

THE APPLICATION OF TECHNICAL DEBT MITIGATION TECHNIQUES

TO A MULTIDISCIPLINARY SOFTWARE PROJECT

by

Rachael Lee Luhr

A thesis submitted in partial fulfillment

of the requirements for the degree

of

Master of Science

in

Computer Science

MONTANA STATE UNIVERSITY

Bozeman, Montana

April 2015

©COPYRIGHT

by

Rachael Lee Luhr

2015

All Rights Reserved

ii

DEDICATION

This thesis is dedicated to my parents, Mary and Donald Luhr. It was through

their guidance and unwavering support that I choose to study Computer Science and to

continue into graduate school. From practicing long division in the pick-up truck before

elementary school to programming a robot for my sixth grade science fair project, they

were always encouraging me to pursue my interests and follow my dreams. I hope I can

continue to inspire others in the same way.

iii

ACKNOWLEDGEMENTS

When I entered college, I had no intention of going to graduate school. When my

advisor, Dr. Clemente Izurieta, gave me the opportunity to work on undergraduate

research it changed my mind. It was with his guidance and support that I decided to

continue my education and pursue a master‘s degree. I am so grateful for his patience to

answer my questions and his high expectations which made me continually push myself

to become a better student and researcher.

I would also like to thank the members of the Software Engineering Laboratory.

Through our intelligent discourse, I have learned more than I thought possible. I am glad

I got to go through this adventure with them, and wish them all luck while finishing their

academic journeys. They have been amazing lab mates and friends.

A special thank you goes to Kevin Scott at Evans & Sutherland for his copious

amounts of help with the Digistar 4 program and his patience with my learning. Without

him, the visualization of this work would not have been possible.

Lastly, none of this would have been possible without the support of my parents,

sister, and all my family and friends. They have always encouraged me to achieve my

goals and had unwavering faith that I would do so. I would also like to thank my best

friend and partner, whom I greatly admire and respect, Derek Reimanis. His love,

kindness, and understanding have kept me going through times when I doubted myself,

and I will be forever thankful.

iv

TABLE OF CONTENTS

1. INTRODUCTION ...1

 Motivation ..1

 Summary of Approach ...1

 Summary of Contributions ...3

 Organization ...3

2. RELATED WORK ..5

 Uncertainty in Technical Debt ...5

What is Technical Debt? ..5

How Do We Measure TD? ..6

Uncertainty in Calculations..9

Comparing Measures ...9

Propagation of Error ..10

Multivariate Uncertainty ..10

 Modularity Violations ..10

What are Modularity Violations?...11

Importance of Replication in SE ..12

Effects of MV in Software ...12

3. BACKGROUND ...16

 Network Exchange Objects ..16

What is NEO? ..16

How Does NEO Work? ...18

 Hydrology ..19

Watershed Modeling ..19

4. APPROACH ..23

 Particle Tracker Program Design and Development ...23

Technical Requirements...23

System Design ...26

The Particle Tracker Algorithm ...28

Validation ...30

 Using SonarQube to Measure TD ..32

5. VISUALIZATION ...35

 Motivation ..35

v

TABLE OF CONTENTS – CONTINUED

 Platform..35

 Outreach ...36

 Approach ..37

Multiple Currencies ...39

6. CURRENT RESEARCH ...41

 Multiagent Systems ..41

Background ..41

In Hydrology ..44

 An Integrated NEO Design ..45

 Functional Requirements ...45

 System Design ...46

7. CONCLUSIONS AND FUTURE WORK ..48

REFERENCES CITED ..49

APPENDICES ...55

APPENDIX A: On the Uncertainty of Technical

Debt Measurements ...56

APPENDIX B: Natural Science Visualization using

Digital Theater Software ..64

APPENDIX C: A Replication Case Study to Measure

the Architectural Quality of a Commercial System ...71

APPENDIX D: Input and Output Tables from the Simplified

Testing Graph for the Particle Tracker Algorithm ...84

vi

LIST OF TABLES

Table Page

1. SQALE method of measuring technical debt ..8

2. Summary of different treatments between case studies13

3. Tau-b values for metric pairs ...14

4. The first five rows of the matrix database table ...24

5. Five rows of the model results database table ...26

6. Six rows of the particle tracker program output table ..30

vii

LIST OF FIGURES

Figure Page

1. Technical Debt Quadrant ...6

2. How cells are connected in a NEO model ...17

3. Watershed delineation on a topographic map ..20

4. Inter-connected components of a river ..21

5. All four layers of links as plotted by R ..25

6. UML Component Diagram for the Particle Tracker program27

7. Specification file for the Particle Tracker program ...28

8. Java code for the randomization portion of the algorithm29

9. Simplified graph to test particle tracking conditions ...31

10. Sonar-properties.properties file..33

11. Duplications and Complexity score calculated by SonarQube33

12. Different technical debt scores calculated by SonarQube34

13. Screenshot of the Digistar 4 dashboard ...36

14. Screenshot of the Nyack Floodplain visualization...39

15. Visualization of heat and water currencies fluxing through a cube40

16. An example of how agents can be organized and interact43

17. UML Class Diagram for integration with NEO ...47

viii

LIST OF EQUATIONS

Equation Page

1. CAST Equation for Estimating Technical Debt ..8

2. Technical Debt equation including error ...9

ix

NOMENCLATURE

DB – Database

DBMS – Database Management System

CAHN – Complex Adaptive Hierarchical Network

CERG – Computational Ecology Research Group

IDE – Integrated Development Environment

LOC – Lines of Code

LRES – Land Resources and Environmental Sciences

MAS – Multiagent System

MV – Modularity Violation

NEO – Network Exchange Objects

PT – Particle Tracking

SE – Software Engineering

SEL – Software Engineering Laboratory

SQL – Structured Query Language

TD – Technical Debt

UML – Unified Modeling Language

x

ABSTRACT

The research described by this thesis uses contributions made to the technical debt

community to create a high quality multidisciplinary software project under collaboration

between computer scientists and hydrologists. Specifically, additions to the body of

knowledge regarding technical debt and modularity violations are described. Technical

debt is a metaphor borrowed from the financial domain used to describe the sacrifices

that developers make in order to get software released on time. We looked at the

uncertainty associated with technical debt measurements and expanded on well-known

equations by investigating how errors propagate. We also looked at how modularity

violations affect the overall architectural quality of a large-scale industrial software

system. Modularity violations occur when modular pieces of code that are not meant to

change together, do change together.

The second portion of the thesis applies the research learned from modularity

violations and from the uncertainty investigations in technical debt measurements to a

specific problem in hydrology to create a more accurate, modularized, and extensible

particle tracking algorithm. We used SonarQube‘s technical debt software to further

investigate technical debt measurements. We then visualized the modeling output from

the particle tracking algorithm using high-tech digital theater software that was extended

to accurately represent natural science visualizations. Finally, we describe the design

necessary to seed the application of multiagent system theories and technologies to

improve 3D hydrologic modeling.

1

INTRODUCTION

Motivation

 Software projects are often the work of collaborations –field and industry domain

experts approach computer scientists to solve problems. The need for the work summed

up in this thesis was made apparent by hydrologists from the Department of Land

Resources and Environmental Sciences at Montana State University. Hydrologists often

collect large amounts of data from field work; which requires significant amounts of pre-

processing and organization in order to accurately represent said knowledge. A well

architected system forms a foundational framework that can be used to build extensibility

through new approaches and explicability of results through behaviorally deterministic

algorithms. This foundation is a critical requirement when interpreting large amounts of

data. Simulation and modeling practices are widely used by hydrologists as an approach

to quickly validate results and contrast hypotheses that require the evaluation of large

amounts of data. By architecting high quality extensible architectures that use systematic

approaches to carry out experiments we have an opportunity to help. The work herein

uses computer science (and specifically, software engineering) theories and technologies

to fill the needs of those hydrologists.

Summary of Approach

To address the hydrologists‘ problem of understanding their data, this work

follows a two-prong approach. The first step is to enhance and improve the idea of

2

particle tracking by designing and implementing an efficient and accurate particle tracker

algorithm that is closely linked with the currently used modeling framework. Particle

tracking refers to the modeling of artifacts that can be aggregated to form a currency. A

currency is a collection of artifacts that flow through a system according to some step

function (typically time). The particles that flow through the system can be abstracted to

be any token of interest; however, in this case study, it is limited to water particles. The

latter are simple agents that traverse a graph (representative of their setting of use) and

are commanded externally. A particle that is externally commanded can be thought of as

a simple agent, and a particle that can make its own decisions can be thought of as smart.

Whilst the current work focuses on simple agents, the algorithm is also on track to use

multiagent systems theory to create more intelligent particles. Intelligent particles are

able to make informed decisions and process information instead of relying on external

programs.

The second step in the approach is to visualize the data received from the particle

tracking algorithm. Visualization is a very powerful and useful tool in many areas, not

just hydrology. However, when hydrologists can see how water is moving through a

watershed, it provides insight to what hydrologic and/or non-hydrologic processes are

taking place in that watershed. This is an invaluable tool when understanding such

complex data.

While developing an implementation of the algorithm, it was essential to work

under the guiding principles that drive high quality in software engineering. Two relevant

areas that affect the quality of architectures, and that form a significant contribution to

3

this work, were studied. Technical debt and modularity violations are considered to be

important characteristics of high quality systems. Both characteristics formed a precursor

to beginning this project and were fundamental to its success. Research was conducted to

advance the science by identifying ways to minimize the impacts of technical debt [1]

and modularity violations [2] in the context of developing the particle tracking algorithm

enhancements and its complementary visualization techniques [3].

Summary of Contributions

 Increasing knowledge in the uncertainty involved in technical debt measurement.

 Observing how modularity violations affect the architectural quality of large-scale

industrial software.

 Developing a more accurate, modularized, and extensible particle tracking

algorithm.

 Visualizing modeling output using high-tech visualization software that has been

extended to accurately represent natural science visualizations.

 Designing and laying the framework to start applying multiagent system theories

and technologies to improve 3D hydrologic modeling.

Organization

The rest of this thesis is organized as follows: Chapter 2 discusses related work

involving technical debt and modularity violations in software projects. Chapter 3

provides background information on the Network Exchange Objects modeling

4

framework and why it is useful in the field of hydrology. Chapter 4 describes the

approach used when developing the particle tracker program and how it operates with the

modeling framework. The work done with the visualization of models is presented in

Chapter 5. Chapter 6 outlines the current and future research to be done in this area.

Finally, Chapter 7 provides the conclusions of this work.

5

RELATED WORK

Uncertainty in Technical Debt

The understanding of the principles behind technical debt was critical in shaping

this research. In order for developers to create valuable software while adhering to the

best software engineering principles, technical debt must be understood and be at the

forefront of design. If technical debt is accrued, they must also understand how much

technical debt exists and how to eliminate it. In prior work [1], we discuss the uncertainty

involved when measuring technical debt. The following two sections provide an abridged

description of technical debt and why it is so difficult to measure.

What is Technical Debt?

Coined in 1992 by Ward Cunningham [4], the term ―technical debt‖ is a metaphor

to describe the sacrifices that developers make in order to get software released on time.

This metaphor is borrowed from the financial industry where sometimes, one needs to

take on debt in order to advance. Like financial debt, when software needs to be

refactored or redesigned, it costs extra time and money to make these fixes. However,

sometimes incurring technical debt (like financial debt) is necessary. Martin Fowler [5]

has shown that there are four main types of technical debt that can occur. The quadrant

shown in Figure 1 illustrates these types of debt.

6

Figure 1. Technical Debt Quadrant [5].

It is especially difficult to measure and subsequently remove inadvertent technical

debt. This occurs when the developers are making poor design decisions and are not even

aware they are doing so. In cases when developers know they are acquiring technical

debt, they are doing it deliberately. As the quadrant shows, this can be done recklessly or

prudently. The ―best‖ kind of technical debt occurs deliberately and prudently. It must be

stated that technical debt is not always incorrect and is sometimes even necessary.

Developers must ensure that if they are taking on technical debt, it needs to be done in a

way that can be managed and understood. That way, like Seaman et al. mention in [6],

technical debt data can then be used in important decision making strategies such as when

(or if) a company needs to refactor its code.

How Do We Measure TD?

As stated in the previous section, technical debt is very difficult to measure.

Curtis et al. [7] state that ―there is no exact measure of Technical Debt, since its

calculation must be based only on the structural flaws that the organization intends to

7

fix.‖ However, many organizations may not be aware of the technical debt in their

software or may not want to fix the technical debt they are aware of.

In [8], Ferenc et al. describe three types of software quality assessment models.

These models are useful because they can provide developers with quantitative

information to assess the quality of their software. The three types of models are:

Software Process Quality Models, Software Product Quality Models, and Hybrid

Software Quality Models. The difference between the first two types of models is that the

first attempts to measure the process of software and the second attempts to measure the

product (that is, the software system itself). These types of models measure the quality

of the product by combining different source code metrics.

Following this, there have been several different proposed ways to measure

technical debt. Griffith et al. [9] performed a study to examine the relationship between

several different methods of measuring technical debt and an external software product

quality model. Several of these technical debt estimation methods will be discussed in the

following paragraphs.

In 2012, Letouzey and Ilkiewicz introduced the Software Quality Assessment

based on Life-cycle Expectations (SQALE) method [10]. SQALE is based on four main

concepts: the quality model, the analysis model, the four characteristics (maintainability,

changeability, reliability, and testability), and the indicators. Table 1 describes the

characteristics and how to solve the problems related to these characteristics. The authors

give a remediation function that describes approximately how long it would take to fix

8

these problems. However, developers are free to change these functions based on their

particular skills.

Table 1. SQALE method of measuring technical debt [10].
Characteristic Requirement Remediation microcycle Remediation function

Maintainability There is no commented-out

block of instruction

Remove (no impact on

compiled code)

2 minutes per

occurrence

Code indentation shall follow a

consistent rule

Fix with help of the

integrated development

environment (IDE) feature

2 minutes per file,

regardless of the

number of violations

Changeability There is no cyclic dependency

between packages

Refactor with IDE and

write tests

1 hour per file

dependency to cut

Reliability Exception handling shall not

catch null pointer exception

Rewrite code and

associated test

40 minutes per

occurrence

Code shall override both

equals and hash code

Write code and associated

test

1 hour per occurrence

There is no comparison

between floating points

Rewrite code and

associated test

40 minutes per

occurrence

No iteration variable are

modified in the body of a loop

Rewrite code and

associated test

40 minutes per

occurrence

All files have unit testing with

at least 70% code coverage

Write additional test 20 minutes per

uncovered line to

achieve 70%

Testability There is no method with a

cyclomatic complexity over 12

Refactor with IDE and

write tests

1 hour per occurrence if

measure is < 24; 2

hours if > 24

There are no cloned parts of

100 tokens or more

Refactor with IDE and

write tests

20 minutes per

occurrence

In 2011, the CAST Research Labs (CRL) published a report that highlighted the

fact that companies are not budgeting for the millions of dollars‘ worth of technical debt

that exists in their software products [11]. This report used the following equation to

estimate the principal of technical debt in dollars, where principal is defined as the cost of

fixing problems remaining in the code after it has been released.

Estimated Technical Debt Principal =

((((∑ high severity violations) x % to be fixed) x avg hours to fix) x $ per hour)) +

((((∑ med severity violations) x % to be fixed) x avg hours to fix) x $ per hour)) +

((((∑ low severity violations) x % to be fixed) x avg hours to fix) x $ per hour)) +

Equation 1. CAST Equation for Estimating Technical Debt [11].

9

The authors of this equation purposefully leave the parameters adjustable so that

each customer or company can customize the equation to fit their specific needs. The

problem with this approach is that it leaves room for error if companies are unsure what

values to use for the parameters.

Uncertainty in Calculations

Due to human factors, uncertainty does exist in measurements of technical debt.

As the methods in the previous sections stated, there is no hard rule or set standard for

how to calculate technical debt. In [1], we use techniques from physical sciences (like

those discussed by Taylor [12]) and apply them to software engineering technical debt

measurements. We use Equation 2 to calculate the measure of technical debt principal by

using the developers best estimate of technical debt principal and adding (or subtracting)

a margin of error or uncertainty.

Equation 2. Technical Debt equation including error [1]

Comparing Measures. Unlike the physical sciences, where we can use multiple

physical tools and compare them to calibrate a measurement, tools that measure technical

debt cannot be compared because measurement of technical debt is still in its infancy and

we have not yet agreed on a common metric –all approaches use different equations.

Using calculations that are unadjusted for error are uninteresting. By providing a measure

of uncertainty along with the technical debt measurement, allows scientists to begin

moving towards an understanding of the significance that certain factors have on the

10

response variable (i.e. technical debt); which would allow us to more accurately compare

two (or more) measurements.

Propagation of Error. This error is very important to measure because it can

propagate through technical debt measurements. In [13], Nugroho et al. propose

calculations to measure aspects of technical debt. In [1], Izurieta et al. used these

equations to show this propagation of error. They discuss the propagation of uncertainty

in sums, differences, products, and quotients of measured quantities.

Multivariate Uncertainty. Taylor [12] uses quadrature in formulas that need to

deal with multivariate equations. This method is appropriate to use when the

measurements come from Normal or Gaussian distributions and are independent. While

this is a good place to begin investigating, this type of calculation needs more validation

within the field of software engineering.

Until we have agreed upon standards or tools to accurately measure technical

debt, it is important to report the corresponding error in technical debt measurements.

Additional work in this area is critical to further the understanding of technical debt and

how it affects software projects.

Modularity Violations

Technical debt can appear in code in many different ways. In [14], Izurieta et al.

evaluate four different types of debt and approaches to examine and mitigate this debt.

This work is also extended in [15] to include more recent studies and findings. The four

11

indicators of technical debt discussed include design patterns and grime buildup [16]

[17], code smells [18], ASA (automatic static analysis) issues [19] [20], and modularity

violations [21]. All four of these areas deserve further attention so that we can gain more

insight into technical debt. Their findings suggest that there exist significant gaps in

technology, and that each technique is designed to measure different aspects of technical

debt. At an architectural level, modularity violations are more relevant to the work

necessary to extend this thesis. In this section we focus on modularity violations and their

importance in the technical debt landscape.

What are Modularity Violations?

Baldwin and Clark [22] define a module as ―a unit whose structural elements are

powerfully connected among themselves and relatively weakly connected to elements in

other units.‖ Modularity violations occur when two modules that are not expected to

change together do change together. These violations are very important to recognize

because understanding their consequences can lead to better design decisions and/or

highlight the need for refactoring, thus reducing technical debt. However, early detection

of modularity violations can be very difficult because their influence in the code is not

always immediately apparent.

In [21], a tool called CLIO was designed and tested to detect modularity

violations. We conducted a replication case study [2] using this tool to test its efficacy at

correctly detecting modularity violations and to increase the knowledge base surrounding

modularity violations and their effect on technical debt.

12

Importance of Replication in SE

Experimental replication studies are important in a field such as empirical

software engineering [23] [24] because they help build consensus around emerging

theories. Observing and studying software projects often, if not always, also involve the

study of humans. Human behavior can be extremely unpredictable and difficult to

replicate. This makes conducting a controlled experiment very challenging. By

performing replication case studies, we can increase the confidence of ideas.

The replication of case studies, such as the one performed by Reimanis et al. [2],

are not as common as replications of experiments. However, they are just as important.

Case studies take place in the real world (in-vivo), and observations are made in the

context of their domains. This tends to be typical of software engineering studies because

controlled experimentation is cost prohibitive. The observation of historical data (a

longitudinal approach) is also common in empirical software engineering studies, and

occurs when we observe phenomena over various versions of software. This type of

information is invaluable when attempting to understand how projects actually evolve. In

our replication study we borrowed terminology from existing information on

experimental replication studies [25].

Effects of Modularity Violations in Software

We conducted a replication of a study by Schwanke et al. in [26]. Both projects

were industrial software products. Our code base was a commercial software system

developed by a local bioinformatics company – Golden Helix [27]. They gave us access

to their code base because they were interested in learning about potential modularity

13

violations in their designs. They specifically wanted us to point out potential deficiencies

in their code organizational structure.

We had five major treatment differences from the original study. Table 2

summarizes these differences. The first major difference is the programming language

that the projects were written in. The baseline project was written in Java and our project

was written in C++.

Table 2. Summary of different treatments between case studies [2]

Factor Baseline Project Our Project

Programming

Language

Java C++

of Developers Up to 20 Up to 11

Project Lifetime 2 years 4 years

of Source Files 900 3903

KSLOC 300 1300

The difference of treatments in this factor brought about interesting complications

in the study because Java projects are structured differently than C++ projects. Because

of this, we had to slightly modify our definition of a module. In this study, we defined a

module as a directory. This choice was based on Parnas et al.‘s definition [28]. The terms

module and directory are used interchangeably. We also had to group C/C++ source files

and header source files together. This is because developers expect source files and their

related header files to change together. Our study was only concerned with unexpected

changes across modules.

The other differences between the baseline project and our project include the

number of developers, project lifetime, number of source files, and kilo-source lines of

14

code (KSLOC). Our project had fewer developers, but a longer lifetime and is larger in

terms of source files and LOC.

In order to gather data on this project, we followed the work of Schwanke et al.

[26] and looked at seven different metrics; which were gathered for all file pairs across

all seven versions of Golden Helix‘s software. These metrics included: file size, fan-in,

fan-out, change frequency, ticket frequency, bug change frequency, and pair change

frequency. The definitions of these metrics can be found in [2]. We used CLIO to gather

measurements for these metrics by looking at the source code and the version history of

the project. Following the baseline study, Kendall‘s tau-b rank correlation measure was

used [29]. Table 3 shows the tau-b value calculated for each metric pair in releases 7 and

7.5 of the software.

Table 3. Tau-b values for metric pairs [2]

R7+R7.5 Fan-in Fan-out File size Changes Tickets Bugs

Fan-in 1 0.257 0.301 0.331 0.328 0.464

Fan-out 0.257 1 0.441 0.417 0.416 0.637

File size 0.301 0.441 1 0.293 0.273 0.510

Changes 0.331 0.417 0.293 1 0.972 0.858

Tickets 0.328 0.416 0.273 0.972 1 0.857

Bugs 0.463 0.637 0.510 0.858 0.857 1

Highlighted cells with a value of 0.6 or greater indicate strong correlation [30].

Most of the highlighted results were expected. Changes, bugs, and tickets have

significant correlation values. An unexpected result was the correlation between bugs and

fan-out. This number shows that as the fan-out of a file pair increases, the number of bugs

associated with that pair also increases. These results are consistent with the baseline case

15

study [26], adding to the knowledge of how modularity violations occur and how well

CLIO detects them.

Developers at Golden Helix were unsurprised by the findings of our study. Many

of the files that were causing modularity violations were known to be heavily dependent

on other files, and some modularity violations were intentional. However, it was

reassuring for the baseline developers to receive this information because it meant that

there were few modularity violations occurring that they were not expecting. The latter

exemplify prudent and deliberate technical debt.

16

BACKGROUND

Network Exchange Objects

Network Exchange Objects (NEO) is a software framework designed to facilitate

development of complex natural system models [31] where models are represented as

graphs that can carry and communicate data represented as flows of currencies. NEO

began a re-engineering phase of development at Montana State University in 2009 as a

joint venture between the Computer Science Department and the Department of Land

Resources and Environmental Sciences (LRES). NEO can be used as a general-purpose

modeling tool applicable to many domains [32].

What is NEO?

NEO was designed to study systems that can be described as ―complex adaptive

hierarchical networks‖ (CAHNs). CAHNs are complex systems through which

information is stored and routed and can be represented in a graphical form. CAHNs are

constructed of cells that are linked by edges and are structured hierarchically. Cells

represent system components. These cells can be defined as any physical component of a

system. This can range from discrete sections of a riverbed (e.g., a model of a watershed)

to an abstract representation of cars (e.g., a vehicular communication network). Any

conceptual structural component the modeler is interested in can be represented as a cell.

The edges in a CAHN represent the interaction between cells. This is where the

information about the behavior of exchanges between cells is stored. For example, in a

watershed model, the interaction between cells might include the flow of water, exchange

17

of heat, or flow of sediment. In a vehicular communication model, the modeler might be

interested in the signals being exchanged between cars. The behavior (described as

calculations) for how these exchanges occur, is located in the edges of the graph.

There are two faces associated with each edge. Edges can contain behavior that is

synchronous; that is, the behavior of a face on one side of the edge is reflected on its

counterpart on the opposite face (e.g., the signals between two communicating cars), or

asynchronous, where each face has its own unique behavior (e.g., the flow of sediment in

a riverbed). This is illustrated in Figure 2. Having ―to‖ and ―from‖ sides of edges helps

distinguish the flow of information.

Figure 2. How cells are connected in a NEO model [33].

Within this graphical representation of a system model, currencies flow from the

―from‖ side of an edge to the ―to‖ side. A currency represents anything within the model

that is being exchanged between components of the modeled system (e.g., radio signals,

water, sediment, energy, economic capital, nutrients, or any other resource that is of

interest to the system). These currencies are then manipulated as they flow (or flux)

between cells and edges in the defined matrix network, representing the effect entities

have on the flow. For example, if Figure 2 was describing a watershed model where the

18

cells are discrete patches of the river and the behavior located in the edges describes the

flow of water (i.e., the currency) between patches, then the water would be flowing

downriver from Cell 1 to Cell 2.

There are several vocabulary words that are used in conjunction with NEO [33].

The following is an abridged selection of key definitions.

 Holon – Cells, edges, and/or faces that correspond to real-world components of

the modeled system.

 StateVal – A variable within a holon that can be altered.

 Dynam – (Auto/Manual/Init) A static or dynamic method (i.e., an algorithm) in

which a stateVal is manipulated. This is where the currency behavior is defined.

 Currency Package – A package written in the Java programming language that

defines the behavior of a currency through a set of dynams.

 Model – A combination of the NEO framework and the necessary currency

packages which are to represent the desired system.

How Does NEO Work?

The core algorithm of NEO uses a Trade-Store-Update cycle approach. This

process determines the order of operations for the dynam calculations. In the Trade

phase, currencies that are fluxed between cells are calculated within each edge and their

values are saved to the currency stateVals within that edge. In the Store phase, dynams

that are located in cells update their currency stateVals based on the values that were

calculated in the Trade phase. Finally, in the Update phase, all automatically refreshing

values update their stateVals.

19

To develop and execute a NEO model, the following software requirements are

necessary. First, a development environment of the Java programming must be installed

on the machine. Second, an Integrated Development Environment (IDE) must be used.

IDEs provide a platform that allows the organization of files that correspond to NEO

concept implementations. Whilst not essential, it provides a significant aid when

managing models. Third, a database must exist in order to store information about the

model inputs and outputs.

Hydrology

One natural science field that lends itself well to the NEO modeling framework is

hydrology - specifically, the study of movement, distribution, and quality of water. Water

flowing in a river exemplifies NEO functionality: the river is the structure that makes up

the network and the water is the currency that fluxes through the system.

Watershed Modeling

The need for a system like NEO was made apparent by hydrologists from the

LRES Department at Montana State University. Simulation modeling allows scientists to

test many hypotheses in a relatively cheap environment, providing significant insights

into specific factors that can then be further explored and validated through real world

field studies, which are more expensive. Therefore, there are great advantages in

hydrological modeling. Much of the research in this area is done to improve scientist‘s

ability to predict or forecast the effects of land-use and climate change on the water

balance, streamflow variability, and water quality. Hydrologists are particularly interested

20

in the flow of water through a watershed. According to Dingman [34], a watershed is

defined as the ―area that appears on the basis of topography to contribute all the water

that passes through a given cross section of a stream.‖ An example of watershed

delineation is shown in Figure 3.

Figure 3. Watershed delineation on a topographic map [34].

The floodplain of interest (i.e., experimental unit) of this study is the Nyack

Floodplain located in Western Montana near Flathead Lake. The Nyack Floodplain

includes the watershed of the middle fork of the Flathead River. This area has been the

focus of considerable research in the state of Montana and the surrounding areas. This

research spans many topics including migratory patterns of bull trout [35], how the river

affects grizzly bear diets [36], and the structure of the river itself [37]. In 2012, Helton et

al. studied the temperature and dissolved oxygen dynamics of this system [38]. After the

21

implementation of NEO, this work was extended and provided the basis for the data used

in this thesis.

Helton et al. [39] were especially interested in the residence time of water within

the Nyack floodplain. Rivers are composed of surface and subsurface flow. Water that

becomes part of the subsurface (also known as ground-water) generally has longer

residence time. The topography of the landscape creates an immense influence on the

movement of water [40]. This leads to the idea of breaking up the watershed into smaller

blocks where water acts similarly within those blocks. Figure 4 shows how the river

breaks down into these separate components.

Figure 4. Inter-connected components of a river [41]. Figure Copyright © 2004

John Wiley & Sons, Ltd. Reproduced by permission.

In order to model this watershed in NEO, the river was broken down into discrete

patches. The ―cells‖ represent patches and are depicted in Figure 4 as nodes drawn in the

center of a corresponding polygon. The ―edges‖ are drawn as straight lines connecting the

cells. There are three layers in this watershed, as is indicated in Figure 4 (the surface

layer, the hyporheic layer, and the aquifer layer). This allows for representation of

22

horizontal water flow, horizontal and vertical subsurface flows, and the vertical

exchanges between subsurface and surface waters.

23

APPROACH

Particle Tracker Program Design and Development

 To visualize how water flows through a floodplain, hydrologists use a method

known as particle tracking. Particles can be thought of as independent agents that flow

through the floodplain and behave according to domain specific equations. Agents can be

configured to report on information according to predefined criteria. In the case of

particles they are configured to output their position at various time steps. This output can

then be used to gain insight on how water may actually be moving. The design of the

tracking algorithm uses current and modern object oriented techniques that encompass

high quality characteristics (i.e., low technical debt, use of design patterns, and use of

object oriented design principles). The implementation is written in the Java

programming language.

Technical Requirements

There are three technologies necessary to run the particle tracking software: the

Java 8
1
 developer‘s kit and runtime environment, an Integrated Development

Environment (IDE), and a database. The development of our project used Eclipse 4.2.1

Juno
2
 and PostgreSQL 9.2

3
 as the Database Management System (DBMS) with full

support for the Structured Query Language (SQL).

1
 https://java.com/en/download/

2
 http://www.eclipse.org/downloads/

3
 http://www.postgresql.org/download/

24

Output from a NEO model run is stored in a database. The particle tracking

program uses the information stored in the database tables to make informed decisions on

how to move the particles. The database contains two tables. One includes the

information to form the matrix (or the structure) of the river system. A portion of this

table is shown in Table 4. It consists of four columns that must be named: id, from_id,

to_id, and length. ‗id‘ is a unique integer that corresponds to the id of the link connecting

two nodes. ‗from_id‘ is an integer that corresponds to the id of the originating node that a

link is coming from. ‗to_id‘ is an integer that corresponds to the id of the destination

node that a link is going to. ‗length‘ is a value of type double that corresponds to how

long the link is (in meters). Links are directional because direction can be critical in most

flux networks. For example, we do not want water flowing ―up‖ river.

Table 4. The first five rows of the matrix database table.

The information in this matrix table forms four layers of the floodplain. These

layers are surface water, shallow groundwater, deep groundwater, and soil. This data was

pulled into the R statistical software
4
 and plots were created for each layer. These images

can be easily compared to the visualization to ensure that the data was consistent across

all programs (NEO, the particle tracker, and the visualization software). Figure 5 shows

4
 http://www.r-project.org/

25

the R plots for the soil links, deep groundwater links, shallow groundwater links, and

surface water links.

Figure 5. All four layers of links as plotted by R. (Provided by G. Poole)

26

The second database table, partially shown in Table 5, provides the results from

the NEO model run. This table also consists of four columns: secs, uid, water, velocity.

‗secs‘ is the time (in seconds) associated with that particular line of output. This

instantiation of the model run output every 43,200 seconds, or 12 hours. ‗uid‘ is the link

id. This value corresponds to the link id from the matrix information table. The

combination of ‗secs‘ and ‗uid‘ is what makes a row in the table unique. ‗Water‘ is the

flux value of water flowing through that link at that particular time. ‗velocity‘ refers to

how quickly that water is moving down the link. The equations that were used to

represent the physical principles behind the water flow are described by Walton et al.

[42] and Poole et al. [41].

Table 5. Five rows of the model results database table.

System Design

As mentioned in the previous section, the NEO output tables must be located in a

database and, along with a specification file, provide the input for the particle tracker

program. The program also outputs to a database table located in the same DBMS as the

NEO output tables. Figure 6 shows the UML component diagram for the particle tracker

program.

27

Figure 6. UML Component Diagram for the Particle Tracker program

The specification input file is where the user specifies how many ―particles‖ they

would like released, where they would like them released, and how often they want the

particles to report on their current location. Figure 7 displays this specification file (in

this case called RiverInfo.txt). The first line, DataTimeInterval, is time interval that

coincides with the NEO output data. The ReleaseInfomation contains the cell in the

matrix (referred to in this context as a node) where the user wants the particles released,

how many particles the user wants released, and the release time for those particles,

respectively. The third line in the file specifies when to start reporting particle tracker

information. The user may not always want to start reporting at the beginning of the

model, so this allows for flexibility. The ReportInterval on line 4 describes how often to

report output from the particle tracker. The accuracy of a simulation improves as this

report interval decreases. Finally, the last line, Destination, describes cells (or nodes) in

the matrix where the user wants to see the particles will exit the simulation (in this case,

as the furthest downriver point of the floodplain.

28

Figure 7. Specification file for the Particle Tracker program

Once the environment and the specification file are correctly specified, users may

run the particle tracker program by selecting the Main.java class in Eclipse (or IDE of

choice) and pressing the run button.

The Particle Tracker Algorithm

The movement of particles is based on available links, velocity, and flux. Particles

start by moving along the links connected to the specified nodes. To move, particles

query the database for the velocity along that link at that particular time. The particle then

calculates how far it should move down the link based on how much time has passed

multiplied by the velocity.

A particle knows it has reached the end of a link when its movement has exceeded

the link‘s length. At arrival to a node, the particle queries the database to see which links

are available for selection by observing which links contain the current node as the ―from

node‖. Once there is a list of known available links, the particle must choose which one

to select to continue its trajectory.

To more accurately represent a real system, a level of randomness is inserted into

the choices that particles make when they reach a specific node. The program queries the

database to find the flux values for all the available links at the current time. It then uses a

29

weighted formula to cumulatively sort these links from smallest flux value to largest (on

a scale from 0.0 to 1.0). This is compared to a random number generated by the program

(also between 0.0 and 1.0). The particle chooses the first link that has a higher weighted

flux value than the random number. See Figure 8 for the portion of the code that handles

this logic.

Figure 8. Java code for the randomization portion of the algorithm

At the time step stated on line 4 of the specification file, the particle reports its

particle id number, the id of the link it‘s currently traversing, the current time, and its

position on the link. This information is written to a database table in order to provide

easy access to the output once the particle tracker is finished. Table 6 shows the first six

rows of this output table. You can see that the particle reports every 500 seconds (as

specified). When the particle reaches the end of link 1741, it chooses link 1743 as its new

link to follow its trajectory.

30

Table 6. Six rows of the particle tracker program output table

Validation

 The Nyack watershed model‘s matrix table contains a total of 3054 lines and its

model results table contains a total of 369,534 lines. To validate that the particle tracker

algorithm was working correctly, we created a smaller scale model that contained all the

possible conditions present in the larger model. In collaboration with hydrology domain

experts, the following represent the conditions that required testing:

1. Particles had to choose links correctly based on weighted flux with some

element of randomness.

2. If the velocity reaches 0 in the middle of the link, the particle would stop

moving, but would keep reporting its position.

3. If a particle comes to a junction where none of the available outgoing links

have a flux value greater than 0, the particle will wait at the junction until

the flux becomes greater than 0.

4. If a particle comes to a junction and there is a link with positive velocity

but the link is the wrong direction, the particle should never choose to go

down this link.

31

The graph constructed to test these conditions is shown in Figure 9. The node ids

and link ids are shown on the graph. A model results database table was constructed to

serve as an oracle that would have similar output to a NEO model run. This table also had

the above conditions built into it. The particle tracker was run with those two tables as

input and the specification file tailored to fit this model. The particles were released at

node 1, reported every 100 seconds, and expected to arrive at nodes 6, 7, 8, or 9. After the

particle tracker finished executing, the output was validated by hand to ensure that the

four conditions were met and particles were behaving as expected. See Appendix D for

input tables and output from this example.

Figure 9. Simplified graph to test particle tracking conditions

32

Using SonarQube to Measure TD

The particle tracker program was developed with the goal to minimize technical

debt. As mentioned in Chapter 2, there are many approaches to measuring technical debt

within a software system. To measure the technical debt in the particle tracker system, the

SonarQube platform was used [43]. SonarQube evaluates technical debt by examining

various potential disharmonies in a system, including: duplications, coding standards,

lack of coverage, potential bugs, complexity, documentation, and design. It calculates

several scores: a Technical Debt score (measured in man days – how many 8 hour

developer days it would take to fix all the issues), the SQALE rating [10] (from A-E, A

being the highest), and the Technical Debt Ratio (how much technical debt the project

has versus how large it is).

In order to get results from SonarQube, the user must download and run the

SonarQube Server (which allows users to view their results online) and the SonarQube

Runner (which launches the program and allows for projects to be analyzed). The user

must also provide a sonar-properties file. The properties file used is shown in Figure 10.

Once the SonarQube Server is running and the SonarQube Runner has been launched and

ran against the project with the sonar-properties file, the user can see the output by

navigating to http://localhost:9000 in their browser.

33

Figure 10. Sonar-properties.properties file

The particle tracker program consists of 8 files (or classes), 45 functions, and a

total of 802 lines of code (LOC). Figure 11 shows the amount of duplications and the

complexity score as calculated by SonarQube.

Figure 11. Duplications and Complexity Score calculated by SonarQube [43]

Figure 12 displays the SQALE Rating, Technical Debt Ratio, and the amount of

Technical Debt of the program. SonarQube also allows the user to click on the ―Issues‖

measure to navigate to a dashboard where users can observe what the issues are and

34

where they are located in the files. This allows for much quicker fixes and provides a

visual tool for the user to see if they are making identical mistakes.

Figure 12. Different technical debt scores calculated by SonarQube [43]

 On the SonarQube website, there is also a formula for calculating the cost of

remediating observed technical debt. The default value is parameterized at $500 per

developer day. Using this value, the cost to reduce technical debt in the particle tracker

program would be $2125. However, this value is configurable in the SonarQube

platform. If we chose a different amount for this project, for example, the average pay of

an intern in the Bozeman area ($160/day), the reported cost would be $680.

35

VISUALIZATION

Motivation

One of the main problems associated with the understanding of complex scientific

data is mentally visualizing what processes are occurring. Given this difficulty, many

scientists rely on models and visualizations to aid their understanding. The need for

visualization is one of the main reasons why the work in this thesis began. One of the best

(and most intuitive) ways to portray the hydrological model to a larger audience is with

visualization.

Platform

 The platform used as a vehicle for these visualizations is Digistar 4 [44], one of

the most advanced and successful digital planetarium platforms. It was developed by

Evans and Sutherland Company, based in Salt Lake City, UT. Digistar 4 was chosen

because it was easily accessible and has a powerful graphics engine that provided the

necessary requirements to accurately visualize the particle tracking model. It was also

intuitive and user friendly. Figure 13 is a screenshot of the Digistar 4 dashboard.

36

Figure 13. Screenshot of the Digistar 4 dashboard

Outreach

Another large reason of why Digistar 4 was chosen for this project is the potential

it had for outreach. The Taylor Planetarium is part of the Museum of the Rockies, which

in turn is a department of Montana State University. The Museum of the Rockies is the

most visited indoor attraction in Montana, with an annual attendance of 100,000 visitors.

The Taylor Planetarium seats 60,000 of those visitors each year. The Taylor Planetarium

is the only planetarium building in Montana, making it a premier travel destination. The

museum acts as an outreach arm for the land grant university, and it is tasked to educate

all ages, from adults to school children. The planetarium had been recently upgraded

from Digistar 2 to Digistar 5 (the newest version of the software at the time of

publication). The upgrade allowed for visualizations developed on the Digistar 4 platform

to be run in Taylor Planetarium. This spurred the idea of creating an MSU Minute show

37

to run in the planetarium before a normal planetarium show. The MSU Minute was an

idea from the planetarium director to highlight research occurring at MSU
5
. The actual

show lasted 2-4 minutes and was shown in front of various audiences for several months.

Other departments at MSU had already taken advantage of this opportunity to display

their research.

Starting in September 2013, an MSU Minute describing the initial work from this

thesis was displayed in front of a planetarium show for approximately six months [45].

This allowed the work done by CERG (Computational Ecology Research Group) and

SEL (Software Engineering Laboratory) to be viewed by thousands of visitors to the

museum. Outreach in the sciences is important because it allows for a way to portray

complex information in a relatable and understandable way to an audience unfamiliar

with many of the complicated details.

Approach

To import the particle tracking model into Digistar 4, the information in the NEO

database and the output from the particle tracker program had to first be converted into

the correct Digistar file formats. These are proprietary formats and not easily readable. A

Java program was created to serve as a filter that converts readable data to proprietary

information needed for Digistar. The files required by Digistar 4 include: a graph file,

which tells Digistar how to set up the model in 3D space; a frequency file, which contains

how many particles are fluxing through the system and the duration (measured in time

5
 : https://vimeo.com/78744894

https://vimeo.com/78744894

38

steps) that each particle exists within the model; and a position file, which has all the

particle location information in 3D space during each moment in time.

Once the model information was in the correct file formats, Digistar 4‘s scripting

language was used to create a mock planetarium show. This allowed the model to be

shown in dome view (or visualization view). The scripting language and Digistar‘s

advanced interface provided the necessary functionality to tweak parameters in the model

in order to calibrate it to the right position and the correct size. The user can also control

the flow rate of the particles, their size, and their color. It is also possible to navigate

through the model in real time and to zoom in and out on selected areas. It can be looked

at from above, below, or inside. This feature provided many useful options when creating

the MSU Minute.

Figure 14 is a snapshot of what the Nyack floodplain visualization looks like in

Digistar 4. There is an image in the background of the Nyack overlaid with the structure

of the river. The particles are directly following along the edges of the matrix imitating

the way that the water would flow.

39

Figure 14. Screenshot of the Nyack Floodplain visualization

Multiple Currencies

While not necessary for the Nyack visualization, many models may require that

more than one currency flux through the system at one time. For example, if the modeler

also wanted to see the heat exchange within the river, then they would need to add a

second currency (heat) to the model. The work for adding this functionality was shown in

[3]. The ability to visualize models with multiple currencies is essential for many reasons.

40

It improves the interpretation of the visual data. It also allows the modeler to focus on

one of the currencies or both at the same time. This is achieved by setting the opacity of

the unwanted currency to zero. Furthermore, because the currencies are input into

Digistar 4 as separate files, the user can adjust the color and flow rate to be different for

each currency. Figure 15 shows an example of a heat currency (red) and a water currency

(blue) flowing through a simple cube-shaped matrix. The currency particles are different

sizes and are moving at different speeds.

Figure 15. Visualization of heat and water currencies fluxing through a cube

41

CURRENT RESEARCH

Multiagent Systems

 As is, the particle tracking program serves as a valuable commodity to

hydrologists, and while care has been taken to minimize the amount of technical debt

inherent in the system, additional work is required. Specifically, and to increase the

modularity of the system, the particle tracking algorithm needs to be fully integrated into

the current NEO architecture. After a series of design discussions with hydrologists, we

observed that particles behave as separate ―agents‖ that make independent decisions. This

prompted the study of multiagent systems.

Background

Whilst research on multiagent systems (MAS) began in the early 1980‘s, it only

really began to organize itself in the mid 1990‘s. Since then, with the advent of the

Internet and advances in computer science, multiagent system work has grown into the

large field that it is today. A MAS is characterized as a system where there is no global

system control, data is decentralized, computation is asynchronous, and each agent has

incomplete information or capabilities for solving the problem, and thus, has a limited

viewpoint.

An ―agent‖ is a computer system that is capable of independent action on behalf

of its user or owner [46]. In order for agents to be considered intelligent, they have to

possess two important abilities: they need to be capable of autonomous actions and they

need to be capable of interaction with other agents. These interactions include

42

cooperating, coordinating, and negotiating. To facilitate MAS technology, we require

mechanisms that allow agents to synchronize and coordinate their activities at run-time.

Weiss et al. [47] defined four different classes of agents:

1. Logic-based agents: in which the decision about what action to perform is

made via logical deduction.

2. Reactive agents: in which decision-making is implemented in some form

of direct mapping from situation to action.

3. Belief-Desire-Intention agents: in which decision making depends on the

manipulation of data structures of the agent.

4. Layered architectures: in which decision-making is realized via various

software layers, each of which is more or less explicitly reasoning about

the environment at different levels of abstraction.

Research indicates that the type of agent architecture that would best fit this work

is the layered architecture, which is currently the most popular class of agent

architectures available. Figure 16 illustrates how agents can be organized and how they

interact with each other and their environment.

43

Figure 16. An example of how agents can be organized and interact [46]

One important aspect of a MAS is the ability for agents to communicate with each

other. Because agents are autonomous, they can neither force other agents to perform

actions, nor affect the properties, and thus the internal state of other agents. Agents are

able to perform communicative actions in an attempt to influence other agents

appropriately. These agents must also agree upon an ontology and a protocol for sharing

information. Negotiation and bargaining are two important types of communication.

Negotiation is a form of interaction in which a group of agents with conflicting interests

try to come to a mutually acceptable agreement over some outcome. Bargaining is often

solved by argumentation among agents [48]. Argumentation can be seen as a reasoning

process consisting of the following four steps: Constructing arguments from available

information, determining the different conflicts among the arguments, evaluating the

44

acceptability of the different arguments, and concluding, or defining, the justified

conclusions [49].

Below is a list of situations when agent based solutions are appropriate [50] and

why they are highly relevant additions to this project:

1. When the environment is open, or at least highly dynamic, uncertain, or

complex – NEO models are dynamic and complex. You often have a large

mesh network (i.e., a graph) with many currencies fluxing that need to

updated, tracked, and reported on.

2. When agents are a natural metaphor – A hydrological model lends itself to

agent metaphors.

3. Distribution of data, control, and expertise – In NEO models, each cell

and/or edge holds different information. This makes the data distributed.

In Hydrology

The idea of using multiagent systems in the field of hydrology is not new [51].

The vernacular used in the field refers to them as agent-based models. These types of

models work well in natural sciences because they represent complex systems that can be

broken down into individual components and allow for communication between these

components.

Today, there is no standard in how to create these agent-based models [52]. Many

authors believe that creating this standard is an important step to wide-spread use of

agent-based models in the natural sciences. Volker et al. released an article in 2006 [53]

describing a standard protocol for describing agent-based models. The protocol was

45

widely used (having over 1000 citations) and in 2010, they published a review and update

to the protocol [54]. Agent-based models have been widely used in the field of hydrology

([55], [56]) and highly relevant to the continuing refinement of the particle tracker and

other currency algorithms.

An Integrated NEO Design

Research in multiagent systems revealed that the particle tracker program was

already very close to representing intelligent agents. As particles move through a matrix,

they observe their surroundings and make informed decisions about routes based on

information that they collect. Thus, our investigations suggest that the particle tracker

would be more useful to modelers when fully integrated with the NEO framework.

Functional Requirements

After speaking to NEO modeling experts, they outlined several functional

requirements that the enhanced and fully integrated particle tracker program would need

to adhere to. In this context, particles will now be referred to as ―agents‖. The functional

requirements are:

1. Deploy agents: An agent manager will be able to either deploy agents at

the beginning of a model or during model run time.

2. Track and move: Each agent will track its location in relation to nodes

and/or links at run time as the agent moves through the network.

46

3. Sense and record conditions as an agent moves through a model: An agent

will check its velocity and flux values in the current edge and will decide

where to move based on that information.

4. Alter external values within the model: An agent will have the ability to

update a counter in a node to track how many agents have passed through

that node.

5. Retain information: A central agent manager will store the information

that each agent collects.

6. Report: An agent will be able to either report during a simulation or a-

posteriori.

7. Exit simulation: An agent manager within the model will handle the

departure of agents.

8. Visualize simulation: The output collected by agents will be visualized in

a visualization system.

System Design

Figure 17 depicts a UML class diagram of a possible design of the particle

tracker. It employs intelligent agents, and uses NEO terminology to seamlessly integrate

all components under the existing NEO architecture. The design encompasses all the

functional requirements and was validated by NEO experts and hydrologists. After

integration, agents become part of NEO, and will be configurable at run time to allow for

more functionality and understandability of NEO models.

47

Figure 17. UML Class Diagram for integration with NEO

48

CONCLUSIONS AND FUTURE WORK

The work presented in this thesis contributes to the technical debt and modularity

violation knowledge base –both topics of significant attention in the software engineering

community. We used this knowledge and applied it to a multidisciplinary software

project. The project was verified by using SonarQube‘s technical debt measurement tool

and by domain experts in both software engineering and hydrology.

An accurate and extensible particle tracking algorithm was developed. The

particle tracking program was run using hydrological data from the Nyack floodplain in

northwestern Montana. The data was generated by NEO, a simulation software

framework designed to facilitate development of complex natural system models.

Further, the output from the particle tracking program was visualized using digital theater

software –Digistar 4. The visualization of the data provided a unique and valuable

alternative to understanding how the movement of the particles behaved and allowed

modelers a gather greater understanding of their models.

The work presented in Chapter 6 introduced currently ongoing work to transform

the particle tracking algorithm to exhibit additional properties inherent in multiagent

systems that track intelligent agents. Although the design for integrating the particle

tracking program with intelligent agents with NEO is completed, it has not been

implemented. Another essential feature that would need to be added is the ability for

agents to communicate with each other. In addition to functional enhancements, the

particle tracking algorithm should be tested on models outside the field of hydrology to

ensure that it is applicable to other domains.

49

REFERENCES CITED

50

[1] C. Izurieta, I. Griffith, D. Reimanis and R. Luhr, "On the Uncertainty of Technical

Debt Measurements," in International Conference on Information Science and

Applications, 2013.

[2] D. Reimanis, C. Izurieta, R. Luhr, L. Xiao, Y. Cai and G. Rudy, "A replication case

study to measure the architectural quality of a commercial system," in 8th

International Symposium on Empirical Software Engineering and Measurement,

2014.

[3] R. Luhr, D. Reimanis, R. Cross, C. Izurieta, G. C. Poole and A. Helton, "Natural

Science Visualization Using Digital Theater Software: Adapting Existing

Planetarium Software to Model Ecological Systems," in 2013 International

Conference on Information Science and Applications, 2013.

[4] W. Cunningham, "The WyCash Portfolio Management System," ACM SIGPLAN

OOPS Messenger, vol. 4, no. 2, pp. 29-30, 1992.

[5] M. Fowler, 14 October 2009. [Online]. Available:

http://www.martinfowler.com/bliki/TechnicalDebtQuadrant.html. [Accessed 10

February 2015].

[6] C. Seaman, Y. Guo, C. Izurieta, Y. Cai, N. Zazworka, F. Shull and A. Vetrò, "Using

technical debt data in decision making: Potential decision approaches," in Third

International Workshop on Managing Technical Debt, 2012.

[7] B. Curtis, J. Sappidi and A. Szynkarski, "Estimating the Principal of an Application's

Technical Debt," IEEE software, vol. 6, pp. 34-42, 2012.

[8] R. Ferenc, P. Hegedus and T. Gyimothy, "Software Product Quality Models," in

Evolving Software Systems, Berlin, Springer-Verlag, 2013, pp. 65-100.

[9] I. Griffith, D. Reimanis, C. Izurieta, Z. Codabux, A. Deo and B. Williams, "The

Correspondence between Software Quality Models and Technical Debt Estimation

Approaches," in Sixth International Workshop on Managing Technical Debt, 2014.

[10] J.-L. Letouzey and M. Ilkiewicz, "Managing technical debt with the SQALE

method," IEEE software, vol. 6, pp. 44-51, 2012.

[11] "CAST Report on Application Software Health," CAST, 2011.

[12] J. R. Taylor, An Introduction to Error Analysis, Univeristy Science Books, 1996.

51

[13] A. Nugroho, J. Visser and T. Kuipers, "An empirical model of technical debt and

interest," in 2nd Workshop on Managing Technical Debt, 2011.

[14] C. Izurieta, A. Vetrò, N. Zazworka, Y. Cai, C. Seaman and F. Shull, "Organizing the

technical debt landscape," in Third International Workshop on Managing Technical

Debt, 2012.

[15] N. Zazworka, C. Izurieta, S. Wong, Y. Cai, C. Seaman and F. Shull, "Comparing

four approaches for technical debt identification," Software Quality Journal, vol. 22,

no. 3, pp. 403-426, 2014.

[16] C. Izurieta and J. M. Bieman, "How software designs decay: A pilot study of pattern

evolution," in First International Symposium on Empirical Software Engineering

and Measurement, 2007.

[17] C. Izurieta and J. M. Bieman, "A multiple case study of design pattern decay, grime,

and rot in evolving software systems," Software Quality Journal, vol. 21, no. 2, pp.

289-323, 2013.

[18] M. Fowler, Refactoring, imporving the design of existing code, Pearson Education

India, 2002.

[19] A. Vetro, M. Torchiano and M. Morisio, "Assessing the precision of findbugs by

mining java projects developed at a university," in 7th IEEE Working Conference on

Mining Software Repositories, 2010.

[20] A. Vetro, M. Morisio and M. Torchiano, "An empirical validation of FindBugs

issues related to defects," in 15th Annual Conference on Evaluation & Assessment in

Software Engineering, 2011.

[21] S. Wong, Y. Cai, M. Kim and M. Dalton, "Detecting software modularity

violations," in 33rd International Conference on Software Engineering, 2011.

[22] C. Y. Baldwin and K. B. Clark, Design rules: The power of modularity (Vol. 1),

MIT Press, 2000.

[23] F. J. Shull, J. C. Carver, S. Vegas and N. Juristo, "The role of replications in

empirical software engineering," Empirical Software Engineering, vol. 13, no. 2, pp.

211-218, 2008.

[24] A. Brooks, M. Roper, M. Wood, J. Daly and J. Miller, "Replication's role in software

engineering," in Guide to advanced empirical software engineering, Springer

52

London, 2008, pp. 365-379.

[25] N. Juristo and A. M. Moreno, Basics of software engineering experimentation,

Springer Publishing Company, Inc, 2010.

[26] R. Schwanke, L. Xiao and Y. Cai, "Measuring architecture quality by structure plus

history analysis," in 35th International Conference on Software Engineering, 2013.

[27] "Golden Helix," [Online]. Available: http://www.goldenhelix.com/. [Accessed 26 2

2015].

[28] D. L. Parnas, "On the criteria to be used in decomposing systems into modules,"

Communications of the ACM, vol. 15, no. 12, pp. 1053-1058, 1972.

[29] M. G. Kendall, "A new measure of rank correlation," Biometrika, pp. 81-93, 1938.

[30] R. Ott and M. Longnecker, An introduction to statistical methods and data analysis,

Cengage Learning, 2008.

[31] C. Izurieta, G. Poole, R. A. Payn, I. Griffith, R. Nix, A. Helton, E. Bernhardt and A.

J. Burgin, "Development and Application of a Simulation Environment (NEO) for

Integrating Empirical and Computational Investigations of System-Level

Complexity," in 2012 International Conference on Information Science and

Applications, 2012.

[32] R. A. Payn, A. M. Helton, G. C. Poole, C. Izurieta, A. J. Burgin and E. S. Bernhardt,

"A generalized optimization model of microbially driven aquatic biogeochemistry

based on thermodynamic, kinetic, and stoichiometric ecological theory," Ecological

Modelling, vol. 294, pp. 1-18, 2014.

[33] R. Nix, "Beginners Manual to the NEO modeling Framework," 11 October 2012.

[Online]. Available: https://www.assembla.com/wiki/show/neo/Manuals. [Accessed

28 2 2015].

[34] S. L. Dingman, "Basic Hydrologic Concepts," in Physical Hydrology, Waveland

Press, Inc., 2008, pp. 7-35.

[35] J. J. Fraley and B. B. Shepard, "Life history, ecology and population status of

migratory bull trout (Salvelinus confluentus) in the Flathead Lake and River

system," Northwest Science, vol. 63, no. 4, 1989.

53

[36] B. N. McLellan and F. W. Hovey, "The diet of grizzly bears in the Flathead River

drainage of southeastern British Columbia.," Canadian Journal of Zoology, vol. 73,

no. 4, pp. 704-712, 1995.

[37] J. A. Stanford and J. V. Ward, "An ecosystem perspective of alluvial rivers:

connectivity and the hyporheic corridor," Journal of the North American

Benthological Society, pp. 48-60, 1993.

[38] A. M. Helton, G. C. Poole, R. A. Payn, C. Izurieta and J. A. Stanford, "Scaling flow

path processes to fluvial landscapes: An integrated field and model assessment of

temperature and dissolved oxygen dynamics in a river‐floodplain‐aquifer system,"

Journal of Geophysical Research: Biogeosciences, vol. 117, no. G4, pp. 2005-2012,

2012.

[39] A. M. Helton, G. C. Poole, R. A. Payn, C. Izurieta and J. A. Stanford, ""Relative

influences of the river channel, floodplain surface, and alluvial aquifer on simulated

hydrologic residence time in a montane river floodplain," Geomorphology, vol. 205,

pp. 17-26, 2014.

[40] G. M. Hornberger, J. P. Raffensperger, P. L. Wiberg and K. N. Eshleman,

"Catchment Hydrology: The Hillslope-Stream Continuum," in Elements of Physical

Hydrology, JHU Press, 1998, pp. 199-222.

[41] G. C. Poole, J. A. Stanford, S. W. Running, C. A. Frissell, W. W. Woessne and K. B.

Ellis, "A patch hierarchy approach to modeling surface and subsurface hydrology in

complex flood‐plain environments," Earth Surface Processes and Landforms, vol.

29, no. 10, pp. 1259-1274, 2004.

[42] R. Walton, R. S. Chapman and J. E. Davis, "Development and application of the

wetlands dynamic water budget model," Wetlands, vol. 16, no. 3, pp. 347-357, 1996.

[43] "SonarQube 4.5.4," SonarSource S.A., 26 2 2015. [Online]. Available:

http://www.sonarqube.org/downloads/. [Accessed 10 3 2015].

[44] "Digistar," Evans & Sutherland, [Online]. Available:

http://www.es.com/Products/Digistar.html. [Accessed 10 3 2015].

[45] "Taylor Planetarium Montana Moment: Watershed visualization," Vimeo, 9 2014.

[Online]. Available: https://vimeo.com/78744894. [Accessed 10 3 2015].

[46] M. Wooldridge, "Introduction," in An Introduction to MultiAgent Systems, John

Wiley & Sons, 2009, pp. 3-12.

54

[47] G. Weiss and M. Wooldridge, "Intelligent Agents," in Multiagent Systems, MIT

Press, 2013, pp. 3-50.

[48] G. Weiss, S. Fatima and I. Rahwan, "Negotiation and Bargaining," in Multiagent

Systems, MIT Press, 2013, pp. 143-176.

[49] G. Weiss and I. Rahwan, "Argumentation among Agents," in Mutiagent Systems,

MIT Press, 2013, pp. 177-210.

[50] M. Wooldridge, "Methodologies," in An Introduction to MultiAgent Systems, John

Wiley & Sons, 2009, pp. 183-193.

[51] D. L. DeAngelis and V. Grimm, "Individual-based models in ecology after four

decades," F1000prime reports, vol. 6, no. 39, 2 June 2014.

[52] C. M. Macal and M. J. North, "Tutorial on agent-based modelling and simulation,"

Journal of simulation, vol. 4, no. 3, pp. 151-162, 2010.

[53] V. Grimm et al., "A standard protocol for describing individual-based and agent-

based models," Ecological modelling, vol. 198, no. 1, pp. 115-126, 2006.

[54] V. Grimm, U. Berger, D. L. DeAngelis, J. G. Polhill, J. Giske and S. F. Railsback,

"The ODD protocol: a review and first update," Ecological modelling, vol. 221, no.

23, pp. 2760-2768, 2010.

[55] M. Bithell and J. Brasington, "Coupling agent-based models of subsistence farming

with individual-based forest models and dynamic models of water distribution,"

Environmental Modelling & Software, vol. 24, no. 2, pp. 173-190, 2009.

[56] S. Reaney, "The use of agent based modelling techniques in hydrology: determining

the spatial and temporal origin of channel flow in semi-arid catchments," Earth

Surface Processes and Landforms, vol. 33, no. 2, pp. 317-327, 2007.

55

APPENDICES

56

APPENDIX A

ON THE UNCERTAINTY OF TECHNICAL

DEBT MEASUREMENTS

57

APPENDIX A

ON THE UNCERTAINTY OF TECHNICAL

DEBT MEASURMENTS

Contribution of Authors and Co-Authors

Manuscript in Appendix A

Author: Clemente Izurieta

Contributions: Conceived the need for the work. Showed the propagation of error through

technical debt equations. Wrote first and final drafts of the manuscript.

Co-Author: Isaac Griffith

Contributions: Provided editorial feedback and review of the final manuscript.

Co-Author: Derek Reimanis

Contributions: Provided editorial feedback and review of the final manuscript.

Co-Author: Rachael Luhr

Contributions: Provided editorial feedback and review of the final manuscript. Prepared

and presented the research at ICISA 2013.

58

Manuscript Information Page

Clemente Izurieta, Isaac Griffith, Derek Reimanis, and Rachael Luhr

Proceedings of the 2013 International Conference on Information Science and

Applications

Status of Manuscript:

____ Prepared for submission to a peer-reviewed journal

____ Officially submitted to a peer-review journal

____ Accepted by a peer-reviewed journal

_X__ Published in a peer-reviewed journal

Institute of Electrical and Electronics Engineers (IEEE)

Was published June 24, 2013

59

On the Uncertainty of Technical Debt

Measurements

Clemente Izurieta, Isaac Griffith, Derek Reimanis, Rachael Luhr

Software Engineering Laboratory

Department of Computer Science, Montana State University

clemente.izurieta@cs.montana.edu, {isaac.griffith, derek.reimanis, rachael.luhr}@msu.montana.edu

Abstract—Measurements are subject to random and

systematic errors, yet almost no study in software

engineering makes significant efforts in reporting

these errors. Whilst established statistical techniques

are well suited for the analysis of random error, such

techniques are not valid in the presence of systematic

errors. We propose a departure from de-facto

methods of reporting results of technical debt

measurements for more rigorous techniques drawn

from established methods in the physical sciences.

This line of inquiry focuses on technical debt

calculations; however it can be generalized to

quantitative software engineering studies. We pose

research questions and seek answers to the

identification of systematic errors in metric-based

tools, as well as the reporting of such errors when

subjected to propagation. Exploratory investigations

reveal that the techniques suggested allow for the

comparison of uncertainties that come from differing

sources. We suggest the study of error propagation

of technical debt is a worthwhile subject for further

research and techniques seeded from the physical

sciences present viable options that can be used in

software engineering reporting.

Keywords- software quality and maintenance;

error analysis; technical debt

 INTRODUCTION

This line of investigation proposes an

alternative to the way we analyze and report

values that are subject to uncertainty
1
. Typically,

given multiple calculations of a metric (i.e.,

technical debt), we use well-known statistical

methods to analyze and compare them, with the

standard deviation as a good approximation for

uncertainty. This is allowed provided the

uncertainty values are random; however not all

uncertainties are random. Technical debt

calculations may suffer from systematic errors that

occur as a result of poor calibration of the tools

used to measure the debt. For example, a tool that

performs static analysis for detecting code smells

may consistently report violations where there are

none. Regardless of the number of times we repeat

an experiment or increase the sample sizes, if the

errors
6
 are systematic, then we cannot use the

standard deviation as an approximation for

uncertainty. Unfortunately, detection of such

systematic errors is extremely difficult. In the

physical sciences it is common for laboratories to

designate an instrument as having systematic

uncertainty expressed as a percentage. Software

engineering laboratories produce tools that are

typically developed as prototypes without all the

quality assurance expected of commercial

products, yet these tools are used in empirical

investigations. Due diligence suggests that we

should also allow for systematic uncertainty of the

various dependent and independent variables that

our tools measure. Thus, measurements will have

a random component and a systematic component

of uncertainty. Even in the unlikely scenario

where all uncertainties are random, using

propagation techniques for all variables

participating in calculations (dependent and

independent) is a complementary methodology to

statistical methods. We initially focus on technical

debt measurements, as a significant amount of

systematic errors can potentially exist. A number

of tools are also available that are complex enough

in how they perform their calculations and could

potentially benefit from this line of inquiry.

Examples of these tools include CLIO [7] for

checking modularity violations, RBML

compliance checker [8] that automatically

calculates a distance between a realization of a

design pattern and the intended design, and

CodeVizard [9] that looks for code smells (as

introduced by Fowler [10]). Our goal is to

generate early feedback and suggest possible

benefits from this research. We pose the following

questions:

1
 The words error and uncertainty are synonymous

and are used interchangeably throughout the

manuscript.

60

Q1: How do we investigate systematic errors

when computing technical debt parameters?

Q2: Are the suggested uncertainty propagation

techniques enough?

Q3: What source code testing strategies can we

use to identify and detect potential sources of

systematic errors?

TECHNICAL DEBT

By definition, there is uncertainty in the
measurement of technical debt. The technical debt
metaphor describes a situation in which developers
accept quality compromises in the current release
to meet a deadline (e.g. delivering a release on
time) [1]. Curtis, Sappidi and Szynkarski [2] state
that ―there is no exact measure of Technical Debt,
since its calculation must be based only on the
structural flaws that the organization intends to
fix,‖ and not all organizations fix, are aware of, nor
quantify technical debt with similar tools,
techniques, algorithms or precision. Additionally,
small changes to parameters can admit large
fluctuations of technical debt calculations; thus
revealing the sensitivity of final estimates. Few (if
any) studies in software engineering report on the
analysis of error, as well as its propagation during
scientific experimentation. The ability to keep
uncertainty at a minimum is critical in any
scientific field. Technical debt studies reveal that
no measurements made are free of uncertainty.
This is evident in the calculations performed on
technical debt as reported by CAST [3], Letouzey
and Ilkiewicz [4] in the SQALE methodology, and
by the Software Improvement Group (SIG)
software quality assessment method [12] based on
ISO/IEC 9126 [13]. Thus, in order to increase rigor
in software engineering measurements, it is
important to adopt a modus operandi that allows
for representation of uncertainties and teaches how
those uncertainties are propagated through
calculations made in ratio scales. This is especially
important when the source of errors is not random.
We describe the early stages of experimenting with
techniques used in the physical sciences [5] and
applying them to software engineering
measurements. Specifically, we focus on the
measurement of technical debt. We expect that by
using these techniques, scientists will be able to:

i. Compare two or more measured values (from
potentially different sources) against one
another,

ii. Propagate errors (random or systematic)
through all allowed operators defined by a
ratio scale, and

iii. Identify ways to provide meaningful error
calculations in expressions that involve
multiple variables– each variable subject to its
own uncertainty.

METHODS

Definitions

We provide abridged definitions for the
technical debt variables [6] that are under early
investigation to quantify the uncertainty of their
measurement.

1) Technical Debt Principal
Refers to the effort required to complete a task

that is left undone. A task is a representation of a
technical debt item that runs a risk of causing
future problems if left undone.

2) Technical Debt Interest Amount
Refers to an estimate of the amount of extra

work that will be needed to maintain the software
if a technical debt item is not repaid. Interest incurs
a continuing cost to its associated item.

3) Technical Debt Interest Probability
Refers to the probability that the technical debt,

if not repaid, will make other work more expensive
over a given period of time or a release. Probability
is time sensitive. For example, a debt item may
have a higher probability of being addressed in the
next major revision of a product than the current
version.

4) Violation
Refers to violations of agreed upon solutions to

design or coding practices. CAST software [3] uses
an ordinal scale to classify violations into high,
medium, and low.

5) Uncertainty and Error
Random errors or uncertainty in measurement

theory are abundant and refer to the delta that
exists between the expected value of a measure and
its actual measurement. Errors can overestimate or
underestimate the expected value of a
measurement. For example, in a technical debt
context, the estimation of costs associated with
technical debt items are subject to error.

Uncertainty of a Measurement

We use operations and notation proposed by

Taylor [5] to state technical debt metrics as

follows:

61

and represents an experimenter‘s best estimate of

technical debt (TD) principal with a margin of

error or uncertainty of . The estimate lies

between and

 . We use the uncertainty

term as an aggregation of both random and

systematic errors. The calculations presented

herein can be applied to both.

UNCERTAINTY CALCULATIONS

Comparing Measures

 Since results that report on a single measure are

uninteresting, scientists typically compare two or

more measurements against each other to show

relationships between values. Technical debt

literature is relatively new, and unlike in other

scientific fields, accepted values (i.e., values

accepted by a scientific community) of technical

debt do not exist (e.g., the ideal level of quality of

a design pattern). Suppose two organizations A

and B report their as follows:

then the estimate for the highest probable value of

the difference is computed as follows:

 + (

and the estimate for the lowest probable value of

the difference is computed as follows:

 –

Assuming that both organizations report the

uncertainty associated with their respective

measurements using the same number of

significant figures; then it is important that the

discrepancy in uncertainty is also reported using

the same number of significant figures. If one

organization reports its uncertainty measurements

with significantly more precision than another,

then we must use the coarser uncertainty

measurements to report results.

Propagation of Error

When computing the value of technical debt,

we must also account for how the uncertainties of

technical debt interest and probability (i.e., the

independent variables) propagate. Even when we

calculate the value of technical debt principal

alone we must account for uncertainties in the

average hours needed to fix violations (high,

medium and low), the dollar cost per hour, and the

average number of hours required to fix a

violation. We use Taylor‘s [5] rules to estimate the

propagation of technical debt uncertainty. To

exemplify the methodology we use the

calculations proposed by Nugroho et al. [11].

Sums and Differences

The propagation of uncertainty in the sums or

differences of measured quantities is similar to the

example from section IV.A. Thus, if several

quantities x1 .. xn with corresponding uncertainties

 are measured with uncertainty, then the

overall uncertainty of their additions, differences,

or combination of both operations is given by:

Products and Quotients

The propagation of uncertainty in products or

quotients of measured quantities is best given

using fractional uncertainty notation. Recall from

III.B the calculation of technical debt as:

then, the fractional uncertainty in the TDprincipal is

defined as:

| |

Nugroho et al. [11] calculate technical debt

principal by estimating the Repair Effort (RE)

necessary to increase the quality of the software to

an ideal level. RE is then calculated as follows:

where RF is a Rework Fraction and RV is the

Rebuild Value. Multiplying the System Size (SS)

against a Technology Factor (TF) carries out the

RV calculation for a system. TF is calculated as

the number of man-months per source code

statement, and SS can be calculated either by using

lines of code (LOC) or function points. There is a

large possibility of having uncertainty in all these

variable calculations; for example, using function

points carries a significantly higher degree of

uncertainty than using LOC. Thus, if RF is given

by:

62

and

then if the uncertainty for the measured value of

RE is given by , it follows that:

| |

| |

| |

In general, if several quantities x1 .. xn with

corresponding uncertainties are

measured, then the overall uncertainty of their

products, quotients, or combination of both

operations is given by:

| |

| |

| |

Power Uncertainty

Nugroho et al. [11] calculate the technical debt

interest amount as the difference between the ideal

level of Maintenance Effort (ME) needed for a

software module and the current level of

maintenance effort that may include extra costs as

a result of additional quality issues. The ME is

given by the formula:

where , and quality

levels range from 1 to 5, thus producing QF values

of 0.5, 07, 1.0, 1.4, and 2.0 respectively. MF is a

Maintenance Fraction representing the number of

lines that undergo change in a year, and RV is the

Rebuild Value (originally described in section

IV.B.2); which can also be calculated as:

thus; for time t and growth rate r, the rebuild value

(RV) of a system increases over time if left

unattended. If the rate r changes as time increases,

then this formula must account for the range of

that movement, or the uncertainty of the

measurement. To demonstrate how to account for

this uncertainty we only focus on the
factor of the RV calculation. The multiplication by

SS, and TF, subject to uncertainty is carried out

using the propagation techniques for products and

quotients described in section IV.B.2.

 If r is measured with uncertainty , then the

uncertainty of the calculation of the factor

 is given by

 for a fixed value of t.

The overall fractional uncertainty of the RV

calculation is then given as:

| |

| |

| |

Technical Debt Interest Probability

Since the probability of interest varies with

different time frames, a time element must be

attached to the probability. Additionally, the value

assigned to interest probability tends to be

classified in an ordinal scale based on historical

data. There are no definitive technical debt interest

probability calculations; however if ratio scale

arithmetic is used, then propagation of error can be

accounted for with the proposed techniques. If

however probabilities are table based and ordinal,

further exploration is necessary.

Multivariate Uncertainty

Taylor [5] describes formulas that use

quadrature where appropriate, but these techniques

need validation in the technical debt domain.

Quadrature allows us to discount the negligible

effect of some unlikely error propagation

possibilities, thus providing more realistic error

ranges when calculating the error of a multivariate

expression. For example, in section IV.B.1 we

described the calculation of TDprincipal, where the

expression is only made up of sums and

differences. We showed that the total uncertainty

equaled the sum of the uncertainties of each

component in the expression. However; this

formula clearly overestimates because this

can only occur when we underestimate the values

of each component in the expression by the full

amount. Similarly we would underestimate

when we overestimate the value of each

constituent component in the expression by the

full amount. As the number of components in the

expression grows it is more unlikely that all

participating components either overestimate or

underestimate their values at exactly the same

time. If the expression shown in section IV.B.1

only had two components (i.e., two variables) that

represent the technical debt measurements of

organizations A and B; given by

and , then there is only a 50%

chance of underestimation or overestimation. The

error is then given by √

 , which is

always less than . Quadrature is an

63

applicable calculation when measurements come

from Normal or Gaussian distributions and the

measurements are independent. Can we then be

justified in using quadrature in software

engineering technical debt calculations that are

subject to systematic errors? Or do we need other

techniques to find better approximations of errors?

CONCLUSIONS

Unlike the physical sciences where we can, for

example, use multiple clocks or meters to identify

an artifact that produces systematic errors (e.g., a

clock that is 5 seconds fast, or a meter whose

readings are consistently low), technical debt tools

can not be compared against other tools because

they all compute equations differently, thus

making detection of systematic errors extremely

difficult. Until accepted values for certain

calculations exist, or known reliable tools that we

can calibrate against exist, we must seriously

consider reporting results with their corresponding

uncertainty, and we must also be aware of how

these uncertainties propagate. This research seeks

answers and potentially encouraging lines of

inquiry to help answer the three questions posed in

the introduction. To answer Q1, we argue that in

the absence of established accepted technical debt

values (principal, interest and probability), we can

use reported uncertainties associated with these

values as a means to investigate the existence of

systematic errors by comparing the overlap of the

uncertainties. This can help identify calibration

issues when comparing outputs from multiple

tools. In section IV.B we described the various

ways in which the propagation of errors can occur.

We suspect that additional propagation techniques

are required in order to minimize errors and help

answer Q2. For example, Taylor [5] describes

formulas that use quadrature where appropriate,

but these techniques need validation in the

technical debt domain. Quadrature allows us to

discount the negligible effect of some error

propagation factors, thus providing more realistic

error ranges. Answers to Q3 remain elusive,

however the propagation of errors from

experimentation could be automated, and final

estimates of debt could be compared against

expected values that have organizational context

and are stored in testing golden files. Seaman et al.

[6] state that ―in any approach to decision making

about technical debt, some human intervention is

required to provide information that cannot be

reliably measured,‖ thus understanding how the

propagation of uncertainty occurs is a critical

factor if we want to continue to improve the

decision making process of which items to

refactor.

REFERENCES

[1] W. Cunningham, "The WyCash Portfolio Management

System," in Addendum to the proceedings on Object-

oriented programming systems, languages, and
applications, 1992, pp. 29-30.

[2] Curtis, B.; Sappidi, J.; Szynkarski, A., "Estimating the

Principal of an Application's Technical Debt," Software,

IEEE , vol.29, no.6, pp.34-42, Nov.-Dec. 2012, doi:
10.1109/MS.2012.156

[3] ——, CAST Report on Application Software Health, tech.

report, CAST Software, 2011.

[4] Letouzey, Jean-Louis; Ilkiewicz, Michel, "Managing

Technical Debt with the SQALE Method," Software,
IEEE, vol.29, no.6, pp.44-51, Nov-Dec. 2012.

[5] Taylor, J. R. 1997. An Introduction to Error Analysis.

University Science Books, 2nd. Edition, ISBN-13: 978-

0935702750.

[6] Seaman, C.; Yuepu Guo; Izurieta, C.; Yuanfang Cai;
Zazworka, N.; Shull, F.; Vetro, A., "Using technical debt

data in decision making: Potential decision

approaches," Managing Technical Debt (MTD), 2012
Third International Workshop on , vol., no., pp.45-48, 5-5

June 2012. doi: 10.1109/MTD.2012.6225999

[7] S. Wong, Y. Cai, M. Kim, and M. Dalton, ―Detecting

software modularity violations,‖ in Proc. 33rd
International Conference on Software Engineering, May

2011, pp. 411–420.

[8] S. Strasser, C. Frederickson, K. Fenger, C. Izurieta, ―An

Automated Software Tool for Validating Design Patterns,‖
in Proc. 24th International Conference on Computer

Applications in Industry and Engineering, November

2011, Honolulu, HI.

[9] N. Zazworka, ―CodeVizard: a tool to aid the analysis of
software evolution,‖ in Proc. Of the 2010 ACM-IEEE

International Symposium on Empirical Software

Engineering and Measurement, September 2010, Bolzano-
Bozen, Italy.

[10] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,

Refactoring: Improving the Design of Existing Code,

1st ed. Addison-Wesley Professional, Jul. 1999.

[11] Nugroho, A.; Visser, J.; Kuipers, T., ―An empirical model
of technical debt and interest,‖ In Proceedings of the 2nd

Workshop on Managing Technical Debt (MTD '11).
ACM, New York, NY, USA, 1-8.

doi:10.1145/1985362.1985364

http://doi.acm.org/10.1145/1985362.1985364

[12] Heitlager, I; Kuipers, T.; Visser, J., ―A practical model for
measuring maintainability.‖ In 6th Internation Conference

on the Quality of Information and Communications

Technology, 2007. QUATIC 2007. Pages 30-39.

[13] International Organization for Standardization. ISO/IEC
9126-1: Software Engineering – product quality – part 1:

Quality model, 2001

64

APPENDIX B

NATRUAL SCIENCE VISUALIZATION USING

DIGITAL THEATER SOFTWARE

65

APPENDIX B

NATURAL SCIENCE VISUALIZATION USING

DIGITAL THEATER SOFTWARE

Contribution of Authors and Co-Authors

Manuscript in Appendix B

Author: Rachael Luhr

Contributions: Wrote first and final drafts of the manuscript. Developed visualization

and added functionality for multiple currencies. Constructed MSU Minute.

Co-Author: Derek Reimanis

Contributions: Wrote portion of first draft. Helped develop initial visualization.

Provided feedback on early drafts of the manuscript and reviewed the final

manuscript.

Co-Author: Renee Cross

Contributions: Wrote portion of first draft. Artistically and technically aided in the

construction of the MSU Minute. Provided feedback on early drafts of the manuscript

and reviewed the final manuscript.

Co-Author: Clemente Izurieta

Contributions: Provided feedback on early drafts of the manuscript. Provided editorial

feedback and review of the final manuscript.

Co-Author: Geoffrey C. Poole

Contributions: Served as hydrology domain expert. Provided editorial feedback and

review of the final manuscript.

Co-Author: Ashley Helton

Contributions: Gathered data that was used to make visualization.

66

Manuscript Information Page

Rachael Luhr, Derek Reimanis, Renee Cross, Clemente Izurieta, Geoffrey C. Poole,

and Ashley Helton

Proceedings of the 2013 International Conference on Information Science and

Applications

Status of Manuscript:

____ Prepared for submission to a peer-reviewed journal

____ Officially submitted to a peer-review journal

____ Accepted by a peer-reviewed journal

_X__ Published in a peer-reviewed journal

Institute of Electrical and Electronics Engineers (IEEE)

Was published June 24, 2013

67

Natural Science Visualization Using Digital Theater
Software

Adapting existing planetarium software to model ecological systems

Rachael Luhr
1,3

, Derek Reimanis
1
, Renee Cross

1,3
, Clemente Izurieta

1,3
, Geoffrey C. Poole

2,3
,

Ashley Helton
4

1
Software Engineering Laboratory, Department of Computer Science, Montana State University

2
 Land Resources and Environmental Sciences Department, Montana State University

3
 Montana Institute on Ecosystems

4
 Department of Biology, Duke University

{rachael.luhr, derek.reimanis, renee.thibeault}@msu.montana.edu, {clemente.izurieta,

gpoole}@montana.edu, amh72@duke.edu

Abstract—Data in the natural sciences can often

be dense and difficult to understand. The process of

visualizing this data helps to alleviate these issues.

In this paper, we demonstrate how using digital

theater software built for planetaria can be an

appropriate medium in which to facilitate these

visualizations; not only because of the software’s

complex and comprehensive graphics engine, but

also as a means to convey the information this data

is representing to the general public in way that is

understandable, accessible and enjoyable. We

exemplify the use of this technology through a case

study where the simulation of water molecules in

the Nyack Floodplain on the Middle Fork Flathead

River, are visualized with dome technology.

Keywords— smart media, 3D planetarium

content, digital theatre, flux networks

INTRODUCTION

Digistar 4 is digital theater software produced
by Evans & Sutherland [1] for use in
planetariums. The platform has an easy-to-use
interface to complement its complex graphics
and physics engine. This allows the software to
be used by non-experts to create planetarium
shows that educate and entertain the public. This
type of visualization tool could be applied to
other areas of science for the purposes of new
discoveries, education and community outreach.
In the past few years, there has been
collaboration between the Computer Science
Department and the Department of Land
Resources and Environmental Science at
Montana State University in an effort to visualize
complex ecological data. This representation
eases the otherwise non-intuitive process of
understanding the spatiotemporal dynamics
commonly found in ecological models. This
effort was successful and helped seed the idea
that Digistar 4 can be used as a tool to help to
comprehend complex data-intensive phenomena
that are difficult to conceptualize otherwise.

This paper is organized as follows: Section II
outlines the background information regarding
the modeling framework and previous work in
visualization, Section III explains the
methodology used to develop and display the
visualizations of the models, as well as the case
study in the Nyack Floodplain used to exemplify
this work. Section IV details the outreach
opportunities available when using this
technology, and Section V describes future uses
of this technology.

BACKGROUND

Visualization of Scientific Models

Natural, social and engineering phenomena
frequently exhibit strong spatial and/or temporal
trends and interactions. Understanding these
causal relationships between components and
their evolutionary trajectories is the underpinning
of a large number of domain sciences. As
environmental data sets become larger and
denser, effective exploration and pattern analysis
becomes a critical bottleneck in analytical
reasoning that can hinder decision making [2].

―Data visualization is a dynamic discipline in
order to quickly react to new developments in
graphics hardware, virtual environments or
network technology, to new computer graphics
algorithms, and last but not least to the ever
growing size of scientific datasets‖ [3]. Scientific
data is difficult to understand for those who are
not familiar with the specific field and research
being done. The more complex models built by
simulation software are even more difficult to
understand. These models are often represented
by long lists of information or matrices of
numbers, which make this type of data difficult
to comprehend. Visualizing these numbers helps
to share the knowledge and discovery of
scientific research to those outside the specific

68

field. This can be useful for education,
community outreach, grant proposals and
research funding.

Network Exchange Objects

Network Exchange Objects (NEO) is a
simulation framework under development at
Montana State University [4]. NEO facilitates the
development of simulation models that describe
the behavior of complex systems – specifically
the flux and storage of multiple interactive
―currencies‖ through systems represented as
networks. A currency is anything within the
model that is being exchanged between
components or the modeled system (e.g., energy,
economic capital, genes, carbon, nutrients, or any
other resource of interest, depending on the
system). Currencies are manipulated as they flow
between nodes and edges in the network,
representing the effect entities have on the flow.

NEO is designed to study systems that can be
described as ―complex adaptive hierarchical
networks‖ (CAHNs). A CAHN is implemented
with a graph G and uses a combination of
network theory, complex systems theory,
hierarchy theory, and interdependency idioms to
characterize the structure and behavior of a
model built atop this network (G) of
interconnected nodes and edges. The
implementation of these four characteristics of
natural systems in NEO allows scientists to
investigate (1) patterns that emerge from network
connections, (2) interactions among system
components, specifically the interactions of flow
through nodes/edges, (3) hierarchical structure as
it affects interaction, and (4) the effect on the
model caused by currency interdependency [4].

METHODOLOGY AND CASE STUDY

The focus of our work involves leveraging
the powerful features of the Digistar 4
framework to create working visualizations of
ecological models. We designed a system to
significantly reduce the effort required to handle
the transfer of information resulting from
simulations that ran in the NEO simulation
environment to the Digistar 4 system. The
interface to facilitate transfer of information was
written using the Java language. Its functionality
allows for the parsing of text or comma
delineated files to extract the necessary
information necessary to exercise the Digistar4
visualization engine.

The visualized models represent the
movement of currencies in flux networks. That
is, the models exhibit complex behavior through
multiple data of different types flowing and
interacting through the system. The following
case study describes the successful visualization
of water molecules that represent a single

currency in the Nyack Floodplain on the Middle
Fork Flathead River. The river channel,
floodplain surface and aquifer (structure) and the
movement (behavior) of water (currency) were
modeled using NEO.

To understand how different river
compartments affect downstream transport times
through the Nyack study site, Helton et al. [8]
simulated water flow within and among the
channel, subsurface, and floodplain surface
hydrologic system. A three dimensional model
(shown in Figure 1) was constructed from the
site (shown in Figure 2).

Fig 1. Inter-connected components of the river [7]. Figure

Copyright © 2004 John Wiley & Sons, Ltd. Reproduced by
permission.

The floodplain is divided into spatially
discrete patches, represented by nodes connected
in a three dimensional network. Edges represent
the connections to neighbor patches. The model
represents horizontal water flow; horizontal and
vertical subsurface flows; and vertical exchanges
between subsurface and surface waters.
Equations used to represent physical principles
behind the water flow are described by Walton et
al. [6] and Poole et al. [7].

 The output of the model was then visualized
with the Digistar 4 planetarium engine. Figure 2
shows the end result; an aerial image of the
Middle Fork Flathead River, taken from Google
Earth [5], that is superimposed behind the
modeled floodplain structure of the Middle Fork
Flathead River.

69

Fig 2. Single frame from an animated visualization of

surface- and groundwater flow through the Nyack Floodplain
of the Middle Fork Flathead River, Montana, USA. Light

blue dots shows surface water molecules; darker blues

represent groundwater molecules with increasing depth.

Although being able to visualize models with
only one moving currency is instrumental in
understanding the data, the outputs produced
from complex simulations contain many
currencies that not only interact with each other,
but may also operate at different time steps. We
developed the functionality to handle the
visualization of multiple currency flows.
Multiple currencies are necessary when modeling
behavioral aspects of dynamic systems such as
those found in the natural sciences. Multiple
currency support allows scientists the ability to
visualize the complex interacting behaviors
inherent in complex adaptive hierarchical
networks (CAHNs) and enhance the accuracy of
the model.

Using the Digistar 4 system framework, we
can also adjust many aspects of the currencies,
such as color, opacity, and flow rate. For
example, to visualize the data from a river
system that includes two currencies, i.e., water
flow and heat exchange, we enhanced the
Digistar 4 with the functionality to turn the color
of the water currency blue and the color of the
heat currency red. This helps improve the
interpretation of the visual data. Also, if a model
contains multiple currencies but only one of
those currencies needs to be analyzed, we can set
the opacity of the unneeded currency to zero.
This maintains the integrity of the model while
giving us control over what we wish to visualize.
Further, we also added the ability to slow or
speed the rate at which currencies flow through
the system.

Different currencies will likely move at
different motion rates, so having the ability to set
different motion rates is also an invaluable tool
in visualizing this data. Because different
currencies are input into Digistar 4 as separate
data files, we are easily able to manipulate

individual attributes of the currencies. This work
is still in progress, but has been initially realized
in a simple visualization of a cube (Figure 3).
The currencies represented in this cube are
different colors and sizes, and are moving at
different rates of speed.

Fig 3. Visualization of multiple currencies through a cube-

shaped matrix.

Other adjustable aspects of the model include
changing the depth (z-scale) of the structure of
the model. In the Nyack Floodplain model,
where the depth of the water molecules is also
important, exaggerating the z-scale allows
ecologists to view the model in a different way.
The floodplain is very long and wide, so in order
to accurately represent it in its entirety, the depth
appears to be fairly shallow. When the model is
rotated so a cross-section can be seen, and we
adjust the z-scale so the water-bed becomes
deeper, then, not only can ecologists study the
flow of the water molecules downstream, but
they can also examine how deep the molecules
flow into the gravel aquifer underlying the
stream channel, and how long the water remains
there.

OUTREACH

The use of the Digistar System allows for
opportunities above and beyond those that
accompany ordinary modeling software. The use
of this software allows for a effective outreach
opportunity that makes connections beyond the
scope of our lab and research group. We have the
ability to display our visualizations at a museum
planetarium; a public venue with 3D projection
capabilities and where 60,000 people pass
through to view shows on a yearly basis. These
capabilities provide us with the chance to
communicate science and our research to those in
academia as well as the general public, and to
bring awareness to the dynamics of ecosystems
and changing landscapes due to climate change
or other factors. There is also the potential to
target youth groups with the intent to stimulate
interest in science and computing fields.

This outreach potential also allows for the
interdisciplinary collaboration between not only

70

Computer Science, Land & Resource Sciences,
and the museum, but also the School of Film &
Photography. It is one of our future goals to
make a professional documentary of the research
that is currently taking place that will display
current and future visualization products. These
endeavors will be beneficial for communicating
our research to the public, stakeholders, and
groups whose mission is to advance the field of
environmental science. One of these such groups
is the Montana Institute on Ecosystems, a
program created under the NSF EPSCoR Track I
project whose mission is to stimulate research in
the environmental sciences and engineering
while addressing climate change effects in
sustaining healthy ecosystems. Using software of
this type to visualize these complex ecological
models will help to understand links between
landscape and processes in a way that will be
visually stimulating and captivating. With the use
of this software for our modeling purposes, one
can ―step inside‖ the simulation of a river or
ecosystem element and see for themselves a flow
network in action or the effects of changes made
within that network.

FUTURE WORK

There is still much work to be done with the
visualization of multiple currencies. Currently,
the only model featuring multiple currencies is
the simple cube matrix. However, in order to
create these multiple currency visualizations
using real ecological data, we need to more
seamlessly integrate the NEO simulation
framework with the Digistar system. This would
allow for the ability to output data directly from
the NEO database and input the data into
Digistar 4 with minimal intermediary formatting
changes. There is also preliminary research
focusing on the improvement of the accuracy of
water molecule movement in hydrogeology
models, similar to the one of the Nyack
Floodplain.

As noted in the previous section, we would
also like to extend the outreach of our

visualization efforts. We plan to put together a
short clip of the water molecule movements to be
shown in the Taylor Planetarium. This clip
would reach thousands of viewers of all ages and
would highlight the work being done here at
MSU.

ACKNOWLEDGEMENTS

First, we would like to extend our gratitude to
Evans & Sutherland for the use of the Digistar
system as well as the engineering support
provided. We would also like to thank the Taylor
Planetarium and the Museum of the Rockies for
giving us their time and access to the
planetarium. The Montana Institute on
Ecosystems is also responsible for supporting
this work.

REFERENCES

[1] Evans & Sutherland [online] 2011, http://www.es.com
(Accessed: 25 March 2013).

[2] Buneman, P., Chapman, A., Cheney, J., 2006. Provenance
Management in Curated Databases. ACM, pp. 539-550.

[3] Ebert, D., Favre, J., Peikert, R., ―Data Visualization.‖
Computers & Graphics 26.2 (2002): 207-08. Print.

[4] Izurieta, C., Poole, G.C., Payn, R.A., Griffith, I., Nix, R.,
Helton, A., Bernhart E., Burgin, A.J., ―Development and
Application of a Simulation Environment (NEO) for
Integrating Empirical and Computational Investigations
of System-Level Complexity.‖ In Information Science
and Applications (ICISA), 2012 International Conference
on (pp. 1-6). IEEE.

[5]Google Earth [online] 2013,
http://www.google.com/earth/index.html

[6] Walton, R., Chapman, R.S., Davis, J.E., ―Development
and application of the wetlands dynamic water budget
model,‖ Wetlands 16:347-357, 1996.

[7] Poole G.C., Stanford J.A., Running S.W., Frissell C.A.,
Woessner W.W., Ellis B.K., ―A patch hierarchy approach
to modeling surface and subsurface hydrology in
complex flood-plain environments,‖ Earth Surface
Processes and Landforms 29:1259-1274, 2004.

[8] Helton A.M., Poole G.C., Payn R.A., Izurieta C., Stanford
J.A., ―Relative Influences of the River Channel,
Floodplain Surface, and Alluvial Aquifer on Simulated
Hydrologic Residence Time in Montane River
Floodplain,‖ Elsevier Journal of Geomorphology. 2011.

http://www.es.com/

71

APPENDIX C

A REPLICATION CASE STUDY TO MEASURE

THE ARCHITECTURAL QUALITY OF

A COMMERCIAL SYSTEM

72

APPENDIX C

A REPLICATION CASE STUDY TO MEASURE

THE ARCHITECTURAL QUALITY OF

A COMMERCIAL SYSTEM

Contribution of Authors and Co-Authors

Manuscript in Appendix C

Author: Derek Reimanis

Contributions: List Contributions Here, Single Spaced

Co-Author: Clemente Izurieta

Contributions: Provided feedback on early drafts of the manuscript and reviewed the final

manuscript. Served as the instructor for technical debt, case study replications, and

experimental design.

Co-Author: Rachael Luhr

Contributions: Wrote portion of first draft. Aided in development during early stages of

the project. Provided feedback on early drafts of the manuscript and reviewed the final

manuscript.

Co-Author: Lu Xiao

Contributions: Performed the initial study that was replicated. Served as CLIO expert and

answered any questions regarding the tool.

Co-Author: Yuanfang Cai

Contributions: Performed the initial study that was replicated.

Co-Author: Gabe Rudy

Contributions: Served as software expert and industry liaison.

73

Manuscript Information Page

Derek Reimanis, Clemente Izurieta, Rachael Luhr, Lu Xiao, Yuanfang Cai, and Gabe

Rudy

Proceedings of the 8th International Symposium on Empirical Software Engineering and

Measurement

Status of Manuscript:

____ Prepared for submission to a peer-reviewed journal

____ Officially submitted to a peer-review journal

____ Accepted by a peer-reviewed journal

_X__ Published in a peer-reviewed journal

Association for Computing Machinery (ACM) and the Institute of Electrical and

Electronics Engineers (IEEE)

Was published September 18, 2014

74

A Replication Case Study to Measure the
Architectural Quality of a Commercial System

Derek Reimanis7, Clemente Izurieta7, Rachael Luhr7, Lu Xiao8, Yuanfang
Cai8, Gabe Rudy9

{derek.reimanis, clemente.izurieta, rachael.luhr}@cs.montana.edu, 01-406-994-3720
{lx52, yfcai}@cs.drexel.edu, 01-215-895-0298

rudy@goldenhelix.com, 01-406-585-8137

ABSTRACT

Context: Long-term software management decisions

are directly impacted by the quality of the software‘s

architecture. Goal: Herein, we present a replication case

study where structural information about a commercial

software system is used in conjunction with bug-related

change frequencies to measure and predict architecture

quality. Method: Metrics describing history and

structure were gathered and then correlated with future

bug-related issues; the worst of which were visualized

and presented to developers. Results: We identified

dependencies between components that change together

even though they belong to different architectural

modules, and as a consequence are more prone to bugs.

We validated these dependencies by presenting our

results back to the developers. The developers did not

identify any of these dependencies as unexpected, but

rather architectural necessities. Conclusions: This

replication study adds to the knowledge base of CLIO (a

tool that detects architectural degradations) by

incorporating a new programming language (C++) and

by externally replicating a previous case study on a

separate commercial code base. Additionally, we

provide lessons learned and suggestions for future

applications of CLIO.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and

Techniques – Modules and interfaces.

General Terms

Management, Measurement, Experimentation.

Keywords

Modularity violations, grime, technical debt, static

analysis, architecture quality, case study, replication.

1
 Software Engineering Laboratory, Computer

Science Dept., Bozeman, MT, USA
2
 Computer Science Dept., Drexel University,

Philadelphia, PA, USA
3
 Golden Helix Inc., 203 Enterprise Blvd,

Bozeman, MT, USA

INTRODUCTION
Building confidence in previous results helps to increase

the strength and the importance of findings. It is

especially important to strive for external validation of

results by independent researchers, as has been done by

the replication study presented herein. To date, the field

of Empirical Software Engineering lacks in the number

of replication studies. Additionally, most of the existing

guidelines found in the literature focus on formal

experiments [3] [4] [7] [14]. In this paper, we present

the findings of an external replication case-study. We

present our results by borrowing from the existing

experimentation terminology and we have structured

our findings consistent with expected sections as

delineated by Wohlin et al. [15].

The motivation behind this study stems from a desire to

see if the techniques used by Schwanke et al. [13] to

uncover architecture-related risks in a Java agile

development environment (using architecture and

history measures) can also be applied to a commercial

C++ development environment. This is important

because we wanted to evaluate the deployment of this

technology in an industrial setting of a successful

company with strict quality controls. We were also

interested to see if the observations we make can be

used to build consensus in explaining a form of

architectural decay, where decay is defined as the

structural breakdown of agreed upon solutions [6].

We applied CLIO [16], a tool designed to uncover

modularity violations, to a commercial software system

developed by a local bioinformatics company –Golden

Helix10. The latter allowed us access to their software

code base to investigate potential architectural

disharmonies.

This paper is organized as follows: Section 2 discusses

background and related work; Section 3 explains the

importance of replication in empirical software

engineering and our approach to classifying this study;

Section 4 discusses the method followed by our

replication; Section 5 explores how the method was

carried out, including deviations and challenges

encountered from the baseline method, results and

developer feedback; Section 6 discusses the relation of

our results to the baseline study. Section 7 discusses the

10

 Golden Helix Inc.; http://www.goldenhelix.com

http://www.goldenhelix.com/

75

threats to validity in our study; and Section 8 concludes

with lessons learned from this study and suggestions of

future work.

BACKGROUND AND RELATED

WORK

Modularity Violations
Baldwin and Clark [1] define a module as ―a unit whose

structural elements are powerfully connected among

themselves and relatively weakly connected to elements

in other units.‖ Identifying violations in modules

(hereafter referred to as modularity violations) is

important because it allows developers to find code that

exhibits bad structural design. Identifying such

violations early in the lifecycle leads to proactive

module refactoring. However, early detection of

modularity violations is difficult because they do not

always exhibit negative influences on the functionality

of the software system. It is entirely possible

for a system to function as intended, yet still contain

modularity violations. If these violations are left

uncorrected, they can lead to architectural decay, which

would slowly cripple production.

Zazworka et al. [17] used the modularity violations

findings from a CLIO case study and compared them to

three other technical debt identification approaches.

They found that modularity violations contribute to

technical debt in the Hadoop open source software

system. Technical debt [5] is a well-known metaphor

that describes the tradeoffs between making short term

decisions (i.e., time to market) at the expense of long

term but high software quality (i.e., low coupling). The

debt incurred during the lifetime of a software system

can be measured as a function of cost (monetary or

effort) with added interest. Often, debt happens because

of quick and dirty implementation decisions –usually

occurring when a development team is trying to meet a

deadline. Technical debt is dangerous if not managed

because it can result in a costly refactoring process.

Techniques to slow down the accumulation of technical

debt can benefit from early detection of modularity

violations.

CLIO
CLIO was developed by Wong et al. [16] as a means to

identify modularity violations in code. Wong et al.

evaluated CLIO by running it on two different open

source Java projects, Eclipse JDT11 and Hadoop

Common12. The results showed that hundreds of

violations identified by CLIO were fixed in later

versions of the software. CLIO finds violations within

modules by looking not only at the source code of a

project, but also at its version history. It helps

developers identify unknown modular level violations in

software. Although developers will identify some

violations, specifically if the violations prove to be

bothersome, the difficulty of finding all modularity

violations is quite great. CLIO validates that its reports

are useful by confirming that previously detected

violations are indeed fixed in later versions of the

software. The results that Wong et al. [16] obtained

showed that CLIO could detect these modularity

violations much earlier than developers who were

manually checking for them. This means that CLIO can

be used in software systems to identify modularity

violations early in the development process to save time

and money by not having to check for them manually.

Schwanke et al. [13] expanded upon this work by using

CLIO on an agile industrial software development

project. They looked specifically at the architectural

quality of the software. They used a clustering

algorithm to observe how files changed together without

developer knowledge, and the impact that change had

on the quality of the architecture, as measured by source

code changes because of bugs. They reported several

modularity violations to developers. The developers

issued a refactoring because the modularity violations

were (1) unexpected and (2) possibly harmful to their

system. CLIO allowed them to see the exact number of

files that were dependent on one another, and how those

changes were affecting the structure of their project.

Replication in Software Engineering
Literature in the field concerning guidelines of

replication studies only addresses experimental

replication, not case study replication [4] [14].

Therefore, we have borrowed terminology from this

literature to inform our work.

Importance of Replicating Case Studies
Experiment replication plays a key role in empirical

software engineering [4] [14]. While many other

domains construct hypotheses in vitro, software

engineers are generally not granted that luxury.

Empirical software engineering frequently involves

humans, directly or indirectly, as experimental subjects,

and human behavior is unpredictable and not repeatable

11

 The Eclipse Project; http://www.eclipse.org
12

 Apache Hadoop Common;

http://hadoop.apache.org

Table 1: Summary of different treatments

between case studies

Factor Baseline

Project

Our Project

Programming

Language

Java C++

of Developers Up to 20 Up to 11

Project Lifetime 2 years 4 years

Source Files 900 3903 (1569 C++,

267 C, 2067 h)

KSLOC 300 1300

http://www.eclipse.org/
http://hadoop.apache.org/

76

in a laboratory setting. Coupled with the prohibitive

costs of formal experimentation, software engineering

empiricists must look for alternatives. Instead, we must

rely on repeated case studies in various contexts to

construct a knowledge base suitable for a scientific

hypothesis. This process, while requiring exhaustive

work, allows for consensus building that can provide the

necessary support to generate scientific claims.

Categories of Replication
Shull et al. [14] discuss two primary types of

replications; exact replications and conceptual

replications. Exact replications are concerned with

repeating the procedure of a baseline experiment as

closely as possible. Conceptual replications,

alternatively, attempt to use a different experimental

procedure to answer the same questions as the baseline

experiment. The study presented in this paper utilizes an

exact replication method.

Shull et al. [14] divide exact replications into two

categories: dependent replications and independent

replications. In dependent replications, researchers keep

all elements of the baseline study the same. In

independent replications, researchers may alter elements

of the original study. An independent replication

follows the same procedure as the original study, but

tweaks experimental treatments to come to the same or

a different result. If treatments are changed and the

same result is found, researchers can conclude that the

treatment in question probably has little or no effect on

the outcome. However, if changing a treatment leads to

different results, that treatment needs to be explored

further.

Using Shull‘s terminology, we categorized this study as

an independent replication, with five major treatment

differences from what would be considered a dependent

replication. These differences are illustrated in Table 1.

First, the baseline study used a software project written

in Java as their only treatment to the programming

language factor. In our case, the treatment is the C++

programming language. In other words, our study lies in

the context of a C++ programming language, which

may provide different results from the baseline. Second,

the comparative sizes of the development groups

differed. The baseline study featured a development

group of up to 20 developers working on the project at

any given point in time [13].The C++ system analyzed

in this paper has had a total of eleven contributing

developers in its four year lifetime. Third, the software

project in the baseline study had been in development

for two years, while the project covered in our study has

been in development for four years. Finally, the project

in the baseline study features 300 kilo-source lines of

code (KSLOC) in 900 Java files. The project in our

study has 1300 KSLOC across 3903 source files, of

which 1836 have a .cpp/.c extension, and 2067 are

header files. Surprisingly, both projects have a similar

ratio of LOC per source file (333 LOC per source file).

Replication Baseline
In the selected baseline study, Schwanke et al. [13]

reported on a case study that measured architecture

quality and discovered architecture issues by combining

the analysis of software structure and change history.

They studied three structured measures (file size, fan-in,

and fan-out) and four history measures (file change

frequency, file ticket frequency, file bug frequency, and

pair of file change frequency). Their study included two

parts: 1) Exploring different software measures; and 2)

Uncovering architecture issues using those measures.

1) Exploring different software measures: First, they

explored the relationship between each pair of measures

(structure and history) using Kendall‘s tau-b rank

correlation [8], which showed the extent to which any

two measures rank the same data in the same order. This

study provided an initial insight on whether those

measures were indicative of software quality, which was

approximated by the surrogate file bug frequency. Then

they studied how predictive those measures were of

software faults. The data they used spanned two

development cycles of the subject system, release 1

(R1) and release 2 (R2). They illustrated how predictive

the calculated measures from R1 were for faults that

appeared in R2 using Alberg diagrams [9].

2) Uncovering architecture issues: After validating the

measures, they were used to discover architecture issues

using three separate approaches. First, Schwanke et al.

ranked all files by different measures –worst first. They

found that the top ranked files (outliers) were quite

consistent for different measures. They showed those

outliers to the developers to obtain feedback about

potential architecture issues; however, the developers

gave little response because they could not visualize

these issues. To generate responses from developers,

they used a static analysis tool named Understand™13

to visualize the position of those outliers in the

architecture. Using this method, they were able to

discuss many of the outlier files with the developers. In

some cases, the developers pointed out how severe the

problems were. Finally, they used CLIO to investigate

the structure and history of pairs of files and grouped

structurally distant yet historical coupled files into

clusters. For each cluster, its structure was visualized

using Understand™ in a structure diagram, which

illustrated how clusters which cross-cut different

architecture layers could be severe, and gave hints about

why they were coupled in history.

Major Findings of the Baseline
Schwanke et al. found that by using CLIO they could

identify, predict, and communicate certain architectural

issues in the system [13]. They found that a few key

interface files contributed to the majority of faults in the

software. Additionally, they discovered that the file size

and fan-out metrics are good predictors of future fault-

13

 Understand; http://www.scitools.com

http://www.scitools.com/

77

proneness. In the absence of historical artifacts, files

that contain high measures of these metrics typically

have a higher number of architectural violations.

Finally, unknown to the developers, some of these files

violated modularity in the system by creating unwanted

connections between layers. These violations were

visualized and presented to the developers who issued a

refactoring thereafter.

PROCEDURE
Following the procedure outlined in [13], our case study

consisted of the following steps:

1) Data collection: The source code, version control

history, and ticket tracking history of the software

system in question were gathered.

2) Structure and history measurements:

Measurements for common metrics were

computed/collected across all versions of the

software.

3) Validation: Measurements from the second-most

recent release are correlated with fault

measurements from the most recent release.

4) Prediction: Measurements from the most recent

release are used to predict faults in upcoming

future releases of the project.

5) Uncovering architecture problems: Measurements

were sorted according to future fault impact and

visualized. Outlier measurements present the most

concern to system architecture quality, and were

selected for further exploration.

6) Present findings to developers: Visualizations of

the architecture of outlier modules were presented

to developers with the intent of helping to realize

the architectural quality of the system.

CASE STUDY

Setting
The project analyzed in this case study is named SNP &

Variation Suite (SVS), and is the primary product of the

bioinformatics company Golden Helix. We analyzed

seven major releases of SVS.

SVS features 1.3 million lines of C++ source code

spread out across 3903 source files. The project‘s

structure is spread out across a total of 22 directories. In

this study, we have chosen to define module as a

directory, based on Parnas el al.‘s definition [12]. We

use the term directory and module interchangeably.

Eleven developers have contributed to this project over

its four-year lifetime. The organization of the

development group has an interesting hierarchy. The

lead developer is also the Vice President of Product

Development at Golden Helix. He plays a major role in

not only developing SVS, but also in managing product

development from a financial perspective. This means

he has comprehensive knowledge of the software

system when he makes management-related decisions,

and therefore, is more aware of the technical debt

present in the software than business-oriented managers.

Motivation
This project was chosen for three reasons. First, Golden

Helix is a local software company with its developing

team in close proximity to the authors, and is well

known for their generous contributions to the

community. The process presented in this study is a

great opportunity to inform Golden Helix of the

architectural quality of their flagship software. Second,

applying the CLIO tool in different commercial settings

will help future applications of CLIO. By clearly

outlining the strengths, weaknesses, and lessons learned

at the end of the study, we hope to improve future

applications of CLIO. Finally, no previous study that

follows this methodology to detect modularity

violations has considered a C++ project. Previous

studies such as [16] [17] only looked at non-commercial

Java projects. Using the C++ programming language as

a treatment in this sense builds on the knowledge base

of CLIO, extending what we know about this method.

Data Collection
Golden Helix strongly encourages developers to commit

often, and keep commits localized to their section of

change. These commits are stored in a Mercurial14

repository, and the FogBugz15 tool is used to track

issues. Golden Helix switched repositories, from

Apache Subversion (SVN)16 to Mercurial, and ticket

tracking tools, from Trac17 to FogBugz, during the

lifetime of SVS. Because this study focuses on the

entirety of the project‘s lifetime, both the SVN

repository and Trac ticket logs have been recovered and

treated in the same manner as the current system. Each

developer is expected to include references to ticket

cases in their commits.

Similar to [13], the repository logs and issue tracking

logs were extracted into a PostgreSQL18 database. This

allowed us to search for historical data using simple

SQL queries.

We have grouped C/C++ source files and header source

files together in this study. That is, for each C/C++

source file and its corresponding header file(s), the files

are considered one and the same. For the remainder of

this case study, we refer to the C/C++ source and

corresponding header file pairs as a file pair.

Measurements made in both files are aggregated

together. There is a reason for doing this. Developers of

SVS demand that source files and their corresponding

14

 Mercurial SCM; http://mercurial.selenic.com/
15

 FogBugz Bug Tracking;

https://www.fogcreek.com/fogbugz/
16

 Apache Subversion;

http://subversion.apache.org/
17

 Trac; http://trac.edgewall.org/
18

 PostgreSQL; http://www.postgresql.org/

http://mercurial.selenic.com/
https://www.fogcreek.com/fogbugz/
http://subversion.apache.org/
http://trac.edgewall.org/
http://www.postgresql.org/

78

header files be kept together in the same directory.

When either a source file or a header file changes, the

developers are expected to update the signatures in the

corresponding file. This implies that any changes made

to the latter are expected and hence do not constitute

modularity violations. Our study is concerned with

locating unexpected changes in modules of code.

Therefore, including any information about

header/source pairs changing together will lead to

useless information.

Structure and History Metrics
Following the work of Schwanke et al. [13], the

following metrics were gathered for all file pairs (u)

across all seven versions of the software:

1. File size: The aggregated file size on disk of

both elements in u, measured in bytes.

2. Fan-in: Within a project, fan-in of u is the sum

of the number of references from any v (where v

is defined identically similarly to u) pointing to

u.

3. Fan-out: Within a project, fan-out of u is the

sum of the number of references from u that

point to any v (where v is defined identically

similarly to u).

4. Change frequency: The number of times that

any element in u is changed, according to the

commit log. Commits where both elements of u

are changed are only counted once.

5. Ticket frequency: The number of different

FogBugz or Trac issue tickets referenced for

which either element in u is modified. If both

elements in u are modified with a reference to

the same issue ticket, it is only counted once.

6. Bug change frequency: The number of different

FogBugz or Trac bug issue tickets referenced

for which either element in u is modified. If

both elements in u are modified with a reference

to the same bug issue ticket, it is only counted

once.

7. Pair change frequency: For each file pair, v, in

the project, the number of times in which u and

v are modified in the same commit.

Validation
In an effort to validate the significance of our metric

choices, several exploratory data analysis techniques

were utilized. These include histogram inspection,

scatter plot analysis, and correlation analysis. Although

the system in question has gone through seven releases,

in this paper we only present the results from the most

recent release (release 7.5) and the release immediately

preceding the most recent release (release 7). Hereafter,

we refer to release 7.5 as the present state of the

software, and release 7 as the past.

Similar to the baseline study, we found that data

analysis across all other releases showed very similar

results. The baseline study chose to focus their work on

the most recent releases, because it is more

representative of the system in the present time, and

may provide better predictive power. We have followed

suit because of the same reasons.

1) Histogram analysis

Histograms were generated for each metric in question.

We focused on identifying distributions of each metric

across releases. From the distributions, we identified

outlier file pairs which Schwanke et al. [13] states are

more prone to unexpected changes. For example, Figure

1 illustrates the change frequency metric across all

releases of the software. The y-axis is shown as a

logarithmic scale in base 4 to preserve column space.

There is a typical exponential decay curve, suggesting

that the majority of file pairs experienced few changes.

However, there exist outliers with more than 180

changes per file (not shown, but aggregated to form the

bin at x=180). This suggests that a surprising number of

pairs (about 60) experience more than 180 changes.

This is congruent with findings from [13] and their

histogram analysis.

2) Scatter Plot Analysis

Scatter plots were constructed for each metric gathered.

When constructing scatter plots, we plotted the measure

in release 7.5 on the y-axis and the measure of other

metrics from release 7 on the x-axis. This gave us the

opportunity to identify a possible relationship between

past and present measurements. Figure 2 shows a scatter

plot of change frequency in release 7.5 versus fan-out in

release 7. There appears to be a slight linear correlation

between the two, suggesting that change frequency in

future releases can be predicted from fan-out in current

or past releases.

This graph suggests that the fan-out of current or past

file pairs may be used to predict the change frequency

of the pair in the future. Our scatter plot analysis

Figure 1: Histogram of change frequency across all

releases. The x-axis shows change frequency. The y-

axis shows a count of the number of pairs. Any pair

with 180 or more changes was considered to be an

outlier, and likely to contribute to many unexpected

dependencies.

1

8

64

512
1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

C
/C

++
 a

n
d

 h
e

ad
e

r
p

ai
rs

Changes per File

SVS7 Distribution of Change
Frequency (R1 + R2 + ... + R7.5)

79

provided similar results as the baseline study by

Schwanke et al [13].

3) Correlation Analysis

Rank-based correlation analysis was performed on the

data to identify possible relationships between

measurements in one release and fault measurements in

a future release. Per the baseline study, we used the

Kendall‘s tau-b rank correlation measure [8]. This non-

parametric test was chosen instead of a Spearman or the

parametric Pearson test because many of the values fall

near zero. The Ordinary Least Squares (OLS) method of

Spearman or Pearson performs poorly when many

values fall near zero.

Kendall‘s tau-b value is found in a two-step process.

First, the measurements taken from two metrics are

ordered according to their values. Second, a calculation

is performed which counts the number of values which

appear in the same order. The calculation is shown

below:

Where F and G are two orderings of values taken from a

file pair. concord(F,G) is a count of the number of times

values appear in the same order. Alternatively,

discord(F,G) is a count of the number of times values

appear in different order. For this test, values of 0 in

either F or G are ignored; that is, they are not counted

by either concord or discord. The value produced falls

in range [-1, 1], corresponding to the correlation

between the orderings. A value of 1 indicates a perfect

linear correlation. For the purpose of this study, and in

agreement with [11], we consider

values at 0.6 or greater to be strong. Because this is a

non-parametric statistical test, we cannot assume a

normal distribution fits the data. Therefore, we cannot

find an associated p-value for each tau-b value.

Table 2 shows the tau-b value calculated for each metric

pair in release 7 and release 7.5. Each cell corresponds

to the tau-b value as found by the previously described

equation. The table is symmetric because the

comparison of two ranked metric values is a symmetric

property. Highlighted cells indicate a strong correlation.

The highlighted values in the bottom right quadrant of

the table are expected correlations. The values report

that, for example, as ticket frequency increases, bug

change frequency increases as well. This is logically

consistent because as developers add more tickets to

their commits, more of these tickets will contain bug

references. However, the correlation value for bugs vs.

fan-out is an unexpected result. This number tells us that

as the fan-out of a file pair increases, the number of

bugs associated with that pair increases as well. Similar

Figure 2: Scatter plot of release 7.5 change frequency

and release 7 fan-out. Each data point represents a

C/C++ and header pair. The x-axis plots the fan-out of

pairs in release 7. The y-axis plots the change

frequency of each pair in release 7.5. R2 ≈ 0.2658

0

20

40

60

80

0 50 100 150

R
7

.5
 C

h
an

ge
 F

re
q

u
e

n
cy

R7 Fan-out

R7.5 Change Frequency vs. R7
Fan-out

Table 2: Tau-b values for metric pairs

Tau-b table of metrics for svs7 + svs7.5

R7+R7.5 fan-
in

fan-
out

file
size

changes tickets bugs

fan-in 1 0.257 0.301 0.331 0.328 0.464

fan-out 0.257 1 0.441 0.417 0.416 0.637

size 0.301 0.441 1 0.293 0.273 0.510

changes 0.331 0.417 0.293 1 0.972 0.858

tickets 0.328 0.416 0.273 0.972 1 0.857

bugs 0.463 0.637 0.510 0.858 0.857 1

80

results were found by [13], adding more power to

hypothesis that fan-out and number of bugs increase

together.

Using these three methods of exploratory data analysis,

we identified likely correlations between metrics. In the

validation step we analyze these correlations to see if

they are indicative of bug-related changes in the future.

Prediction
Ostrand and Weyuker [10] introduced accuracy,

precision, and recall measures from the information

retrieval domain. We use various recall metrics to

validate our prediction of future bugs. Recall is defined

as the percentage of faulty files that are correctly

identified as faulty files. As in the baseline case study,

we calculate recall in three different ways. For every file

pair u,

Faulty file recall: An instance occurs when either

element in u is changed at least once in the release

representing the future due to any bug ticket.

Fault recall: An instance is a tuple defined as <u, bug

ticket reference>, where u is changed at least once due

to the same bug ticket.

Fault impact recall: An instance is a triple defined as

<u, commit number in the source control logs where u is

changed, bug ticket reference> where the bug ticket is

referenced in the same commit where u is changed in.

These three recall measures apply different emphasis to

future fault prediction. Faulty file recall emphasizes

future fault prediction least, because it treats all future

bug-related changes to u, regardless of the number of

instances, as one. This fails to capture instances where u

is associated with more than one bug ticket. However,

Fault recall does take this into account, because it

considers multiple bug ticket references in an instance.

Furthermore, Fault impact recall provides the highest

granularity to allow for future fault prediction because it

takes into account all changes u goes through. All three

recall measures form an implied subsumption hierarchy.

Using these recall measures, we use Alberg diagrams

[9] to plot release 7 measurements vs. release 7.5 faults.

Alberg diagrams are based on the pareto principle, that

roughly 20% of the files in a system are responsible for

80% of the faults. In this context, we use this same

principle to estimate the accuracy of prediction models

[9].

Figure 3 illustrates one Alberg diagram for this system.

The x-axis shows 60 C/C++ source and header pairs, u,

ordered in descending order according to their metric

values from release 7. These 60 file pairs are selected

based on their contribution to bug-related changes in

release 7.5. The bug change frequency for u in release

7.5 is plotted on the y-axis. Any given point on the

curve represents a C/C++ source and header pair. The

oracle curve is a perfect predictor of release 7.5 bug

change frequency for all u. As other curves get nearer to

the oracle curve, their accuracy for predicting release

7.5 bug change frequency increases.

The oracle curve from this Alberg diagram states that

roughly 20% (actually 23.3%) of C/C++ source and

header pairs contribute to 80% of bug change frequency

in release 7.5. The values of fan-out and change

frequency in release 7 for these pairs contributed from

40% to 50% of bug changes in release 7.5. These

findings are slightly less than Schwanke et al.‘s

findings, yet are still noteworthy. This validates that

selected metrics from earlier releases can be used to

predict bug change frequency in future releases.

Uncovering and Visualizing

Architecture Problems
Once these measures have been validated as capable of

predicting future faults, the problem of identifying file

pairs which are more prone to unexpected changes

arises. Next, we study the extent to which these pair

affects other quality measures.

We utilized the static code analysis tool Understand™

to visualize graphs of interdependent components.

Understand™ is a commercial product developed by

Scientific Tools, Inc.13. Understand™ can find many

structural features of code, including dependency

listings of how pairs of C++ files depend on one

another. Through visualization, we can analyze the

extent to which these dependencies affect other pairs in

the software system.

These graphs help differentiate expected and

unexpected dependencies. If dependencies occur

Figure 3: Alberg diagram of release 7.5 Fault Impact

Recall. Each data point is a C/C++ source and header

pair. The x-axis represents the rank of a data point in

release 7, sorted according to its type. The y-axis

represents the percentage of bugs in release 7.5.

0

0.2

0.4

0.6

0.8

1

0 20 40 60

R
7

.5
 F

au
lt

 Im
p

ac
t

R
e

ca
ll

(P
e

rc
e

n
t)

First 60 Project Files

Alberg diagram for release 7.5
Fault Impact Recall

Oracle (R7.5 bug-related changes)
R7 Changes
R7 Fan-out
R7 File size
R7 Bug-related Changes

81

between two pairs that are in the same module, we treat

them as expected dependencies, consistent with the

baseline study. This is based on the assumption that

developers group files or classes together based on

similar functionality. Unexpected dependencies are

treated as dependencies that occur across different

modules, also consistent with our baseline study. Our

definitions of expected and unexpected dependencies

were validated by the developers at Golden Helix.

Because we are concerned with how these dependencies

are changing together, we define a ―distant‖ and ―local‖

change pair. Using Schwanke et al.‘s [13] definitions, a

pair of file pairs that change together, change pair,

<u,v> is local if (1) u directly depends on v, (2) v

directly depends on u, or (3) u and v belong to the same

module. Any change pair which does not fit under this

definition is a distant change pair.

Figure 4 illustrates a high level view of the

dependencies between modules in SVS. Nodes in the

graph represent modules, and edges represent

dependencies between modules. The number on the

edge refers to the exact number of dependencies. The

modules shown contain the ten most frequent distant

change pairs. This graph is nearly a complete graph,

suggesting that modules have high coupling when

distant change pair frequency is high.

Once change pairs have been classified as either local or

distant, CLIO is used to (1) identify change pairs which

historically have changed together frequently, and (2)

cluster these pairs according to the scope of their change

pair (local or distant). To identify frequent historic

change pairs, we mine the PostgreSQL database built in

the procedure described by section 5.1. To cluster the

pairs, a ―single link‖ clustering algorithm is used [13].

The clustering algorithm groups distant change pairs as

follows: For each frequent, distant change pair <u, v>,

cluster u and v together. Then, add all the local

dependencies which contain either u or v to the cluster.

We generated visualizations of these clusters that

illustrate the number of dependencies across distant

change pairs and presented these visualizations to

developers.

Presenting Results to Developers
Visualizing architectural dependencies with graphs

provided us with a convenient and intuitive medium that

could be validated with developers. We presented all

our data to the lead developer at Golden Helix. In

summary, the lead developer at Golden Helix was not

surprised by our findings. He indicated that several

outlier file pairs were contributing to the majority of

modularity violations in the code base. It was these pairs

that also contributed to a large number of bugs in the

most current releases. The lead developer was well

aware of this, and more or less the extent to which this

affected other files.

The majority of modularity violations and bugs

occurred in packages representing highly customizable

components of the SVS executable. These packages

include the UI component, the core component, and a

component that is concerned with reading in a large

variety of complex file formats. We noticed that file

pairs in these packages both heavily depend on and

were depended upon by many others (i.e., they have

high efferent and afferent coupling). However, the

structure observed was the choice of the developers.

The developers utilized these pairs as access points, or

common files to reference when one component needed

to be used. When these access point pairs were changed,

they incurred a slew of changes in other modules in the

system because of numerous, propagating dependencies.

The developers saw this method as a necessary step in

their development lifecycle.

DISCUSSION
The process of using CLIO to detect and measure

architectural quality of software needs to be matured

further. Developers were not surprised by the findings

of CLIO, primarily because the findings pointed out

known problems. Many of these problems are due to the

many connections that exist between modules. From an

academic sense this is a problem, because it is

preferable to have few connection points between

modules (coupling). Lower coupling between modules

is indicative of better design, and helps localize possible

future changes as well as allows for increased quality

attributes (such as understandability) [2]. However,

from the developers‘ perspective, familiarity with the

code base was more important than traditional good

design. The developers are content leaving the coupling

between modules as is, because it makes the most sense

for the SVS system. This finding is very interesting

because it gives the impression that the results from

tools such as CLIO should be system dependent. That

is, although the results may appear useful, nothing can

be learned unless an in-depth assessment of the software

system in question has been made. These conclusions

cannot be reached without evaluating and deploying

laboratory tools in commercial grade environments.

We did find very similar results to the baseline, which is

promising in helping extend power of the hypothesis

that certain metrics can be used as better predictors of

Figure 4: High level view of the dependencies

between modules containing the ten most frequent

distant change pairs. The numbers on the edges

represent the number of times all file pairs in a

module depend on another module.

82

software quality. We found that a select few files

contributed to many modularity violations, and greatly

influenced the number of bugs. While in our case the

developers were not surprised by the results, the results

are promising in that they clearly identify problem files

in code. The baseline found that developers were not

always aware of these modularity violations. In cases

where developers may not be fully familiar with the

structural connections across modules in their code

base, this procedure provided significant insights.

We also identified and validated cases where structural

metrics can be used as quality predictors for future

releases. Both this study and Schwanke et al. [6] concur

that the fan-out metric is a good predictor of future

faults, as verified by correlation analysis and Alberg

diagrams.

THREATS TO VALIDITY
There are several threats that threaten the validity of this

study. One developer brought up the argument that, ―If

a developer prefers to commit files more frequently than

other developers, it would show up in the commit logs

as having few change pairs. This would give misleading

results because it would provide cases where too few

files are being committed to account for changes across

modules, or too many files are being committed which

would make it appear that more dependencies exist.‖

This is a direct threat to the construct validity of our

study. Although the developer‘s observation is correct,

it did not have a large impact on our results. We identify

files showing up in the commit logs together with a high

frequency, and ignore cases where paired changes

happen infrequently. This reinforces that such cases as

described by the developer are unlikely to occur often.

Regardless, the observation does shed light into a

situation that will be mitigated in future studies.

A second threat to the construct validity is the fact that

we grouped C/C++ source file and corresponding

header files together. These file pairs consist of the

aggregated information from their combined elements.

Although a threat, it is mitigated by the following

reason. The developers brought to our attention that

both elements in the file pair are expected to belong to

the same package, and are expected to change together.

That is, if a C++ source file is updated, the developers

expect to make changes to the signature of the header

source file as well. Because both of these cases are

expected changes, including both files separately in the

study would be spurious information. Thus, we chose to

group every C++ source and corresponding header file

together.

A third threat to the construct validity of this study is

the assumption that developers tag bugs correctly in the

commit messages. As an external observer, the only

method we have of identifying past-bugs in the software

project is through analyzing historical artifacts.

Therefore, we need to rely on the discipline of

developers to (1) tag the bugs they focused on in a

commit and (2) tag the bugs correctly. We have no way

of knowing if either of these two conditions is not met.

External validity represents the ability to generalize

from the results of a study. In this instance, we cannot

generalize the results we found to other contexts. In

other words, the results found in this study and the

baseline only hold true for our specific contexts,

however they helped in building consensus around our

findings across different programming languages in

commercial agile development environments. More

replication studies are necessary to increase the power

of these results.

CONCLUSION
This replication case study was performed to help us

analyze how structural file metrics could be correlated

with system quality, and to help us comprehend if

similar observations performed in a Java commercial

product could also be observed in its C++ counterpart.

We have gathered structural metrics and identified

correlations between them and future bug problems. We

identified a select few outlier files which contribute to

the majority of future bug problems. From these, we

collected dependencies and visualized how extensively

problems may propagate. We showed this information

to the developers of Golden Helix and they were not

surprised by the results. Rather than attempt to entirely

eliminate distant-modules with frequently-changing

dependencies, the developers preferred to keep a select-

few files as connection points. When asked why, the

lead developer explained that these connection points

offer a single point of entry into a module. Any changes

between modules would be reflected in the connection

points only. The developers would rather be aware of a

few files that are frequently problematic than issue a

refactoring.

Challenges
Herein we describe some of the challenges we

encountered while trying to perform this study.

1) Specific Tools: The baseline study featured the use of

the commercial tool Understand™ for static analysis of

code to gather metrics as well as to visualize results.

Although the static analysis and visualizations provided

high quality analysis, it is nearly impossible to replicate

this case study without the use of this specific tool.

Alternatives were considered, but the mechanistic

formula used for analyzing files needed to be used as is,

as other approaches would have constituted (in the

opinion of the authors) a significantly large deviation

from the baseline method that we would not have been

able to call this a replication study.

2) Understanding the System: While we hope that

manually performing the CLIO process eventually leads

to an automated approach, this study suggests that such

a hope may be far-fetched. Ultimately, a complete

understanding of the system in question is necessary

before any significant value can be taken from this tool.

83

Our results mean very little unless the developers

actually make use of them.

3) Literature Coverage: The majority (entirety) of

literature covering replications in Empirical Software

Engineering refers to formal experiments, not case

studies. We have borrowed the terminology from such

literature in this study. This situation is not ideal

because case studies have less power than formal

experiments and therefore should be approached

differently. Peer-reviewed literature needs to be

published which outlines case study replication

guidelines.

ACKNOWLEDGMENTS
We would like to thank Golden Helix for allowing us

access to their software and providing us with the

necessary resources to carry out this study. We would

especially like to extend our gratitude to Gabe Rudy for

his generosity and devotion to this project.

REFERENCES
[1] Baldwin, C. and Clark, K. 2000. Design Rules: The

power of Modularity. Vol. 1. MIT Press.,

Cambridge, MA.

[2] Bansiya, J. and Davis, C. G. 2002. A hierarchical

model for object oriented design quality assessment.

In IEEE Transactions on Software Engineering 28,

1 (Aug. 2002), 4-17.

DOI=http://dx.doi.org/10.1109/32.979986.

[3] Basili, V. R., Selby, R. W., and Hutchens, D. H.

1986. Experimentation in Software Engineering. In

IEEE Transactions on Software Engineering 12,7

(July 1986), 733-743.

DOI=http://dx.doi.org/10.1109/TSE.1986.6312975.

[4] Brooks, A., Roper, M., Wood, M., Daly, J., and

Miller, J. 2008. Replication's Role in Software

Engineering. In Guide to Advanced Emprirical

Software Engineering, Shull, F., Singer, J., and

Sjøberg, D. I. K. Springer London, Springer, 365-

379. DOI=http://dx.doi.org/10.1007/978-1-84800-

044-5_14.

[5] Cunningham, W. 1992. The Wycash portfolio

management system. In OOPSLA '92 Addendum to

the proceedings on Object-oriented programming

systems, languages, and applications (Dec. 1992).

OOPSLA '92. SIGPLAN ACM, New York, NY 29-

30. DOI= http://dx.doi.org/10.1145/157709.157715.

[6] Izurieta, C. and Bieman, J. 2013. A multiple case

study of design pattern decay, grime, and rot in

evolving software systems. In Software Quality

Journal, 21, 2 (June 2013), 289-323,

DOI=http://dx.doi.org/10.1007/s11219-012-9175-

x.

[7] Juristo, N. and Moreno, A. M. 2010. Basics of

Software Engineering Experimentation (1st ed.).

Springer Publishing Company, Incorporated.

[8] Kendall, M. G. 1938. A new measure of rank

correlation. In Biometrika, 30 (1938), 81-93.

[9] Ohlsson, N. and Alberg, H. 1996. Predicting fault-

prone software modules in telephone switches. In

IEEE Transactions on Software Engineering, 22,

12 (Dec. 1996), 886-894, DOI=

http://dx.doi.org/10.1109/32.553637.

[10] Ostrand, T. J. and Weyuker, E. J. 2007. How to

measure success of fault prediction models.

In Fourth international workshop on Software

quality assurance: in conjunction with the 6th

ESEC/FSE joint meeting (SOQUA '07). ACM,

New York, NY, USA, 25-30. DOI=

http://doi.acm.org/10.1145/1295074.1295080.

[11] Ott, R. and Longnecker, M.1993. An introduction

to statistical methods and data analysis. Vol. 4.

Duxbury Press, Belmont, CA.

[12] Parnas, D. L. 1972. On the criteria to be used in

decomposing systems into modules. Commun.

ACM 15, 12 (December 1972), 1053-1058.

[13] Schwanke, R., Xiao, L., and Cai, Y. 2013.

Measuring architecture quality by structure plus

history analysis. In 2013 35th International

Conference on Software Engineering (ICSE) (San

Francisco, CA, May18 - 26 2013). ICSE '13. IEEE,

San Francisco, CA, 891-900. DOI=

http://dx.doi.org/10.1109/ICSE.2013.6606638.

[14] Shull, F. J., Carver, J. C., Vegas, S., and Juristo, N.

2008. The role of replications in Empirical

Software Engineering. In Empirical Software

Engineering 13, 2 (April 2008), 211-218. DOI=

http://dx.doi.org/ 10.1007/s10664-008-9060-1.

[15] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C.,

Regnell, B., and Wesslén, A. 2012

Experimentation in software Engineering. Springer

Berlin Heidelberg. DOI=

http://dx.doi.org/10.1007/978-3-642-29044-2.

[16] Wong, S., Cai, Y., Kim, M., and Dalton, M., 2011.

Detecting software modularity violations.

In Proceedings of the 33rd International

Conference on Software Engineering (ICSE '11).

ACM, New York, NY, USA, 411-420. DOI=

http://doi.acm.org/10.1145/1985793.1985850.

[17] Zazworka, N., Vetro, A., Izurieta, C., Wong, S.,

Cai, Y., Seamon, C., and Shull, F. 2013.

Comparing four approaches for technical debt

identification. In Software Quality Journal (April

2013), 1-24, Springer US.

http://dx.doi.org/10.1109/32.979986
http://dx.doi.org/10.1109/TSE.1986.6312975
http://dx.doi.org/10.1007/978-1-84800-044-5_14
http://dx.doi.org/10.1007/978-1-84800-044-5_14
http://dx.doi.org/10.1145/157709.157715
http://dx.doi.org/10.1007/s11219-012-9175-x
http://dx.doi.org/10.1007/s11219-012-9175-x
http://dx.doi.org/10.1109/32.553637
http://doi.acm.org/10.1145/1295074.1295080
http://dx.doi.org/10.1109/ICSE.2013.6606638
http://dx.doi.org/%2010.1007/s10664-008-9060-1
http://dx.doi.org/10.1007/978-3-642-29044-2
http://doi.acm.org/10.1145/1985793.1985850

84

APPENDIX D

INPUT AND OUTPUT TABLES FROM THE

SIMPLIFIED TESTING GRAPH FOR THE

PARTICLE TRACKER ALGORITHM

85

Matrix Table for Test Graph

id from_id to_id length

1001 1 2 160.234

1003 3 2 291.892

1004 2 4 191.111

1005 2 5 355.769

1006 4 6 80.32

1007 4 7 307.25

1008 5 8 203.768

1009 5 9 105.89

1010 1 10 283.702

1011 2 10 234.119

1012 5 10 267.88

Model Results Table for Test Graph

secs uid flux velocity

0 1001 3.02 0.2436

0 1003 28.63 0.2213

0 1004 6.139 0.2213

0 1005 14.876 0.386

0 1006 0 0

0 1007 0 0

0 1008 2132.6 0.0123

0 1009 101.75 0.0015

0 1010 4.312 0.369

0 1011 2.12 0.212

0 1012 8.291 0.101

43200 1001 12.987 0.2549

43200 1003 28.789 0.219

43200 1004 6.285 0.219

43200 1005 14.93 0.402

43200 1006 0 0

43200 1007 0 0

43200 1008 2133.4 0.0234

43200 1009 0 0

43200 1010 4.486 0.378

43200 1011 2.23 0.223

86

43200 1012 8.367 0.128

86400 1001 12.34 0.2499

86400 1003 28.834 0.21359

86400 1004 6.35 0.21359

86400 1005 15.012 0.438

86400 1006 0 0

86400 1007 3.215 0.40839

86400 1008 2133.7 0.0345

86400 1009 0 0

86400 1010 4.679 0.384

86400 1011 2.26 0.226

86400 1012 -8.73 -0.156

Condition 1: Particles had to choose links correctly based on weighted flux with some

element of randomness. The actual percentages of particles that follow certain links are

very close to their expected percentages.

First juncture: Expected: Actual:

Link 1001 75.12% 73%

Link 1010 24.87% 27%

Second juncture: Expected: Actual:

Link 1011 9.16% 12.32%

Link 1004 26.53% 28.77%

Link 1005 64.3% 58.9%

Third juncture: Expected: Actual:

Link 1008 95.09% 97.26%

Link 1009 4.53% 1.37%

Link 1012 0.37% 1.37%

Condition 2: If the velocity reaches 0 in the middle of the link, the particle would stop

moving, but would keep reporting its position. At time 43200, link 1009 loses velocity.

The particle stops moving but continues reporting its position.

particleid currentlinkid currenttime currentlocation

5 1009 42700 62.3352

5 1009 42800 62.4852

5 1009 42900 62.6352

87

5 1009 43000 62.7852

5 1009 43100 62.9352

5 1009 43200 63.0852

5 1009 43300 63.0852

5 1009 43400 63.0852

Condition 3: If a particle comes to a junction where none of the available outgoing links

have a flux value greater than 0, the particle will wait at the junction until the flux

becomes greater than 0. Link 1007 gains flux at time 86400. The particle waits at the

beginning of the link until this happens.

particleid currentlinkid currenttime currentlocation

25 1007 86000 0

25 1007 86100 0

25 1007 86200 0

25 1007 86300 0

25 1007 86400 40.839

25 1007 86500 81.678

25 1007 86600 122.517

25 1007 86700 163.356

25 1007 86800 204.195

25 1007 86900 245.034

25 1007 87000 285.873

Condition 4: If a particle comes to a junction and there is a link with positive velocity but

the link is the wrong direction, the particle should never choose to go down this link. In

all runs that were completed, link 1003 was never taken.

