linear regression results. The top table contains results for
multiple linear regression performed on the entire process control system performance data
and the lower three contain simple linear regression results for its individual independent
variables. Overall, the results in the table suggested that the inclusion of veri�cation tool
was not statistically signi�cant to the performance of the process control system, while
time and BJT control voltage were signi�cant.

study's tests and measurements re�ect the real-world concepts the study was designed for,

and (3) external threats to validity, which describe the degree to which �ndings can be

generalized.

Internal Validity

In this study, internal validity refers to the certainty that the veri�cation tool was the

direct cause of the observed and desired PCS behavior. A recognized threat to internal
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validity in this study was in its instrumentation, as the core of the RadPC computer was

updated several times throughout its design. This may result in unintended inconsistencies

in the resulting system performance.

Construct Validity

In this study, construct validity refers to how well the veri�cation tool worked to detect

and prevent attacks without negatively a�ecting PCS performance. The construct validity of

this research was explored by observing the various user interfaces of the PCS and recording

the voltage charts of the PCS's battery voltage and charger control signal to ensure proper

functionality.

It is recognized that a threat to the internal validity of this project includes the small

sample size of attacks that were used on the system. Real-world systems will be subject to

a wide range of attacks, and the tool on this study focused only on unauthorized command

message and DoS attacks. In future work, testing a wider variety of attacks could result in a

more robust tool. Additionally, no system evaluation has been performed that simulates

scaling to a larger system, with factors such as heavier communication loads, multiple

controllers, or noise in serial communication.

External Validity

In this study, external validity refers to how well the study can be generalized for real-

world PCSs. For threats to external validity, it is recognized that the tool was designed for

an FPGA-controlled PCS, and its implementation on a generalized PCS using a proprietary

PLC instead may prove more di�cult. Although the tool could be easily added to a PLC

that uses serial communication, such as RS-232, using a physical passive serial tap, it may

not be well suited to handle controllers that use di�erent communication methods, such as

Ethernet. To mitigate this threat, future development of the tool could be attempted on a

proprietary controller or a simulator of one.
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CONCLUSION

In conclusion, this paper completed the goal of developing a veri�cation tool that

provided detection and prevention against attacks without negatively impacting the per-

formance of its PCS. In particular, this tool focused on detecting and preventing attacks

using unauthorized command message techniques on its RISC-V FPGA-controlled PCS.

The most noteworthy contribution is the development of this mitigation functionality for

the veri�cation tool, as this functionality may be applied to veri�cation tools for other

standard PCS controllers that had focused solely on detection previously. Because the

tool only requires the hardware inclusion of a passive serial tap to a system to monitor

its tra�c, it would be physically easy to incorporate this system into a PCS. However,

rerouting communication to pass through the veri�cation tool before it is forwarded to the

controller may prove more di�cult. Further development of this tool can be explored by

expanding its functionality for use with RadPC and adapting its techniques to these other

PCS controllers. Currently, a condensed version of this thesis has been accepted to the 2025

IEEE Intermountain Engineering, Technology, and Computing (i-ETC) Conference, to be

presented and published in the conference proceedings [23].
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FUTURE WORK

Future improvements on this body of research could include the development of

functionalities for the veri�cation tool to verify �rmware uploaded to the board. For the

RadPC, this may involve soldering a physical tap to the board's Rx and Tx lines, allowing

the lines to be tapped without prede�ned ports to transmit the forwarded signals of the

lines. Similarly to the veri�cation process for logic code, any incoming bitstreams would

be compared to a known good bitstream using SHA-256 hashing. Additionally, for future

versions, any �rmware the program deems trustworthy may be allowed to send through,

rather than having one set trustworthy �rmware. This may be implemented in part by

inclusion of the Yara library, which provides binary �le analysis to allow the veri�cation

tool to determine the trustworthiness of �rmware binary �les [1]. Lastly, the mitigative

functionality of this tool may be applied to veri�cation tools for PLCs and other applicable

PCS controllers.
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% R programming l anguage code used to perform mu l t i p l e l i n e a r

r e g r e s s i on ana l y s i s and s imp le l i n e a r r e g r e s s i on on PCS performance

data .
l i b r a r y ( t i dyv e r s e )
l i b r a r y ( gtsummary )
l i b r a r y ( s u r v i v a l )
l i b r a r y ( r eadx l )

# Read the Excel f i l e ( ad jus t path as needed )
df <= read . csv ("D:/ Documents/ICS Research/ entire_dataset_mlr . csv ")

# Redef ine data column names
colnames ( df ) [ 1 : 4 ] <= c ("BatVol " , "HasTool " , "Time" , "CLTVol")

# Fit the mul t ip l e l i n e a r r e g r e s s i o n model
entire_model <= lm(BatVol ~ HasTool + Time + CLTVol , data = df )

# View the r e g r e s s i o n output
summary( entire_model )

tool_model <= lm(BatVol ~ HasTool , data = df )
summary( tool_model )

time_model <= lm(BatVol ~ Time , data = df )
summary( time_model )

ctl_model <= lm(BatVol ~ CLTVol , data = df )
summary( ctl_model )
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