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ABSTRACT

Cybersecurity attacks threaten the lives and safety of individuals around the world.
Improving defense mechanisms across all vulnerable surfaces is essential. Among surfaces,
the software supply chain (SSC) stands out as particularly vulnerable to cyber threats.
This thesis investigates how Software Bill of Materials (SBOM) can be utilized to assess
and improve the security of software supply chains. An informal literature review reveals
the paucity of studies utilizing SBOM to assess SSC security, which further motivates this
research.

Our research adopts the Goal/Question/Metric paradigm with two goals: firstly, to
utilize SBOM technology to assess SSC security; secondly, to examine the impact of SBOM
generation on vulnerability detection. The study unfolds in two phases. Initially, we
introduce a novel approach to assess SSC security risks using SBOM technology. Utilizing
analysis tools Trivy and Grype, we identify vulnerabilities across a corpus of 1,151 SBOMs.
The second phase investigates how SBOM generation affects vulnerability detection. We
analyzed four SBOM corpora derived from 2,313 Docker images by varying the SBOM
generation tools (Syft and Trivy) and formats (CycloneDX 1.5 and SPDX 2.3). Using SBOM
analysis tools (Trivy, Grype, CVE-bin-tool), we investigated how the vulnerability findings
for the same software artifact changed according to the SBOM generation tool and format.

The first phase demonstrates SBOMs use in identifying SSC vulnerabilities, showcasing
their utility in enhancing security postures. The subsequent analysis reveals significant
discrepancies in vulnerability detection outcomes, influenced by SBOM generation tools and
formats. These variations underscore the necessity for rigorous validation and enhancement
of SBOM technologies to secure SSCs effectively.

This thesis demonstrates the use of SBOMs in assessing the security of SSCs. We
underscore the need for stringent standards and rigorous validation mechanisms to ensure the
accuracy and reliability of SBOM data. We reveal how SBOM generation affects vulnerability
detection, offering insights that enhanced SBOM methodologies can help improve security.
While SBOM is promising for enhancing SSC security, it is clear the SBOM space is
immature. Extensive development, validation, and verification of analysis tools, generation
tools, and formats are required to improve the usefulness of SBOMs for SSC security.
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INTRODUCTION

Security attacks continue to increase in frequency, sophistication, and severity. With the

rise of cybersecurity threats, improving defense mechanisms across all vulnerable surfaces

is essential. Among surfaces, the software supply chain (SSC) stands out as particularly

vulnerable to cyber threats. There was a 650% year-over-year increase in SSC attacks

in 2021, up from 430% in 2020 [42]. Software supply chains are composed of a growing

number of components including binaries, libraries, tools, and microservices necessary to

meet the requirements of modern software. A large part of SSCs are made up of third-

party dependencies, incorporated to address software needs [38]. With more software

providers integrating third-party code into their SSCs a large cybersecurity attack surface has

emerged, revealing a significant security concern [17]. Moreover, the issue is compounded

by the potentially many third-party projects that rely on transitive dependencies further

expanding the attack surface [14]. Vulnerabilities accumulated along the SSC from upstream

dependencies cascade downwards, rendering the core software susceptible to exploitation.

Additionally, these exploits can be extremely damaging as seen with the Apache Log4j [4]

and Solar Winds [35] attacks. As a result, different technologies have emerged to assist

secure SSCs. This thesis focuses on one emerging technology, the Software Bill Of Materials

(SBOM).

Software Bill of Materials is a rapidly advancing technology that is becoming a pivotal

element in ensuring the security of SSCs. In 2021 the U.S. government issued Executive

Order (EO) 14028: Improving the Nation’s Cybersecurity1, which explicitly acknowledges

1https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/

12/executive-order-on-improving-the-nations-cybersecurity/

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
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the SBOM as a crucial component. Software Bills of Materials serve as comprehensive

inventories of all software dependencies employed in a specific application or system. This

inventory enables security practitioners to detect and mitigate security vulnerabilities in

SSCs primarily through the use of SBOM analysis tools.

As SBOM technology evolves, numerous complementary analysis tools (open-source

and proprietary) have been developed [3] [5] [30] [16]. These tools ingest SBOMs and

detect security weaknesses and vulnerabilities in SSCs through scanning dependencies then

performing vulnerability matching against vulnerability databases and utilizing Common

Platform Enumeration (CPE)2. The use of SBOMs to detect and communicate vulnerabilities

present in SSCs plays a vital role in securing SSCs of all software types. Due to the

young age of SBOM technology, studies assessing SSC security utilizing SBOMs are lacking.

Additionally, studies assessing SBOM tooling directly are few and far between.

In this thesis, I leverage SBOM technology to assess security risks present in SSCs as

well as identifies and investigate SBOM aspects that impact vulnerability reporting. My first

study, Assessing Security Risks of Software Supply Chains Using Software Bill of Materials,

presents a novel approach to assess the current state of security risks in SSCs utilizing

SBOM technology. This approach is grounded in foundational quality assurance techniques

that aggregates outputs from SBOM technology to inform practitioners regarding potential

cybersecurity risks. I analyzed SBOMs mined from common open-source repositories and

Docker images that cover a wide range of ecosystems and domains, therefore enabling the

analysis of third-party SSC security risks in a broader context.

Initial explorations into utilizing SBOM technology to assess SSC security risk unveiled

multiple limitations within the space. A key issue is the tooling surrounding SBOM analysis.

I uncovered large disparities in vulnerability findings from popular SBOM analysis tools Trivy

2https://nvd.nist.gov/products/cpe

https://nvd.nist.gov/products/cpe
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and Grype [5] [3] (Chapter 4). Additionally, an empirical assessment of the current state

of SBOM by Xia et al. [6] revealed, ”There is a lack of maturity in SBOM tooling. More

reliable, user-friendly, standard-conformable, and interoperable enterprise-level SBOM tools,

especially SBOM consumption tools, are needed”. These findings served as the impetus for

further investigations into the causes of variability in vulnerability reporting from SBOM

analysis tools.

Building upon these findings, subsequent work delved deeper into the complexities of

SBOM generation and its potential impact on vulnerability detection by SBOM analysis

tools. My second study, Impacts of Software Bill of Materials Generation on Vulnerability

Detection, focuses on how decisions made at the SBOM generation phase impact vulnerability

detection by SBOM analysis tools. I assess the impacts of popular SBOM generation tools

Syft built by Anchore3 and Trivy built by Aqua Security4 as well as the impacts of SBOM

specifications Software Package Data Exchange (SPDX)5 and CycloneDX6. Due to the rise

in both the use and importance of microservices [43], focus is placed on the microservices

domain, specifically Docker7 images. This work examines the inherent risks associated with

blindly trusting the outputs of SBOM generation tools and specifications merely based on

their popularity and industry standing and investigates a potentially dangerous gap between

perceived reliability and actual performance.

3https://anchore.com/
4https://www.aquasec.com/
5https://spdx.github.io/spdx-spec/v2.2/
6https://cyclonedx.org/docs/
7https://www.docker.com/

https://anchore.com/
https://www.aquasec.com/
https://spdx.github.io/spdx-spec/v2.2/
https://cyclonedx.org/docs/
https://www.docker.com/


4

RELATED WORK

With the growing adoption of third-party code, there has been heightened interest in

examining security risks associated with SSCs. Using SBOMs to explore this attack surface

is a new approach that motivates our work.

Informal Literature Review of Assessing Software Supply Chain Security Using Software

Bill of Materials

To review the current state of utilizing SBOMs to assess SSC security, we conducted an

informal literature review. With this review we look to answer the following questions: How

are SBOMs being used to assess SSC security? And what are the limitations of leveraging

SBOMs to assess SSC security? These answers will give us an understanding of the gaps

present in the SBOM for SSC security space. We start with defining our search strategy and

then move onto the results of this review.

Search Strategy

Our search strategy was to use IEEE Xplore1 and ACM Digital Library2 to search

for papers from journals and conferences from 2010-2023. We start our search at 2010

as SBOMs were first introduced in around that time. We are seeking papers that

contain ”software bill of materials” and ”software supply chain” and ”security” in the

abstract. To accomplish this we used IEEE Xplore’s command search with the command:

”Abstract”:”software bill of materials” AND ”Abstract”:”software supply chain” AND

”Abstract”:”security”. Additionally we used ACM Digital Library’s advanced search with the

command: Abstract:(”software bill of materials”) AND Abstract:(”software supply chain”)

1https://ieeexplore.ieee.org/Xplore/home.jsp
2https://dl.acm.org/

https://ieeexplore.ieee.org/Xplore/home.jsp
https://dl.acm.org/
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AND Abstract:(”security”). The objective of this search strategy is to keep the search broad

in order to identify any and all papers relevant to the using SBOM for SSC security.

To accept a paper, the paper must be focused on a method for using SBOMs to assess

SSC security or discuss the limitations of using SBOMs to enhance SSC security. Initially,

we read papers’ abstracts to eliminate papers that are clearly not focused on the use or

limitations of SBOM to assess SSC security. After the initial pass of reading abstracts

to reduce the number of papers, we read through the remaining papers in their entirety to

determine if the paper fits the criteria and should be accepted. We also inspect the references

of papers we gather to identify any additional papers that should be included.

Results

After performing the searches above, four papers were found that match the search

terms on IEEE Xplore, and two papers were found that match the search terms on ACM

Digital Library. After removing duplicates and investigating references, we were left with

five papers [6] [44] [10] [41] [32] to investigate. Assessing the five papers we identify one that

is relevant, an empirical study of the SBOM space by Xia et al. [6]. Although this work

does not cover how SBOMs are being used to assess SSC security, it uncovers limitations

experienced by SBOM users. A key limitation identified is the lack of maturity in the SBOM

tooling space, especially in SBOM consumption tools [6]. SBOM tooling lacks reliability,

interoperability, and standard-conformation [6]. These findings as well as the scarcity of

papers that fit the search criteria indicates a gap in the space and motivates our research on

applying SBOMs to enhance SSC security.

Software Supply Chain Security

The paucity of work found in the utilization of SBOMs for SSC security, lead us to

expand our investigation to the more broad SSC security space. We found several studies

that analyze SSC security risks [15]. These studies tend to focus on open-source development
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environments and packages managers.

In a study conducted by Yan et al. [14], the authors delved into the attack surface

of SSCs. Analyzing 50 open-source Java projects, they aimed to understand three aspects

of SSC attacks: the impact of vulnerabilities on dependent components, the vulnerability

exposure of supplier software, and the specific vulnerability locations within SSCs. Their

findings highlighted the pervasive security risks posed by residual vulnerabilities in open-

source SSCs, emphasizing the need for community attention [14]. Additional work has

been performed on assessing security risks inherent in common open-source SSCs. Zahan

et al. [29] scrutinized 1.63 million JavaScript npm3 packages, uncovering numerous entry

points vulnerable to exploitation by malicious actors. Similarly, Wang et al. [51] examined

the security risks associated with Java open-source libraries, revealing significant risks

intertwined with library usage.

Other investigations have explored different techniques for identifying SSC security

risks. Benthall [39] examined, leveraging vulnerability mapping techniques using public

data to evaluate security risks within the supply chain. Benthall utilized data from the

NVD to analyze the security posture of OpenSSL4, a widely adopted open-source project.

By connecting NVD data with OpenSSL, Benthall revealed vulnerabilities as well as future

risks of vulnerabilities being introduced. Here, the utility of public vulnerability data in

assessing security risks is illustrated. Pfretzschner and Othmane take a different angle for to

identify SSC security risks. The authors investigate npm packages and propose a tool that

can detect four types of SSC attacks through static analysis [8]. This work aims to catch

vulnerabilities present in dependencies before they make it into a SSC and highlights the

importance of assessing dependency security.

Although these papers and others reveal a better understanding of SSC attacks

3https://www.npmjs.com/
4https://www.openssl.org/

https://www.npmjs.com/
https://www.openssl.org/
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through third-party packages and libraries, they often only address one type of development

ecosystem, such as Java. This makes it difficult to generalize findings for SSC attacks and

the state of software supply chain security. These studies collectively underscore the latent

threats emanating from third-party providers within SSCs, furthering our motivation to

leverage SBOMs for enhanced SSC security.
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RESEARCH GOALS

Figure 3.1: Hierarchical structure of Basili’s Goal-Question-Metric methodology for this
study [49]. The manuscript information that addresses each research question is placed next
to the corresponding research questions. The outline of the research questions aligns with
which manuscript addresses them.

Goal Question Metric

In order to utilize SBOM technology to assess security risks present in SSCs as well

as identify and investigate SBOM aspects that impact vulnerability reporting, we adopt

Basili’s Goal-Question-Metric methodology for our research [49]. This method delineates

our research into two goals, which we aim to achieve through answering specific questions.

These questions are answered through a series of metrics. The specific goals, questions, and

metrics are presented below and shown in Figure 3.1.

Goal 1: Utilize SBOM technology to assess SSC security.

• RQ1 What is the distribution of vulnerabilities across the selected SBOMs?

– M1 Total count of vulnerabilities by severity
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– M2 Count of each unique vulnerability occurrence

• RQ2 What are the most vulnerable software components in packages across the

selected SBOMs?

– M3 Vulnerability counts for each package

Goal 2: Examine SBOM generation impacts on vulnerability detection.

• RQ1 What impact do SBOM generation tools have on vulnerability detection in

microservices?

– M4 Vulnerability counts for each SBOM in the 4 corpora SBOMs with varying

generation tool and format

– M5 Confidence intervals from bootstrap analysis

– M6 Cohen’s D values

• RQ2What impact do SBOM formats have on vulnerability detection in microservices?

– M4 Vulnerability counts for each SBOM in the 4 corpora SBOMs with varying

generation tool and format

– M5 Confidence intervals from bootstrap analysis

– M6 Cohen’s D values
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Abstract

The software supply chain is composed of a growing number of components including

binaries, libraries, tools, and microservices necessary to meet the requirements of modern

software. Products assembled by software vendors are usually comprised of open-source

and commercial components. Software supply chain attacks are one of the largest growing

categories of cybersecurity threats and the large number of dependencies of a vendor’s

product makes it possible for a single vulnerability to propagate to many vendor products.

Additionally, the software supply chain offers a large attack surface that allows vulnerabilities

in upstream transitive dependencies to affect the core software. Software Bill Of Materials

(SBOM) is an emerging technology that can be used in tandem with analysis tools to detect

and mitigate security vulnerabilities in software supply chains. In this research, we use open-

source tools Trivy and Grype to assess the security of 1,151 SBOMs mined from third-party

software repositories of various domains and sizes. We explore the distribution of software

vulnerabilities across SBOMs and look for the most vulnerable software components. We

conclude that this research demonstrates the threat of security via software supply chain

vulnerabilities as well as the viability of using SBOMs to help assess security in the software

supply chain.



13

Introduction

Security attacks continue to increase in frequency, sophistication, and severity of

breaches. With the rise of cybersecurity threats in recent years, improving defense

mechanisms across all vulnerable surfaces is essential. A particularly vulnerable and

important software surface facing a large increase in cybersecurity attacks is the software

supply chain. According to Sonatype’s 2021 report, there was a 650% year-over-year increase

in software supply chain attacks, up from 430% in 2020 [22]. With more software providers

integrating third-party code into their software supply chains a large cybersecurity attack

surface has emerged. This is in large part due to the dependencies that make up the final

software product. The final software package can then contain bugs and vulnerabilities

collected along the supply chain, leaving the core software vulnerable. Further, this

problem is compounded by the potentially many third-party projects that rely on transitive

dependencies from additional projects. These upstream dependencies propagate down the

supply chain further increasing the attack surface [10]. Herein, we present a novel approach

to assess the current state of security risks inherent in project supply chains. We develop an

approach grounded in foundational quality assurance techniques that aggregate outputs from

Software Bill Of Materials (SBOM) technology to inform practitioners regarding potential

cybersecurity risks.

SBOMs provide an inventory of all software components used in a particular application

or system and are an emerging technology that is quickly evolving into a fundamental

cornerstone of software supply chain security. The United States government issued

Executive Order (EO) 14028: Improving the Nation’s Cybersecurity, where the SBOM

is specifically recognized as a critical component. The consequences of the EO require

strict adherence by software providers who wish to engage in business with the US federal

government, to deliver SBOMs compliant with standards developed by NTIA [24].
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As SBOM technology evolves, numerous complementary static analysis tools (open-

source and proprietary) have been developed [3] [4] [17] [11] to help assess their quality.

Static analysis tools are external resources that help asses a target product by parsing its

source code, byte code, or compiled source code. Results of static analysis tools are typically

reported using various metrics, counts or by finding relevant data [8] that could impact

the target. Using dedicated static analysis tools on SBOMs to assess the security risks of

software supply chains has emerged as a viable approach for detecting potential security

vulnerabilities [18] [15] [25].

In recent years several studies have analyzed software supply chain security risks. These

studies focus on open-source development environments and package managers [16] [26].

Although these papers and others reveal a better understanding of software supply chain

attacks through third-party packages and libraries, they often only address one type of

development ecosystem, such as Java. This makes it difficult to generalize findings for

software supply chain attacks and the state of software supply chain security. Thus, there

exists a need to assess the state of software supply chain security with a broader view.

Additionally, due to the young age of SBOM technology, studies assessing software supply

chain security utilizing SBOMs are lacking.

In this study we analyze SBOMs mined from common open-source repositories and

Docker images that cover a wide range of ecosystems and domains, therefore enabling the

analysis of third-party software supply chain security risks in a broader context.

Related Work

With the growing adoption of third-party code, there has been heightened interest

in examining security risks associated with supply chains. Using SBOMs to explore this

attack surface is a new approach that motivates our work. A search on IEEE Xplore with

the string ”Abstract:software bill of materials AND Abstract:software supply chain AND
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Abstract:security”, returns only two results –neither of which address assessing software

supply chain security risks utilizing SBOMs [6] [19].

In a study performed by Yan et al. [14], the authors investigated the attack surface

of software supply chains, where they analyzed 50 open-source Java projects to gain an

understanding of three key aspects. Specifically, the extent to which dependent components

are impacted by vulnerabilities in supply chains, the extent to which the supplier software is

affected by vulnerabilities and specific locations of vulnerabilities in software supply chains.

A key finding is that ”the security problem from the residual vulnerabilities in the open-

source software supply chain can have a broad impact on their dependents, which should be

captured attention by the community” (sic)[14].

Additional efforts have explored how vulnerability mapping techniques applied to public

data help assess security risks in the supply chain. Benthall [21] links data from the National

Vulnerability Database (NVD)1 to the widely used open-source project, OpenSSL. Benthall

used NVD data to investigate the security of OpenSSL as well as assess the future risk of

vulnerabilities being introduced. The study demonstrates that by linking publicly available

vulnerability data to a project that is pervasive across the supply chain, we are able to assess

present and potential future security risks.

Other work has been performed that investigates the security risks of common open-

source software supply chains. A study by Zahan et al. [16] that analyzed 1.63 million

JavaScript npm packages, found multiple entry points containing additional packages that a

malicious actor could exploit. In another study performed by Wang et al.[26], the authors

examined the risks associated with Java open-source libraries and found many library-

associated risks. These studies help exemplify the latent dangers associated with third-party

providers of software supply chain packages.

1https://nvd.nist.gov/

https://nvd.nist.gov/
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Finally, Haque [5], provides a comprehensive overview of how SBOMs can be used

to help enhance software supply chain security. This study assesses the effectiveness of

actualizing SBOM security use cases.

Methodology

To assess software supply chain security risks, we define risk as the number of

times a vulnerability occurs across the mined software repositories. Associated with each

vulnerability is the corresponding severity of the vulnerability. We also define how we find

the occurrence of vulnerabilities in the mined SBOMs and how we measure the severity of

these vulnerabilities. To obtain a count of vulnerability occurrences we selected the static

analysis tools Grype (version 0.53.1) [3] and Trivy (version 0.44.1) [4]. Both of these tools

analyze each component present in a given SBOM and use mapping techniques to detect

potential vulnerabilities present within the components. Each tool generates a comprehensive

report containing all vulnerability occurrences in the SBOM. Both tools report vulnerabilities

found from the Common Vulnerabilities and Exposures (CVE)2 and the GitHub Security

Advisories (GHSA)3. We selected these tools through feedback from industry partners and

subject matter experts. Severity is calculated using the Common Vulnerability Scoring

System (CVSS)4. We make two key assumptions that have threats to validity implications.

We assume that the selected static analysis tools report accurate findings and that CVSS

scores are an objective way to measure severity.

Our investigation into mining software repositories for obtaining SBOMs led us to a

collection of SBOMs mined from common open-source repositories and Docker images by

Interlynk [13]. In this study, we leverage the SBOMs mined by Interlynk. This rich dataset

2https://cve.mitre.org
3https://github.com/advisories
4https://www.first.org/cvss

https://cve.mitre.org
https://github.com/advisories
https://www.first.org/cvss
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spans many different domains of software including, for example, utility, machine learning,

front-end development, and databases. As the SBOMs are derived from common open-

source repositories and Docker images, the dependencies within the SBOMs are expected to

be prevalent in software development. Thus, we can gain an understanding of the security

of software dependencies commonly used in today’s software development landscape. The

dataset is stored in a publicly available database that houses SBOM metadata as well as

a url to an S3 bucket where the SBOM is stored. The count of third-party dependencies

present in the selected SBOMs ranges from 1 to 4,135 with an average dependency count of

approximately 350.

Research Questions

We use SBOM technology to investigate the security risks associated with software

supply chains. We explore two research questions:

RQ1: What is the distribution of vulnerabilities across the selected SBOMs?

The answer to this question allows practitioners to understand the distribution of

vulnerabilities associated with components of software that aggregate third-party software.

Special focus is given to high-critical vulnerabilities. We hypothesize that as the occurrence

of a vulnerability increases, the severity of the vulnerability will decrease. This is because

software developers tend to be more concerned with high-severity vulnerabilities and will

issue fixes faster than for low-severity vulnerabilities.

RQ2: What are the most vulnerable software components in packages across

the selected SBOMs?

The answer to this question provides practitioners with insights regarding security risks

found in common third-party source code used by software developers. By leveraging a

repository of SBOMs mined from a wide variety of software, we can analyze a large number

of SBOMs that span multiple domains. The implications for practitioners are important in
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Figure 4.1: The study design consists of 5 steps. Data extraction occurs in steps 1 and 2,
data processing is performed in steps 3 and 4, and the analysis is carried out in step 5. ©
2024 IEEE.

that it allows them to understand the sources of vulnerable third-party code and whether

the risks of including a packet are worth the risks.

Data Extraction and Processing

We analyzed the security of 1,151 SBOMs from software repositories of varying domains

and sizes. The design of this study including data extraction, processing, and analysis

consists of 5 steps and is depicted in Figure 4.1 .

In step 1 we extracted and downloaded all SBOMs from Interlynk’s database through

a combination of SQL queries and HTTP requests. In step 2 we narrow the selection of

SBOMs. We focused on SBOMs created using the generation tool Trivy (version 0.39.0).

Next, in step 3, we ran the selected static analysis tools, Trivy and Grype, on each SBOM

obtained from the previous step and outputted their results in SARIF format. In step 4,

we extracted the reported vulnerabilities and built two R dataframes. The first dataframe

contains each vulnerability found across the mined SBOMs, a count of how many times that

vulnerability occurred across the mined SBOMs, and the CVSS score for each vulnerability.

The second dataframe contains each dependency found across the mined repositories and

the count of unique vulnerabilities found in the dependency. Finally in step 5 we performed
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Table 4.1: Trivy & Grype Findings Total Counts. © 2024 IEEE.

Severity Level Trivy Grype

None 2,920 45

Low 45,380 1,594

Medium 170,422 20,619

High 83,123 17,329

Critical 7,177 3,966

Total 309,022 43,553

Unique Number of Vulnerabilities 7,244 4,061

data analysis focusing on the generation of graphs 5.

Data Analysis

To address RQ1 we built scatter plots using outputs from Trivy and Grype, shown in

Figure 4.2a and Figure 4.2b respectively.

Each scatter plot helps us understand the distribution of vulnerability findings across

SBOMs. Every blue dot corresponds to a single vulnerability. The x-axis is the CVSS score

for each vulnerability and the y-axis represents the total number of occurrences for a given

vulnerability.

To measure the number of occurrences of each vulnerability, we analyzed the static

analysis tool results and built a comprehensive list of each unique vulnerability as well

as a count of the number of times that a unique vulnerability occurred. The scatter plots

provide insights regarding the distribution of vulnerabilities across common third-party code.

5https://github.com/MSUSEL/msusecl-sbom-security-tool-pipeline

https://github.com/MSUSEL/msusecl-sbom-security-tool-pipeline
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Additionally, using these plots, we can highlight the presence of high-critical vulnerabilities.

Table 4.1, provides details regarding specific counts of low to critical vulnerabilities found

by each tool across the selected SBOMs.

To address RQ2 we built bar graphs with outputs from Trivy and Grype. The plots,

shown in Figure 4.3 and Figure 4.4 display the top 25 most vulnerable packages found

across the mined SBOMs. We determined the most vulnerable packages through a count

of vulnerabilities. Counts for each package were obtained by looking at every vulnerability

found by the static analysis tools. We then extracted the metadata associated with each

vulnerability, which includes the package where the vulnerability originates from, and used

this data to compile a comprehensive list of the total vulnerabilities present in each package

across the mined SBOMs.

Results

RQ1: What is the distribution of vulnerabilities across the selected SBOMs?

Raw numbers associated with every severity level from all mined SBOMs are shown in Table

4.1. The dataset consists of 1,151 SBOMs. Trivy reported 309,022 vulnerabilities and

Grype reported 43,553 vulnerabilities. Further analysis from Figure 4.2a and Figure 4.2b,

reveals that our findings differ significantly from our hypothesis that as the occurrence of a

vulnerability increases or decreases, the severity will correspondingly decrease or increase.

Both tools report a small number of vulnerabilities with low CVSS severity scores. The

largest grouping of vulnerabilities occurs in the medium to high range with 82% of Trivy’s

findings and 87% of Grype’s findings assessed as medium or high. Additionally, Trivy

reported vulnerabilities that occurred far more often which consisted of mostly medium

and high vulnerabilities. Trivy reported a vulnerability as having 4,259 instances across

the selected SBOMs. This is a large number of instances for a single vulnerability. These

findings demonstrate a need for additional assessments of software supply chain security.
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(a) Trivy Findings (b) Grype Findings

Figure 4.2: Distribution of CVSS vulnerability scores from static analysis tools. Trivy and
Grype, labeled respectively. Each blue dot represents a single vulnerability. The y-axis
shows the total number of occurrences found for a given vulnerability. © 2024 IEEE.

The data shown in Table 4.1, and figures 4.2a and 4.2b show a significant difference

in the results of Trivy and Grype. Trivy found 7,177 unique vulnerabilities and 309,022

total vulnerabilities whereas Grype only found 4,061 unique vulnerabilities and 43,553 total

vulnerabilities. Additionally, Trivy reported a large group of vulnerabilities that have a high

occurrence across the mined repositories not present in Grype’s findings. These findings

reveal high variability that makes us question tool accuracy and validity. Specifically, Trivy

reported over seven times as many vulnerabilities as Grype.

RQ2: What are the most vulnerable software components in packages across

the selected SBOMs? An examination of results shown in figures 4.3 and 4.4 reveals that

Trivy found 14 unique packages with vulnerability counts ranging from 204 to 534 and Grype

found 8 unique packages with vulnerability counts ranging from 53 to 600. This illustrates

that using such packages expands the potential attack surface in a software product, which

falls beyond the direct control of the software developer. Additionally, these results show

that it is not uncommon for packages to remain vulnerable across tool versions. This is
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Figure 4.3: Top 25 most vulnerable packages found by Trivy across the mined SBOMs.

Figure 4.4: Top 25 most vulnerable packages found by Grype across the mined SBOMs. ©
2024 IEEE.

made evident by observing the repetition of the same package across different versions in

the top 25 most vulnerable packages reported by both tools. For example, Grype reported

six versions of Jenkins Core with vulnerability counts ranging from 119-124. Finally, these

findings also reveal the disagreements between Trivy and Grype. Only two packages across

the top 25 reported by each tool were common and the vulnerability counts vary greatly

between the two plots.
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Discussion

Our results indicate a significant amount of vulnerabilities in common third-party code.

In this study, Trivy found 309,022 vulnerabilities and Grype found 43,553 across 1,151

SBOMs. Additionally, both tools reported a large amount of critical vulnerabilities with

Trivy finding 7,244 and Grype finding 3,966. We borrow from the practitioner community

to label vulnerabilities with a high or critical CVSS score and a high occurrence rate as

showstoppers. Results from Trivy show a significant number of showstopper vulnerabilities

in the selected SBOMs. A review of Figures 4.2a and 4.2b, shows that Grype’s reported

showstopper vulnerabilities are hard to identify when comparing the two plots. This is due

to Trivy’s large amount of findings, causing it to appear that Grype reported almost none.

However, a close examination of Figure 4.2b reveals that there are many vulnerabilities

reported by Grype with a high CVSS rating that occur hundreds of times over the selected

SBOMs. This displays that while Grype found significantly less vulnerabilities than Trivy, it

still reported many showstopper vulnerabilities. These findings suggest the potential latent

risks of common third-party code.

Although showstopper issues in traditional quality assurance (QA) environments force

teams to halt deployment until fixes or patches are issued, it is less clear how the handling

of such showstoppers is handled when hidden in packages. The packages identified in our

findings are widely used in software development with many familiar names such as OpenSSL,

BinUtils, and FFMPEG. The most vulnerable package found by Grype, ImageMagick, has

over 10,000 stars on GitHub [12]. Another vulnerable package, Tensorflow, has a 37% market

share of the data science and machine learning category [2]. Our results allow software

vendors an opportunity to assess the security of packages that they may need to include in

their projects. This allows software developers to mitigate potential security risks that can

impact the software supply chain.
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Finally, a key finding from these results is the disparity in vulnerabilities reported by

the selected static analysis tools, Trivy and Grype. Trivy reported over four times as many

vulnerabilities as Grype, 3,211 more critical severity vulnerabilities, and over four and half

times the number of high severity vulnerabilities (i.e. showstoppers). This has implications in

the SBOM tooling space and brings up a lot of questions regarding the validity and accuracy

of these tools. Through discussions with our industry partners and subject matter experts,

we found that Trivy and Grype are two of the most widely used SBOM static analysis tools in

the software supply chain security assessment, thus if Grype is significantly under-reporting

vulnerabilities in software supply chains, software providers utilizing Grype in their supply

chain security assessment could be uninformed regarding large amounts of vulnerabilities. On

the other hand, Trivy could be over-reporting the number of vulnerabilities in software supply

chains. This could lead software providers using Trivy to waste effort tracking vulnerabilities

that do not exist in their software supply chain. Additionally, the lack of agreement between

tools is symptomatic of consistency problems in static analysis tools when reporting results.

These problems occur across vendors and even across different versions of the same tool [20].

Threats to Validity

In order to determine security risks, we selected two popular open source static analysis

tools, Trivy and Grype, that ingest SBOMs and report vulnerabilities in a software’s supply

chain. The results of this study are reliant on the ability of Trivy and Grype to report

accurate vulnerability findings, therefore the selected tools introduce multiple threats to

validity. We examine four different types of threats to validity: construct validity, content

validity, internal validity, and external validity; which are based on the classification scheme

of Cook, Campbell and Day [23] and of Campbell et al. [9].

In this paper, construct and content validity refer to the meaningfulness of the

measurements produced by Grype and Trivy to accurately represent the security risk posed
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by SBOMs that are used in supply chains. Both tools produce vulnerability counts that

are present in SBOMs, however some vulnerabilities reported by the tools may not be

exploitable. This can be due to the vulnerability residing in a function that is not called,

or the vulnerability being unreachable. Therefore the security risk indicated by these tools

could include false positives. To mitigate construct and content validity, we have also made

use of the CVSS score metric associated with vulnerabilities.

Internal validity refers to cause and effect relationships between independent and

dependent variables [7]. The independent variables in this study include the number of

vulnerabilities reported by each Grype and Trivy, and the CVSS score. Our dependent

variable is the security risk. There are a number of problems that threaten internal validity.

Trivy and Grype each use their own internal vulnerability database to perform vulnerability

mapping while scanning SBOMs. Additionally, Trivy and Grype use different data sources.

For example Trivy stores Photon Security Advisory6 information in its vulnerability database

while Grype does not. These differences can cause the tools to miss the same vulnerabilities

due to differences in their respective internal databases. We also make the assumption that

the CVSS score is an accurate measure of a vulnerability’s severity, however the subjectivity

of this metric allows for human error and uncertainty [14], which can cause vulnerabilities

to be assigned inaccurate ratings. Further, not all vulnerabilities are assigned a CVSS score,

and assigning a new score increases uncertainty between cause and effect of security risks.

To mitigate threats to internal validity we can force both tools to use the same external

sources (i.e., databases). Further, recent studies [20] find that different versions of the same

static analysis tool often produce different results when analyzing the same inputs–calling

the accuracy and trustworthiness of static analysis tools into question. Due to the disparity

in findings from Trivy and Grype, it is possible that we selected versions of Grype and

6https://packages.vmware.com/photon/photon_cve_metadata/

https://packages.vmware.com/photon/photon_cve_metadata/


26

Trivy that contained bugs thus giving inaccurate results. In order to mitigate this threat, a

systematic analysis of all versions of each static analysis tool over a large corpus of SBOMs

is needed. We hope to perform such analysis in the future as discussed in the future work

section.

External Validity refers to the ability to generalize results. Whilst this study attempts

to be broad and cover a wide range of software, we only analyzed 1,151 SBOMs. To mitigate

this threat, a larger dataset would allow us to randomly sample SBOMs from multiple

domains and statistically generalize conclusions to larger populations.

Future Work

Potential areas for future work include the validation of findings found by static analysis

tools Trivy and Grype. We would also like to expand the corpus of available tools to

further explore SBOM static analysis. This is important, especially to quality assurance

engineers and developers, because we want to ensure accurate scoring when assessing software

supply chain security risks. Part of this work includes building SBOMs injected with a

predetermined and known set of vulnerabilities and then comparing the outputs of the static

analysis tools to expected outputs. Additionally, investigating the accuracy of the selected

static analysis tools across versions is needed due to the possibility of bugs introducing false

positives [20]. Lastly, comparing the findings of SBOM static analysis tools across a large

corpus of SBOMs will help increase the significance and power of the results.

Further statistical analysis is planned for the dataset. We will use descriptive statistics

to better summarize the dataset. Measures of central tendency, dispersion, and frequency can

reveal interesting characteristics about the distributions of vulnerabilities across the selected

SBOMs and across results from both tools. To gain deeper insights into the outcomes

generated by Grype and Trivy tools, we will first employ unconstrained ordination to better

understand overall patterns in the data and follow up with hierarchical cluster analysis.
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Cluster analysis groups SBOMs according to the commonalities of vulnerabilities found

in them. By clustering on SBOM vulnerabilities, we can potentially identify the third-

party code responsible for these similarities. For instance, we can determine the extent to

which commonalities in imported libraries are driving the groupings in the cluster analysis.

This approach provides valuable additional insights into the security risks associated with

software supply chains, and will directly assist software practitioners in identifying packages

that introduce vulnerabilities. Finally, we plan on performing controlled experimentation

with both tools. The goal is to understand if variations in tool versions and variations

in security risk scores across different domains are statistically significant. Depending on

the characteristics of the distributions, both parametric and non-parametric techniques are

anticipated.

Another interesting area of exploration is whether elements of SBOMs, such as

generation tools and specifications influence the ability of SBOM static analysis tools to

provide accurate findings. If such an influence exists, the researchers should identify the

specific aspects that significantly impact the accuracy of the results.

Finally, investigations that explore software quality modeling techniques and how they

can be used to characterize software supply chain security risks are of utmost interest. The

development of quality models that utilize findings from SBOM static analysis tools is a

potential area of research that would allow integration into CI/CD environments. Software

quality modeling approaches would allow software providers to track and monitor the quality

of their software supply chain using the evaluation of SBOM structure (i.e., compliance to

standards) as well as the content of the SBOM. QA practitioners and users can benefit by

setting and maintaining supply chain security quality goals.
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Conclusion

This study provided an initial examination of the security risks within the software

supply chain, by focusing on 1,151 SBOMs extracted from third-party repositories. These

repositories encompass a diverse range of software, spanning various domains and project

sizes.

We found large amounts of vulnerabilities present within the software supply chains

of the analyzed projects. Additionally, security risks can vary drastically depending on the

static analysis tool used. The calibration and empirical validation of current and new SBOM

analysis tools continue to require attention. We can also assert that dependencies between

packages can further contribute to latent security risks that affect software supply chains.

Some packages are much more vulnerable than others given the number of vulnerability

counts found by the tools. The most vulnerable packages were found to be very common

in software development and these findings will aid software providers when assessing third-

party software.

This research demonstrates the potential of SBOMs in evaluating software supply chain

security. However, substantial work is still required in the SBOM domain before software

providers can completely rely on the results derived from leveraging SBOMs.
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Abstract

The software supply chain (SSC) continues to face cybersecurity threats. To assist

in securing SSCs, Software Bill of Materials (SBOM) has emerged as a pivotal technology.

Despite the increasing use of SBOM, the influence of SBOM generation on vulnerability

detection was unaddressed. We created four corpora of SBOMs from 2,313 Docker images by

varying SBOM generation tool (Syft, Trivy) and SBOM format (CycloneDX 1.5, SPDX 2.3).

Using three common SBOM analysis tools (Trivy, Grype, CVE-bin-tool), we investigated

how the vulnerability findings for the same software artifact changed according to the SBOM

generation tool and format. With the complex nature of SBOM generation and consumption,

we expected some variation in findings. However, we reveal high variability in vulnerability

reporting attributed to SBOM generation. The variation in the quantity of vulnerabilities

discovered in the same targets highlights the need for rigorous validation and enhancement

of SBOM technologies to best secure SSCs.
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Introduction

The software supply chain (SSC) is a vital part of modern software applications and is

facing a large increase in cybersecurity attacks [26]. Software supply chains are composed

of a growing number of components including binaries, libraries, tools, and microservices

necessary to meet the requirements of modern software. A large part of SSCs is made up

of third-party dependencies, incorporated to address software needs [24]. The substantial

and expanding number of dependencies present in SSCs reveals a significant security concern

[10]. A 650% year-over-year increase in software supply chain attacks was found in 2021, up

from 430% in 2020 [26]. Additionally, SSC attacks are often extremely damaging as seen

with the Apache Log4j [3] and Solar Winds [22] attacks. As a result, different technologies

have emerged to assist secure SSCs. Our research focuses on one emerging technology, the

Software Bill Of Materials (SBOM).

SBOM is a rapidly advancing technology that is becoming a pivotal element in

ensuring the security of SSCs. In 2021 the U.S. government issued Executive Order 14028:

Improving the Nation’s Cybersecurity1, which explicitly acknowledges the SBOM as a

crucial component. SBOMs serve as comprehensive inventories of all software dependencies

employed in a specific application or system. This inventory enables security practitioners

to detect and mitigate security vulnerabilities in SSCs. Vulnerability detection is primarily

accomplished through the use of SBOM analysis tools. Open-source and proprietary

SBOM analysis tools have been developed [2, 4, 9, 18] that detect vulnerabilities in SSCs

through vulnerability matching against vulnerability databases as well as Common Platform

Enumeration (CPE)2. Utilizing SBOMs to detect and communicate vulnerabilities present

1https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/

12/executive-order-on-improving-the-nations-cybersecurity/
2https://nvd.nist.gov/products/cpe

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://nvd.nist.gov/products/cpe
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in SSCs plays a vital role in securing SSCs of all software types. An important use case of

SBOMs is within the microservice domain.

The use and importance of microservices continues to rise[27]. The dynamic and de-

centralized nature of microservices poses significant challenges for security and vulnerability

management [13]. Leveraging SBOMs for microservices enables visibility into their software

supply chain. This visibility leads to effective identification and mitigation of security

vulnerabilities. In the context of microservice architecture, Docker3 images have become

a popular choice for packaging and deploying individual microservices. They are a popular

choice due to their lightweight nature and scalability benefits [28]. Therefore in this study,

we focus on SBOM generation for Docker images.

To leverage SBOMs for enhanced SSC security, first an SBOM is built. SBOM

generation in the domain of microservices, specifically Docker images, involves understanding

and documenting the dependencies present in each image. This process requires tracing

software components and libraries bundled within images as well as identifying their

relationships. This process is inherently complex and prone to error [17].

Challenges associated with SBOM generation have given rise to numerous SBOM

generation tools and formats [17]. We focus on two popular open-source SBOM generation

tools that build SBOMs for Docker images, Syft v0.102.0 built by Anchore4 and Trivy v0.49.0

built by Aqua Security5. For each tool, we chose the latest release. SBOM formats are a

set of standards that describe how to store and save SBOM information. These formats

aid in the automation of accurate vulnerability detection. Formats recognized by Executive

Order 14028 include Software Package Data Exchange (SPDX)6, CycloneDX7, and Software

3https://www.docker.com/
4https://anchore.com/
5https://www.aquasec.com/
6https://spdx.github.io/spdx-spec/v2.3/
7https://cyclonedx.org/docs/

https://www.docker.com/
https://anchore.com/
https://www.aquasec.com/
https://spdx.github.io/spdx-spec/v2.3/
https://cyclonedx.org/docs/
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Identification (SWID) tags8. Formats SPDX 2.3 and CycloneDX 1.5 are popular and widely

used within the SBOM community, thus we focus on them for SBOM generation.

Within SBOM generation, Syft and Trivy operate at the frontier of SBOM and SSC

security research and offer a promising solution to the challenging problem of building

SBOMs. These tools claim “reliable” and “exceptional” vulnerability scanning for SBOMs

generated by them. But it has been found that when using Trivy generated SBOMs,

vulnerability findings can vary drastically [19]. Additionally, SBOM formats CycloneDX and

SPDX are widely adopted industry standards [5]. As users of SBOM technology who make

decisions based on their outputs, we sought to understand the impact of these generation

tools and formats on the vulnerability findings of popular SBOM analysis tools. Thus, our

research addresses the following questions:

RQ1: What impact do SBOM generation tools have on vulnerability

detection in microservices?

RQ2: What impact do SBOM formats have on vulnerability detection in

microservices?

We selected the following SBOM analysis tool due to their popularity as well as input

from industry partner subject matter experts: Trivy v0.49.0 built by Aqua Security, Grype

v0.74.3 built by Anchore, and CVE-bin-tool v3.2.1 built by Intel9. Once again for each

tool, we chose the latest release. It is important to note that our study does not involve

direct comparisons between these tools. Instead, we focus on a ”within-tool” examination,

specifically investigating the consistency of findings within each tool across varying SBOM

generation methods. Trivy both generates and analyzes SBOMs, therefore we refer to Trivy

as TrivyG when used for generation and as TrivyA when used for analysis.

8http://dx.doi.org/10.6028/NIST.IR.8060
9https://www.intel.com/content/www/us/en/developer/topic-technology/open/

overview.html

http://dx.doi.org/10.6028/NIST.IR.8060
https://www.intel.com/content/www/us/en/developer/topic-technology/open/overview.html
https://www.intel.com/content/www/us/en/developer/topic-technology/open/overview.html
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Figure 5.1: Overview of the methodology to study SBOM generation impacts on vulnerability
reporting for microservices.

Methodology

To address our research questions, we collected a large corpus of Docker images, from

which we created four corpora of SBOMs. We generate the SBOMs using the selected

generation tools (Syft and TrivyG) in the selected formats (CycloneDX 1.5 and SPDX 2.3).

Next, each corpora of SBOMs is ran through the selected analysis tools. To build our Docker

image corpus, we first obtained the tag history for the 100 most pulled images available on
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docker hub10. We omitted two of these images, Tomcat and Drupal, due to not being able to

collect their entire tag history. We then selected 25 tags for each docker image spaced evenly

throughout the tag history. If an image had less than 25 tags we selected all available tags.

Additionally, we omitted any images in which either of the selected SBOM generation tools

failed. The design of this study including data extraction, processing, and analysis consists

of five steps and is depicted in Fig. 5.1.

Importantly, to attribute the variation in tool output to either generation tool or format

we held as many factors as we could constant. One, we assessed the impacts of SBOM

generation on the same version of each SBOM analysis tool; thus, differences in vulnerability

reporting will not stem from differences in vulnerability reporting across versions [23]. Two,

when investigating the impact of the generation tool on vulnerability scanning, we held the

format constant. That is, we compare the analysis tool findings for SBOMs generated with

Syft CycloneDX 1.5 with findings for SBOMs generated with TrivyG CycloneDX 1.5 and

we compared findings for SBOMs generated with Syft SPDX 2.3 with findings for SBOMs

generated with TrivyG SPDX 2.3. Finally, when investigating the impact of format on

vulnerability reporting, we held the generation tool constant. That is, we compare the

analysis tool findings for SBOMs generated with Syft CycloneDX 1.5 with the results for

SBOMs generated with Syft SPDX 2.3 and we compared the findings for SBOMs generated

with TrivyG CycloneDX 1.5 with the findings for SBOMs generated with TrivyG SPDX 2.3.

In comparing findings reported by the same analysis tools while varying SBOM

generation we remove any entries in which the analysis tool failed to run. This means

the results collected are dependent on what data is being compared. The corpus size for

each generation and analysis tool configuration are presented in Figs. 5.2 and 5.3.

We followed the analytical methodology of Reinhold et al. [23] to guide data analysis.

10https://hub.docker.com/

https://hub.docker.com/
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We employed Python 3.10.12 with the Numpy [12], Matplotlib [14], and Seaborn [30]

packages, along with the R statistical computing environment [21]. For plotting, we utilized

”ggplot2” [11] with colors selected from the ”viridis” package [25]. To capture variability in

findings, we took a two-pronged approach. First, the overall findings for each SBOM analysis

tool in each SBOM dataset were depicted using violin plots (Fig. 5.2A-B & Fig. 5.3A-B).

Second, Jenks natural breaks optimization11 was used to categorize the total findings, which

were then plotted for each tool and corpus in Sankey plots (Fig. 5.2C-D & Fig. 5.3C-D).

Results did not follow a normal distribution and the differences were not symmetrical thus

parametric testing and non-parametric testing would not accurately test the data. Therefore,

we employed bootstrapping to assess the impact of SBOM generation on findings. We used

20,000 bootstrap samples and a sample size of N − 1, where N represents the total dataset

size. Each sample underwent iterative resampling with replacement. This method allowed

us to calculate mean point estimates and confidence intervals. Through this approach,

the variability in vulnerability detection attributed to differences in SBOM generation was

thoroughly explored. Additionally, we investigated the practical significance (effect size) of

the results using Cohen’s D values [16].

This investigation can be replicated using the data science pipeline located on

our GitHub page at https://github.com/MSUSEL/msusecl-sbom-generation-and-

analysis-pipeline.

Results

The influence of SBOM generation on vulnerability detection is evident. SBOM

generation tools demonstrate significant impacts on vulnerability detection, while SBOM

formats have a less clear impact on vulnerability detection.

11”BAMMtools” package’s ”getJenksBreaks” function [7]
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Figure 5.2: Findings reported by TrivyA, Grype, and CVE-bin-tool for the collection of
SBOMs. SBOMs for the same software artifact were run through the selected analysis tools.
The findings for SBOMs generated using Syft CycloneDX 1.5 and TrivyG CycloneDX 1.5
were compared and findings for SBOMs generated using Syft SPDX 2.3 and TrivyG SPDX 2.3
were compared; thus, variation in vulnerability findings is attributable to impacts of SBOM
generation tools TrivyG and Syft. Subplots A and C hold format constant in CycloneDX
1.5, subplots B and D hold format constant in SPDX 2.3. A-B: Symmetrical density plots
depicting the distribution of vulnerabilities across the SBOM collection when using SBOM
generation tools TrivyG and Syft and holding format constant. C-D: Alluvial plots portraying
changes in the sum of reported findings by TrivyA, Grype, and CVE-bin-tool. The stacked
bars colors denotes the sum of findings reported for an SBOM built with the generation tools,
Trivy and Syft, indicated on the x-axis. Across stacked bars, each SBOM is represented by
a thin line. Lines that connect bars of different colors signify SBOMs which had different
numbers of findings when using Syft versus Trivy. The ranges in findings associated with
the color ramp were determined using Jenks natural breaks optimization (see Methods).
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Figure 5.3: Findings reported by TrivyA, Grype, and CVE-bin-tool for the collection of
SBOMs. SBOMs for the same software artifact were run through the selected analysis
tools. The findings for SBOMs generated using Syft CycloneDX 1.5 and Syft SPDX 2.3
were compared and findings for SBOMs generated using TrivyG CycloneDX 1.5 and TrivyG
SPDX 2.3 were compared; thus, variation in vulnerability findings is attributable to impacts
of SBOM formats CycloneDX 1.5 and SPDX 2.3. Subplots A and C hold generation
tool constant with Syft, subplots B and D hold generation tool constant in TrivyG. A-
B: Symmetrical density plots depicting the distribution of vulnerabilities across the SBOM
collection when using SBOM formats CycloneDX 1.5 and SPDX 2. and holding generation
tool constant. C-D: Alluvial plots portraying changes in the sum of reported findings by
TrivyA, Grype, and CVE-bin-tool. The stacked bars colors denotes the sum of findings
reported for an SBOM built with formats, CycloneDX 1.5 and SPDX 2.3, indicated on the
x-axis. Across stacked bars, each SBOM is represented by a thin line. Lines that connect
bars of different colors signify SBOMs which had different numbers of findings when using
CycloneDX 1.5 versus SPDX 2.3. The ranges in findings associated with the color ramp were
determined using Jenks natural breaks optimization (see Methods).
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Table 5.1: Confidence intervals from bootstrap analysis comparing vulnerability detection
by SBOM analysis tools when varying SBOM generation tool and format. We calculated
vlaues as follows: Rows 1 and 2, subtracted mean findings for Syft generated SBOMs from
mean findings for TrivyG generated SBOMs and divided by their pooled standard deviation.
Rows 3 and 4, subtracted mean findings for Syft generated SBOMs from mean findings for
TrivyG generated SBOMs and divided by their pooled standard deviation.

TrivyA Grype CVE-bin-tool

TrivyG vs Syft (CDX) 290.81, 342.62 -488.14, -423.66 -7.24, -4.09

TrivyG vs Syft (SPDX) 384.17, 443.38 -502.92, -435.10 -25.95, -21.62

CDX vs SPDX (TrivyG) 4.81, 7.71 -38.24, -29.27 -10.23, -7.82

CDX vs SPDX (Syft) -103.32, -85.24 -59.57, -30.76 7.54 10.52

In this section, we explore the effects of SBOM generation tools Syft and TrivyG, on

vulnerability detection using SBOM analysis tool TrivyA, Grype, and CVE-bin-tool. Then,

we investigate the effects of SBOM formats CycloneDX 1.5 and SPDX 2.3, on vulnerability

detection using SBOM analysis tools, TrivyA, Grype, and CVE-bin-tool.

RQ1: What impact do SBOM generation tools have on vulnerability detection in microservices?

Findings from SBOM analysis tools are highly dependent on the vendor that produces

the generation tool and analysis tool. More specifically, when the same vendor is used for

the generation and analysis of an SBOM, the number of findings over the corpus of SBOMs

is higher.

Employing the vendor, Anchore, to generate (Syft) and analyze (Grype) the corpus of

SBOMs resulted in the highest variation in findings. The high variation indicates substantial

discrepancies in vulnerability detection outcomes. Utilizing the vendor, Aqua Security, to

generate (TrivyG) and analyze (TrivyA) the corpus of SBOMs, we encountered the second

highest variation, again showing notable differences in vulnerability assessment results when
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Table 5.2: Cohen’s D values measuring the effect size of variation in vulnerability detection by
SBOM analysis tools when varying SBOM generation tool and format. We calucated values
as follows: Rows 1 and 2, subtracted mean findings for Syft generated SBOMs from mean
findings for TrivyG generated SBOMs and divided by their pooled standard deviation. Rows
3 and 4, subtracted mean findings for SPDX 2.3 SBOMs from mean findings for CycloneDX
1.5 SBOMs and divided by their pooled standard deviation SBOMs.

TrivyA Grype CVE-bin-tool

TrivyG vs Syft (CDX) 0.58 0.65 0.09

TrivyG vs Syft (SPDX) 0.80 0.69 0.03

CDX vs SPDX (TrivyG) 0.01 0.17 0.04

CDX vs SPDX (Syft) 0.51 0.04 0.12

the same vendor is used to generate and analyze SBOMs. The disparities in findings from

the same analysis tool when using different generation tools, as illustrated in Fig. 5.2, are

not only statistically significant (Table 5.1) but also practically significant (Table 5.2). These

statistical metrics illustrate the extent of the observed differences and highlight the influence

of the vendor responsible for developing the generation and analysis tool.

In assessing the SBOM corpus with an analysis tool (CVE-bin-tool) that did not

have affiliation with the generation tools vendor, findings remained consistent. Despite the

statistical significance of these findings, as evidenced by the confidence intervals not crossing

0 (Table 5.1), the consistency of the findings is underscored by a small effect size (Table

5.2). This suggests that while the observed differences may be statistically significant, their

practical relevance is relatively minor. This emphasizes the lack of variability in vulnerability

reporting when using generation and analysis from different vendors.

When varying SBOM generation tool the reported number of findings for identical

software artifacts rarely remained consistent. With respect to TrivyA, only 14% of SBOMs
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generated with different tools in CycloneDX 1.5 yield the same number of findings. The

median number of findings for SBOMs generated with TrivyG was 102 higher than in SBOMs

generated with Syft (Fig. 5.2A). The extent of the variability in the findings is further shown

(Fig. 5.2A and Fig. 5.2C) with differences ranging from 94 fewer to 5456 greater findings

(standard deviation [SD] = 627). Similar trends were observed when analyzing SBOMs

generated with different tools in the SPDX 2.3 format, with 11% of SBOMs found to have

the same number of findings. The median number of findings for SBOMs generated with

TrivyG exceeded those generated with Syft by 138 (Fig. 5.2B). Similarly, the high variability

in the findings is further demonstrated (Fig. 5.2B and Fig. 5.2D) with differences ranging

from 65 fewer to 6058 greater findings (standard deviation [SD] = 717).

With Grype, only 4% of SBOMs exhibited an identical number of findings when varying

the generation tool in the CycloneDX 1.5 format. The median number of findings for SBOMs

generated with Syft exceeded those generated with TrivyG by 198 (Fig. 5.2A). Again, the

extent of variability is shown (Fig. 5.2A and Fig. 5.2C) with differences ranging from 164

fewer to 8171 greater findings (SD = 782). As with TrivyA, similar trends were observed

here. In SPDX 2.3, just 5% of SBOMs yield the same number of Grype findings. The median

number of findings reported for SBOMs generated with Syft was 200 higher those generated

with TrivyG. The variability in the findings is further displayed (Fig. 5.2B and Fig. 5.2D)

with differences ranging from 2 fewer to 8202 greater findings (standard deviation [SD] =

627).

Finally, with respect to CVE-bin-tool findings, 51% of CycloneDX 1.5 SBOMs yield

identical findings (28% for SPDX 2.3). The median number of findings reported by CVE-

bin-tool for SBOMs generated with Syft was just 7 higher than the findings for SBOMs

generated with TrivyG in CycloneDX 1.5 (Fig. 5.2A) and only 19 higher for SBOMs

generated in SPDX 2.3 (Fig. 5.2B). A closer look at Figs. 5.2C-D revealed that a significant

majority of SBOMs (CycloneDX 1.5: 96%, SPDX 2.3: 92%) reported findings within the
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same range. Additionally, a pragmatic assessment of the findings’ practical significance

(Table 5.2), suggests negligible differences. These findings underscore the lack of variability

in vulnerability reporting when using generation and analysis from different vendors.

RQ2: What impact do SBOM formats have on vulnerability detection in microservices?

SBOM format influences the SBOM analysis tools outcomes. Although format effects

may not be as pronounced as that of the generation tool used, it remains a crucial factor.

Inconsistencies or ambiguities in these formats can lead to these discrepancies in vulnerability

reporting.

Analyzing the SBOM corpus with TrivyA, 21% of Syft-generated SBOMs yield

consistent findings, while 79% of TrivyG SBOMs exhibit consistent findings. The median

number of findings reported by TrivyA for SBOMs generated with TrivyG in CycloneDX 1.5

falls short of those in SPDX 2.3 by 4 (Fig. 5.3A), with differences ranging from 567 fewer to

2 greater findings (SD = 35). For SBOMs generated with Syft in CycloneDX 1.5, the median

was 34 higher than in SPDX 2.3 (Fig. 5.3B), with differences ranging from 2104 fewer to 32

greater findings (SD = 226).

Analyzing the SBOM corpus with Grype, 83% of Syft-generated SBOMs yield consistent

findings, while 32% of TrivyG SBOMs exhibit consistent findings. The median number of

findings reported by Grype for SBOMs generated with TrivyG in CycloneDX 1.5 exceeded

those in SPDX 2.3 by 14 (Fig. 5.3A), with differences ranging from 3 fewer to 654 greater

findings (SD = 110). Similarly, for SBOMs generated with Syft in CycloneDX 1.5, the

median was 13 higher than in SPDX 2.3 (Fig. 5.3B), with differences ranging from 15 fewer

to 12,112 greater findings (SD = 110).

Finally, when analyzing the SBOM corpus with CVE-bin-tool, 56% of Syft generated

SBOMs show identical findings, while 78% of TrivyG SBOMs yield consistent findings. The

median number of findings reported by CVE-bin-tool for SBOMs generated with TrivyG in
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CycloneDX 1.5 exceeded those in SPDX 2.3 by 8 (Fig. 5.3A), with differences ranging from

22 fewer to 263 greater findings (SD = 26). Similarly, for SBOMs generated with Syft in

CycloneDX 1.5, the median was 21 lower than in SPDX 2.3 (Fig. 5.3B), with differences

ranging from 382 fewer to 192 greater findings (SD = 30).

These descriptive statistics appear to suggest that SBOM formats have an impact on

vulnerability detection. However, investigating the practical significance of these results

reveals a different story. Only when comparing TrivyA results for SBOMs generated with

Syft in CycloneDX 1.5 versus SPDX 2.3 we found practical significance (Table 5.2). This is

an instance where the vendor generating and analyzing the SBOM corpus is different. As

our results from RQ1 show this could be the cause of this variability and not due to format.

Although using different SBOM formats does cause variability in vulnerability reporting, the

effect size of the variability is small, especially in comparison to the generation tool.

Discussion

Security practitioners need confidence in the SBOMs they are building to assess SSC

security. Understanding the impact that SBOM generation tools and SBOM formats have

on vulnerability reporting, is crucial to effectively secure SSCs.

Building SBOMs is a particularly challenging objective due to the complexity of SSCs

and SBOM generation. More specifically, SBOM generation tools have the challenging

objective of capturing dependencies within SSCs for a given software artifact. The observed

high variability in findings when using different SBOM generation tools (Fig. 5.2) illustrates

this challenge. SBOM formats are complex because they need to provide support for

storing SBOMs that enable accurate vulnerability detection. As demonstrated in our study,

variations in SBOM formats (Fig. 5.3) can introduce variability in vulnerability detection

outcomes, further complicating risk assessment efforts for security practitioners.

With respect to SBOM generation tools, we posit that the observed variability could be
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attributed to the vendor used for the generation of the SBOM in combination with the vendor

used for the analysis of the SBOM. When generation and analysis tools from the same vendor

are used, significantly more vulnerabilities are found. On the other hand when a different

vendor is used for generation and then analysis, far fewer vulnerabilities are found with more

consistent results. As SBOMs are difficult to create, developers who possess insights into

the SBOM build process can more effectively construct analysis tools that get the maximum

information out of the SBOM.

Concerning the SBOM format, we posit that differences in vulnerability reporting when

varying SBOM format came from inconsistencies or ambiguities in the formats. For example,

there are disagreements between CycloneDX 1.5 and SPDX 2.3 on which field supplier

information should be placed [1]. This can lead to analysis tools not being able to find

supplier names. As the supplier name is used for CPE matching, this reduces the analysis

tool’s ability to report vulnerabilities. These inconsistencies and others reduce the ability of

SBOM analysis tools to report consistent vulnerability findings.

The observed variability from varying SBOM generation methods decreases practition-

ers’ confidence in the SBOMs being built with popular tools and formats. In turn, this

hampers their confidence in leveraging SBOM technology for enhanced SSC security.

Implications for Practitioners and End Users

SBOM is a promising SSC security solution that enables practitioners and end-users

to quickly mitigate software supply chain security risks [20] [15]. The variability in tool

output demonstrates that neither of the popular SBOM generation tools (Syft and TrivyG)

or SBOM formats (CycloneDX 1.5 and SPDX 2.3) have solved the complex challenge of

building SBOMs that enable consistent vulnerability reporting. Variability from SBOM

generation methods presents a multifaceted challenge for practitioners and end-users alike,

casting a shadow of uncertainty over the reliability and trustworthiness of SBOMs. While
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these tools and formats are promising, it is clear the SBOM space is immature. Extensive

development, validation, and verification of both SBOM generation tools and formats are

required to improve the usefulness of SBOMs for SSC security.

Moreover, our research highlights the inherent risks associated with blindly trusting the

outputs of SBOM generation tools and formats merely based on their popularity and industry

standing. We reveal a dangerous gap between perceived reliability and actual performance,

underscoring the need for cautious skepticism and rigorous evaluation in adopting these

technologies. Software developers and security practitioners must recognize that popularity

and industry recognition alone do not guarantee the accuracy and consistency of vulnerability

reports derived from SBOMs. While SBOM provides a promising solution to the difficult

challenge of securing SSCs, it is clear that a meticulous approach involving thorough scrutiny

and validation of SBOMs and SBOM technology is essential to ensure the integrity and

effectiveness leveraging SBOM for SSC security measures.

Threats to Validity

Threats to the validity of this study rest in the selected SBOM generation and analysis

tools. We examine four different types of threats to validity: construct validity, content

validity, internal validity, and external validity; which are based on the classification scheme

of Cook, Campbell and Day [28] and of Campbell et al. [8].

In this study construct and content validity refer to the meaningfulness of the

measurements produced by the SBOM analysis tools TrivyA, Grype, and CVE-bin-tool.

These tools produce vulnerability counts that are present in SBOMs, we use these counts

to assess variability introduced by SBOM generation. Recent studies [23] find that different

versions of the same static analysis tool often produce different results across the same input.

It is possible that we selected versions of the analysis tool that contained bugs thus giving

inaccurate results. In order to mitigate this threat, a systematic analysis of all versions of
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each SBOM analysis tool over a large corpus of SBOMs is needed. We hope to perform such

analysis in the future as discussed in the future work section.

Internal validity refers to cause and effect relationships between independent and

dependent variables [6]. The independent variables in this study include both the SBOM

generation tool as well as the SBOM format. Our dependent variable is the findings reported

by selected SBOM analysis tools. As with analysis tools there is the possibility of the selected

generation tool versions to contain bugs. This could result in incomplete or incorrect SBOMs,

leading to discrepancies in vulnerability reporting. Additionally, the SBOM analysis tools

each use their own internal database which pulls from multiple data sources i.e. Redhat12,

Gitlab Advisory Database13. It is possible that depending on when internal databases are

updated it could lead to different findings that are not attributed to SBOM generation tool

or SBOM format. To mitigate this threat each SBOM was run concurrently through the

analysis tools.

External Validity refers to the ability to generalize results. Whilst this study attempts

to be broad and cover a wide range of software, we only analyzed SBOMs generated from

100 unique docker images and ∼25 versions of those images. To mitigate this threat, a larger

dataset would allow us to randomly sample SBOMs from multiple domains and statistically

generalize conclusions to larger populations. Additionally we only assessed the impacts of two

SBOM generation tools on three SBOM analysis tools. Expanding the corpus of both SBOM

generation tools as well as SBOM analysis tools would enable us to further generalize the

impacts of SBOM generation tool on SBOM analysis tool’s ability to report vulnerabilities.

12https://access.redhat.com/documentation/en-us/red_hat_security_data_api
13https://advisories.gitlab.com/about/index.html

https://access.redhat.com/documentation/en-us/red_hat_security_data_api
https://advisories.gitlab.com/about/index.html
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Future Work

Potential areas for future work include the validation of the SBOMs being generated by

Syft and TrivyG. This will include the collection of software artifacts and obtaining a ground

truth for each artifact of what the SBOM should contain, then comparing this ground truth

against the SBOMs generated by Syft and TrivyG. Additionally, expanding the corpus of

SBOM generation tools would allow us to further generalize their impacts and develop a

deeper understanding of how vendor of the generation tool and analysis tool plays a role in

vulnerability detection.

Another interesting area of exploration is investigating what dependencies are com-

monly missed by SBOM generation tools as well as a broader assessment of the most

used dependencies across an SBOM corpus. This is important as it would enable security

practitioners to better understand potential attack targets present in their systems.

Finally, investigations that explore how software quality modeling techniques could be

used to help address variability when using different SBOM generation tool, analysis tool

combinations are of the utmost interest. Integrating multiple SBOM analysis tools into a

single model would assist in having the broadest coverage of vulnerabilities. Additionally

utilizing multiple analysis tools could possibly lessen the impacts from the SBOM generation

tool vendor.

Conclusion

Our study delves into Software Bill Of Materials (SBOM), a critical technology in

SSC security. Through the analysis of a large and diverse corpus of Docker images, we’ve

uncovered how SBOM generation tools and formats impact vulnerability reporting within

the microservice domain. We emphasize the substantial role of SBOM generation tools

in vulnerability detection, showcasing significant variability in outcomes. Additionally,
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SBOM formats exert influence. Their impact is less significant but still affects consistent

vulnerability reporting. These insights hold significance for practitioners and end-users,

illuminating the challenges in constructing dependable SBOMs for SSC security and

emphasizing the necessity for rigorous validation and enhancement within the SBOM space.
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CONCLUSION

Software supply chains are a vital part of all modern software. The intricate web

of dependencies within SSCs has introduced a large attack surface that is susceptible to

extremely damaging attacks. In response to this challenge, Software Bill of Materials

technology has emerged as a promising solution for enhancing SSC security. I investigate

SBOM technology including how it can be leveraged to assess SSC security and its

limitations.

I provide an initial examination of utilizing SBOM to assess the security risks within

SSCs. I assessed the SSC chain security of 1,151 popular open source repositories and

Docker images using SBOM technology. Leveraging SBOM technology, I found large

amounts of vulnerabilities within SSCs as well as high security risks associated with popular

projects (Chapter 4). Additionally, these findings assert that commonly used dependencies

contain numerous vulnerabilities (Chapter 4). I show that utilizing SBOM enables security

practitioners to assess the security risk present within SSCs. However, my investigations

also revealed clear challenges and limitations associated with using SBOM for SSC security.

Notably, I found significant variability in security risks depending on the SBOM analysis

tool used (Chapter 4).

I investigated the cause of variability in SBOM analysis tool vulnerability reporting.

SBOM generation is a difficult process [27], thus I focused on if decisions made at the SBOM

generation stage impacted vulnerability reporting. Specifically I focused on the impacts of

SBOM generation tool and SBOM format. Through the analysis of a large and diverse

corpus of Docker images, I uncover how SBOM generation tools and formats impact SBOM

vulnerability reporting within the microservice domain. I emphasize the substantial role

of SBOM generation tools in vulnerability detection, showcasing significant variability in

outcomes (Chapter 5). Additionally, I found that SBOM formats exert influence (Chapter
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5). Their impact is less significant but still affects consistent vulnerability reporting. I

highlight the inherent risks associated with blindly trusting the outputs of SBOM generation

tools and specifications merely based on their popularity and industry standing. I reveal a

dangerous gap between perceived reliability and actual performance, underscoring the need

for rigorous evaluation in adopting SBOM technology for SSC security risk assessment.

This thesis contributes to the ongoing efforts to enhance SSC security and demonstrates

the potential of SBOMs in evaluating software supply chain security. However, it is clear

that substantial work is still required in the SBOM domain before software providers

can completely rely on the results derived from leveraging SBOMs. By addressing these

challenges, we can better strengthen our defenses against cybersecurity threats and safeguard

critical software systems and infrastructure.
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pp. 39-49, doi: 10.1109/ICSME58846.2023.00016.

[42] Sonatype, “The 2021 State of the Software Supply Chain Re-
port.” [Online]. Available: https://www.sonatype.com/resources/

state-of-the-software-supply-chain-2021
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