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ABSTRACT

As Field Programmable Gate Arrays (FPGAs) become increasingly integrated into
security-critical applications—particularly in space, IoT, and edge computing environ-
ments—the need for robust security mechanisms has grown paramount. Despite their
versatility and performance, FPGAs were not initially designed with strong security in mind,
leaving them vulnerable to attacks such as code injection and buffer overflows. This thesis
introduces CyberShield, a Trusted Execution Environment (TEE) architecture integrated
into the radiation-tolerant RadPC softcore processor to defend against such threats.

CyberShield enables secure boot with obfuscated opcodes, leveraging RadPC’s Quad
Modular Redundancy (QMR) and opcode diversification to prevent unauthorized code
execution. By assigning unique opcode offsets to each core and validating integrity through
an anti-voter module, CyberShield can detect code and command injection attacks. This
thesis details the architectural modifications necessary to achieve secure boot from non-
volatile memory, the encryption and bootloading process, and how the system mitigates
injection-based attacks. Experimental validation confirms CyberShield’s ability to resist
buffer overflow exploits while preserving system reliability and performance. This work lays
the foundation for further development of other TEE related security features for RadPC
and embedded systems deployed in adversarial environments.
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INTRODUCTION

The proliferation of edge computing and embedded systems has revolutionized modern

computing paradigms. With data processing increasingly occurring at the network

edge—close to sensors and user devices—systems are gaining new capabilities in speed,

autonomy, and context awareness [2]. At the heart of many of these edge systems are

Field Programmable Gate Arrays (FPGAs), valued for their reconfigurability, performance,

and support for custom architectures. Particularly, System-on-Chip (SoC) FPGAs, which

integrate programmable logic with embedded processors, have become critical in applications

ranging from space avionics and industrial control systems to AI acceleration and IoT[3].

However, with this shift toward high-performance, real-time edge computing comes a

significant expansion of the attack surface [4]. Originally designed with performance rather

than security in mind, FPGAs are now deployed in hostile or high-stakes environments—such

as space, defense, and multi-tenant cloud systems—where threats such as code injection,

buffer overflow, and unauthorized access pose serious risks. These devices often operate

without the security assurances available in conventional CPUs and OS-managed systems

[5].

To address these challenges, Trusted Execution Environments (TEEs) have emerged

as a foundational component for securing edge devices. TEEs establish isolated, tamper-

resistant regions within a system where critical code and data can be executed securely [6].

While mainstream CPU vendors like ARM, Intel, and AMD have introduced TEE platforms

like TrustZone, SGX, and SEV, these solutions are chip-specific and not accessible cross

platform. Furthermore, most TEEs are developed for general-purpose processors, with few

extensible or application-agnostic solutions targeting SoC FPGA platforms.
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Based on the findings of the manuscript in Chapter 2 extensible TEEs are few and far

between. While they do provide modularity and flexibility, they are still not suitable for all

applications. The FPGA-based single board computer RadPC was originally designed as a

radiation-tolerant space computer and is distinguished by its Quad Modular Redundancy

(QMR) design, which allows it to recover from multiple single event effects (SEEs) caused by

radiation. The FPGA allows real-time configuration of hardware to support field upgrades.

This enables recovery procedures that has been found to be able to flush out radiation-

induced faults. Because of its small form factor, e.g. an Artix 200T, there are limited

resources to implement a TEE. Thus, much like many researchers in Chapter 2, this thesis

focuses on a specific feature–secure boot. This thesis addresses the addition of a TEE that

provides secure boot to CyberShield, a novel TEE architecture integrated with RadPC, a

RISC-V-based radiation-tolerant microcontroller developed for small satellite applications.

CyberShield builds on this resilience by incorporating secure boot mechanisms and opcode

obfuscation to further harden the system against software-level cyber threats, providing both

hardware and software redundancy.

CyberShield employs a bootloader-enabled TEE that receives encrypted executables

via UART and stores them in non-volatile memory (NVM). It then decrypts and distributes

obfuscated instruction sets—each with unique opcode offsets—to RadPC’s four cores over

separate UARTs. An anti-voter module monitors for anomalous behavior, raising an

error flag if all four cores execute identical instructions, which would be an Indicator of

Compromise (IoC). The obfuscated instructions allows CyberShield to resist and detect

malicious code being excited as the result of an attack.

The implementation is validated through simulation and physical deployment on a

Nexys A7-100T development board using Xilinx Artix-7 FPGAs. Testing included executing

normal workloads, verifying secure boot functionality, and simulating buffer overflow attacks.

Results demonstrate CyberShield’s ability to boot safely, detect tampered execution, and
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prevent unauthorized instruction execution, even under active attack conditions. Through

obfuscation, hardware-enforced isolation, and recovery, CyberShield represents a robust

approach to TEE development for small form factor FPGAs.
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Abstract

Trusted Execution Environments (TEEs) have emerged at the forefront of edge

computing to combat the lack of trust between system components. Field Programmable

Gate Arrays (FPGAs) are commonly used as edge computers but were not created with

security as a primary consideration. Thus, FPGA-based edge computers are increasingly the

target of cyberattacks. We analyze the existing literature to systematize the applications and

features of FPGA-based TEEs. We identified 27 primary studies related to different types

of System-on-Chip FPGA-based TEEs. Across a wide range of applications and features,

the availability of extensible solutions is limited. Most solutions focus on specific features

and applications, whereas few solutions focus on feature-rich, comprehensive TEEs that can

be utilized across computer systems. Whether TEEs are specific or extensible, the paucity

of published studies provides evidence of research gaps. This SoK delineates these gaps

revealing opportunities for researchers and developers.

Introduction

In the rapidly evolving landscape of the Internet of Things (IoT) and edge computing,

the demand for secure environments (SEs) has grown markedly. With the increasing

interconnectivity of devices, traditional computer systems are no longer able to rely on

mutual trust among components, as a compromise in one area can lead to vulnerabilities

in others [1]. This heightened risk has underscored the need for SEs that can adapt to the

challenges posed by the evolving domain of secure computing [2–4].

Most major CPU vendors have introduced their own chip-specific Trusted Execution

Environments (TEE) solutions. For example, ARM TrustZone, Intel SGX, and AMD SEV,

each provide secure computing for their respective hardware. However, these chip-specific

TEEs constrain developers to a singular platform creating a unique security challenge [5–7].
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New solutions are emerging to address this challenge by providing more modular and

flexible secure environments. Consequently, significant R&D efforts are being applied to

TEEs and hardware-based solutions. Among these hardware solutions are FPGAs and

ASICs. This paper focuses on FPGAs, which are application-agnostic, as opposed to ASICs,

which are “application-specific” by definition. FPGAs also provide expanded I/O over

ASICs while allowing real-time hardware configuration to support field upgrades. FPGAs

are inherently modular and used across several applications, such as radar, Unmanned Aerial

Vehicles (UAVs), Industrial Control Systems (ICS), data centers, neural networks, and space

avionics [8–10]. These applications require that FPGAs be secure.

We explore how FPGA-based TEEs are currently being used to provide secure

computing environments and the specific features that make them suitable for applications

in IoT and other computing domains. By highlighting gaps in existing research and solutions

that improve FPGA security, our study addresses the following research questions: RQ1:

What are the applications of FPGA-based TEEs and which features do FPGA-based TEEs

employ according to the literature? RQ2: What gaps exist in the field of FPGA-based

TEEs according to the literature?

Methods

We searched two databases, ACM Digital Library and IEEE Xplore, identifying 109

peer-reviewed papers using the search strings and filters shown in Table 1. After applying

inclusion criteria (Table 2), 27 papers remained for full evaluation.

We applied inclusion criteria focused on the convergence of TEEs, FPGAs, and cyberse-

curity. First, we included only papers that primarily addressed security concerns, excluding

those not focused on security. Second, we considered only studies that demonstrated

practical implementations or empirical evaluations, thus excluding theoretical papers and

literature reviews. Furthermore, our review was limited to papers discussing System-on-Chip
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(SoC)-based FPGA environments, excluding those involving non-SoC processors to maintain

technological specificity. Last, we prioritized open-source systems, excluding studies reliant

on proprietary platforms. This prioritization ensured the studies were universally accessible

and modifiable. This meticulous selection process was critical to accurately mapping the

landscape of FPGA-based TEEs, identifying their applications, and detailing the specific

features they employ, directly addressing our research question.

Of the 109 papers, 75 were from ACM Digital Library, and 34 were from IEEE Xplore.

After applying the inclusion criteria listed in Table 2, 31 papers remained: 17 from IEEE

Xplore and 14 from ACM Digital Library. Despite meeting the inclusion criteria, four papers

were removed from the pool of 31 due to lack of relevance, leaving 27 papers in the study. A

stacked bar plot was made based on the number of papers published each year (Figure 1).

After selecting 27 papers, each was read to categorize the features and applications

of these custom TEEs. Notable features and applications were separately categorized by

paper in Table 3. This table does not include the papers [6, 11], and [12], as [6] and [11] are

categorized as extensible TEEs and [12] is an implementation of [6].

We built a heatmap to identify which features are most commonly associated with each

application and highlight areas of researcher attention (Figure 2). This aids in visualizing

the distribution of features across various applications of FPGA-based TEEs and facilitates

clear and immediate understanding of the landscape of FPGA-based TEEs.

Results & Discussion

The increasing rate of publications around TEEs and FPGAs indicates that these are

both growing areas of research in the cybersecurity community (Figure 1)[13]. Despite recent

growth in publications, research on FPGA-based TEEs remains limited, with only 27 relevant

studies identified.

The majority of the 27 papers focus on applications and features. More specifically,
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Table 1: Database search details, including search strings, filters, results. © 2025 IEEE.

Database Search String Filters Results

ACM Digital
Library

[“trusted execution
environment”] AND
[fpga]

Past 5 years, Re-
search Articles Only

75

IEEE Xplore (“All Meta-
data”:“trusted
execution
environment”)
AND (“All
Metadata”:fpga)

2019-2024, Journal-
s/Conferences

34

Table 2: Inclusion criteria and number of papers excluded for each criterion. Total count of
excluded papers exceeds the 109 papers obtained from the initial search strings because
some papers were excluded for not meeting multiple criteria. © 2025 IEEE.

Criteria Count of papers excluded

Security Focused 4
Applied Research 16
Open-source Platform 28
System on Chip Based 63

24 papers address application-specific (15 papers) (Subsection 2) and feature-specific (9

papers)(Subsection 2) TEEs. Only two papers present a holistic approach to TEEs

(Subsection 2). One paper presents a use case of a holistic approach. The application-based

papers focus on the topics of accelerators, cloud computing, and attack mitigation (Table

3); the rest of the 24 papers are feature-driven. Root of Trust (RoT) and various memory

security features are common, while features such as password recovery and upgraded page

table walks are less common. Each paper presents a unique combination of applications and

features (Figure 2).



10

Application Specific

Across the 27 selected papers, 15 constructed TEEs that served niche purposes.

However, note that some of these “niche papers” developed TEEs that are multi-applicational

(i.e., acceleration in cloud computing) but not fully extensible.

Hardware Acceleration Seven papers discuss custom TEEs and their features as they are

applied to accelerators and acceleration. TEEs emphasizing hardware acceleration primarily

feature memory security, enclaves, RoT, and attestation (Figure 2). ShEF implements a

unique Shield module for secure data access [14]. Meanwhile, TACC separates memory

management for in-package (internal) and off-package (external) memory [15]. AccGuard

separates and isolates memory regions for use in multi-tenant cloud environments, whereas

AccShield supports unified virtual memory across multiple accelerators, allowing them to

securely share memory resources [16]. Paper [17] used a Software-Defined Interconnect block,

a hardware block that dynamically controls and sets specific boundaries for memory regions.

While secure memory is the most widespread hardware acceleration feature, other features

are discussed in the literature.

Papers [14], [15], and [18] differ on cloud-specific use cases, but all take an enclave-based

approach to TEEs. Papers [14], [18], and [16] required attestation with a root of trust for

verification purposes. Other features were less prevalent across papers focused on hardware

acceleration (e.g., Secure Boot, Security Monitor [SM], Key Monitoring, Physical Unclonable

Functions) but are still important for securing hardware accelerators. Developers and

researchers pursue these different features to secure TEEs focused on hardware acceleration.

Cloud and Remote Computing Papers on hardware acceleration almost always also

focus on accelerators in a cloud computing environment (see references in Acceleration and

Cloud Computing rows in Table 3). Papers already discussed in Section 2 are re-mentioned
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Figure 1: Stacked bar plot representing the number of papers published over the study
period. Panel A is the 109 papers found using the search strings in Table 1. Panel B is the
27 papers after application of the inclusion criteria in Table 2. © 2025 IEEE.

but specific features are only discussed again here where relevant. Seven papers discuss

custom-designed TEEs that implement security for cloud or remote-based FPGAs. Though

applications are numerous for FPGA-based cloud computing, most papers found a need for

security in a multi-tenant cloud environment. Key features such as attestation, memory

security, enclaves, and RoTs are used to secure cloud environments that house accelerators

[19].

Two papers discuss cloud and remote computing independent of hardware acceleration.

Papers on MeetGo [20] and Operon [21] both provide TEEs for cloud and remote computing

environments. MeetGo is a hardware-centric solution to insider threats in cloud computing.

MeetGo implements a TEE that operates independently of the host systems architecture,

restricting the administrator’s access to users’ data in the cloud. MeetGo’s modularity was

demonstrated when it was implemented as a cryptocurrency wallet and General-Purpose

Graphics Processing Unit [20]. Operon [21] aims to provide secure, encrypted database

operations while maintaining compatibility with existing SQL applications. Papers [14, 16,

18, 22, 23] also are applied to cloud and remote computing, but have already been discussed
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in Section 2.

Attack Mitigation Trusted Execution Environments play a critical role in attack

mitigation. Almost one-fifth of the literature focuses on attack-specific mitigation through

custom TEE implementation. Side channel attacks (SCAs) are a significant threat to TEEs.

ChaosINTC [24] and REHAD [25] both focus on SCA mitigation, interrupt-based and cache-

based, respectively. ChaosINTC implements a dynamic interrupt delay mechanism alongside

an interrupt handler to protect their TEE [24]. REHAD uses reconfigurable hardware to

mitigate cached SCAs [25]. While SCAs are a threat to TEEs specifically, TEEs are also

used to defend against other threats.

The remaining TEEs discussed in the literature focused on preventing diverse attack

vectors. TrustToken features isolated execution and trusted user interaction to combat

software-based assaults seeking information and unauthorized access [22]. Yet another

TEE seeks to combat unauthorized access, specifically through Trojans, by implementing

a Hardware Trojan detection, identification, and recovery mechanism [26]. Another attack

vector, fault attacks, is mitigated by SecWalk, which protects virtual and physical memory

against fault attacks[27]. From fault attacks to information leakage, TEEs often provide a

first line of defense against bad actors.

IP Licensing Of the papers that do not discuss hardware accelerators, cloud computing,

and attack mitigation, there are a few niche applications. Intellectual Property (IP)

protection and licensing is a concern for [28] and [22] because of multi-tenant environments.

These multi-tenant FPGA environments present new security risks; current solutions neces-

sitate third-party involvement for key-programming and encryption. The aforementioned

TrustToken [22] only permits trustworthy connections between third-party IP and the rest

of the SoC, while Khan et el. [28] propose a Security framework for handling key storage

and security monitoring.
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Smart Grid Security Smart Grid Security [29] is a niche application that implements

a TEE with dual-core isolation and secure boot based on a RoT. The niche applications

of IP and grid security advance the field of SoC-FPGA-based TEEs, opening the door

to apply TEEs to other computing areas. Applications of TEEs are slowly expanding as

demonstrated by the papers centered around hardware accelerators, cloud computing, and

attack mitigation.

The application of TEEs across various domains, from hardware acceleration to cloud

computing and attack mitigation, showcases their versatility and growing importance in

securing modern computing environments. The innovative use of enclaves, attestation, and

memory isolation in these environments highlights the challenges associated with maintaining

security in dynamic, resource-shared settings. Meanwhile, the application of TEEs in attack

mitigation, particularly against SCAs and hardware Trojans, underscores the necessity of

security mechanisms that can preempt and neutralize threats.

Although the focus on niche applications like IP licensing and smart grid security may

seem specialized, these examples illustrate the broadening scope of TEE deployment. This

trend reflects a growing recognition of the need for secure environments across all facets of

computing, driving innovation and expansion in TEE capabilities.

Feature Specific

Nine papers focused on feature-specific TEEs. While all application-specific TEEs

require a cadre of features, some researchers designed their TEEs with specific features in

mind. These researchers put forth new contributions to the features TEEs can provide,

however, not all features are implemented in tandem. These nine feature-specific papers

focus on RoTs, attestation, memory security, secure boot, key management, and password

recovery (Table 3). Some papers focus on a singular feature, while others focus on multiple

(Figure 2).
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Figure 2: Heatmap of applications and their respective features in the pool of papers. Blue
hue denotes number of papers discussing the features and applications indicated on axes.
© 2025 IEEE.

A RoT is a foundational element in most TEE designs, providing an anchor point for

other security features, such as attestation and secure boot. Attestation ensures that the

software and hardware components of a system are trustworthy. Mutual attestation allows

devices of the same rank and type to verify their mutual interaction; Turan and Verbauwhede

[30] use a RoT to facilitate cryptographic verification, network communication, and decision-

making, thus providing mutual attestation. Paper [31] employs a RoT, implemented using

a Trusted Platform Module (TPM), as the basis for a protection-dedicated core in a multi-

core RISC-V system. These feature-specific implementations show how RoTs provide the

foundation for critical security features.

Memory security is crucial to the isolation of a TEE. Unrestricted or compromised

memory access threatens entire system security. A notable memory-focused paper, ARES,

implements a security mechanism designed for non-volatile memory (NVM) in embedded

systems [32]. [32] aims to combat common memory attacks and issues with Non-Volatile
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Table 3: Features and applications of Open-source, SoC-Based Trusted Execution
Environments. © 2025 IEEE.

Topic Paper
Applications
Hardware Acceleration [14–18, 22, 23]
Attack Mitigation [22, 24–27]
Cloud and Remote Computing [14, 16, 18, 20–23]
Feature Specific [30–38]
IP Licensing [22, 28]
Smart Grid Security [29]

Features
Attestation [14, 16, 18, 20, 21, 30]
Enclaves [14, 15, 18, 21]
Key Management [18, 21, 28, 29, 33, 34, 37]
Memory Security [14–17, 20, 22, 27, 32–36]
Page Table Walk Upgrades [27, 35]
Password Recovery [38]
Physical Unclonable Function [22]
Root of Trust [14, 18, 22, 29–31, 34, 37]
Secure Boot [14, 15, 24, 29–31, 33, 34, 37]
Security Monitoring [18, 22, 26, 28, 31, 38]

Memory (NVM) by implementing a novel Bonsai Merkle Tree (BMT) scheme and leveraging

parallel recovery in FPGAs. Another NVM-focused TEE, [33], proposes a methodology for

securely booting from NVM in insecure environments, leveraging the reconfigurable logic

of the FPGA as a secure anchor point. The Trusted Memory-Interface Unit sits in the

reconfigurable logic region of the FPGA and performs integrity and authenticity verifications

of NVM data prior to executing any user application, ensuring a secure boot process. The

focus on NVM-based solutions highlights the importance of secure memory access in ensuring

the integrity of data.

Apart from NVM, memory encryption was the focus of a single paper [36]. [36] uses

a special memory encryption unit that integrates directly with RISC-V architecture to

encrypt memory using the lightweight ChaCha stream cipher which encrypts and decrypts

quickly using the add-rotate-XOR (ARX) structure. Paper [36] also utilizes the RISC-
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V Physical Memory Protection (PMP) unit to check load/store physical addresses against

access restrictions. A spin-off of PMP presented by [35], Hybrid Physical Memory Protection

(HPMP), blends segment-based memory protection with a permission table, combining

the strengths of both approaches. This hardware-software co-design dynamically manages

memory protection and allocates segments and permission tables. These memory security

approaches highlight the essential role of protecting memory in ensuring TEE security and

integrity.

Secure boot is a critical feature in TEEs, ensuring that the system starts in a trusted

state by verifying the authenticity and integrity of the bootloader and other essential

components. The aforementioned [33] securely boots from NVM where the boot image

is decrypted using the dynamically generated encryption key, and its integrity is verified by

comparing the calculated hash against the stored token. Uniquely, [37] focuses on mitigating

the threat of quantum computers on TEEs by implementing Secure Boot. The authors

implement post-quantum secure boot using the eXtended Merkle Signature Scheme (XMSS)

to protect the system’s boot process from quantum computing attacks that could compromise

traditional asymmetric cryptographic algorithms. This establishes a secure boot chain-of-

trust from the RoT up to the operating system kernel ensuring the integrity of each boot

stage [37].

In conjunction with secure boot, proper key management is essential to the security of

TEE environments. Paper [34] proposes a novel approach to key management within the

TEE by utilizing a flexible and secure boot procedure, complete isolation from the TEE

domain, and exclusive secure storage for root keys. This ensures enhanced security and

flexibility in key generation and maintenance.

A few papers focus on less mainstream features such as password recovery and page

table walk upgrades. [38] implement a RISC-V processor, a secure coprocessor, and a

password recovery engine connected through an AXI bus. The secure coprocessor includes
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an instruction set architecture (ISA) monitor and secure cache for secure computing tasks,

especially those involving sensitive data like passwords [38].

The diverse range of features explored across the literature highlights the components

necessary for the deployment of TEEs in various computing contexts. The emphasis on

foundational elements like RoTs and secure boot mechanisms underscores their role as the

bedrock of secure system initialization and operation. These features establish and maintain

trust, especially in environments where the integrity of both hardware and software must be

assured.

Memory security, with its various implementations, is particularly crucial given the

pervasive risk of unauthorized access or data breaches that could compromise the entire

TEE. However, the focus on specific features like password recovery and page table walk

upgrades, though less common, reflects the growing complexity and specialization of TEE

functionalities as they are adapted to meet the needs of increasingly diverse and demanding

applications. This progression suggests that future research will push what TEEs can achieve.

Extensible TEEs

The HECTOR-V and Keystone approaches provide modular and well-rounded TEEs,

enabling users to plug and play rather than mix and match features and applications [6, 11].

HECTOR-V, concerns itself with side-channel attacks, arguing that, “TEEs, such as

Intel SGX or ARM TrustZone, implemented on the main application processor, are insecure”

[11]. Focusing on combating SCAs, these authors implement a heterogeneous multicore

architecture that embeds a dedicated processor into the system to separate the secure and

non-secure domains. Their RISC-V Secure Co-Processor (RVSCP) restricts I/O access and

provides control-flow integrity (CFI) for secure applications. This TEE provides secure I/O

using identifier-based secure communication channels between different devices in the system,

which ensures that only authorized entities can access sensitive peripherals. The RVSCP
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processor employs hardware-enforced CFI to safeguard applications running in HECTOR-

V using a specialized hardware unit to monitor the control flow of applications. Overall,

HECTOR-V aims to provide a secure architecture for trusted execution by combining a

heterogeneous CPU architecture with secure coprocessor features, hardware control-flow

integrity, and secure communication channels.

Lee et al. made a significant contribution to the TEE landscape when they created

Keystone, “the first open-source framework for building customized TEEs” [6]. Keystone

provides a comprehensive framework for implementing a modular TEE on an FPGA using

RISC-V architecture. Keystone TEEs use enclaves and PMP to isolate different computing

modes from accessing data. While memory security is critical, it is not the only feature

Keystone TEEs provide. Keystone TEEs also provide a configurable security monitor (SM)

that adds a trusted layer below the OS that can be configured to enforce TEE guarantees

(e.g., policies and security primitives). In addition to the SM, the secure boot and attestation

capabilities measure and verify the integrity of the SM and enclaves. The myriad features

are accompanied by SCA mitigation as Keystone TEEs incorporate cache partitioning and

other techniques to defend against side-channel attacks. In sum, Lee et al.’s comprehensive,

open-source approach allows developers to have modularity and freedom when implementing

and modifying a TEE created using the Keystone framework.

While both [11] and [6] present similar frameworks for TEEs, only one has been

validated. The Keystone framework, implemented by [12], served as the architecture for a

trusted IoT sensing system. The sensing system features Keystone and employs two types of

Physically Unclonable Functions (PUFs)–one for the main device and one for the subordinate

sensor. In this application, Keystone provides isolation from potentially untrusted operating

systems and applications using its enclave system. TheKeystone TEE integrates with a PUF,

which serves as a hardware RoT that generates a unique, device-specific key for secure key

management. This implementation of Keystone illustrates how its modularity and feature-
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rich build allow multi-application realization.

Keystone and HECTOR-V are easily adaptable to any chip using the RISC-V instruc-

tion set, though not without foibles. Keystone, while highly modular and customizable,

heavily relies on specific RISC-V hardware features, i.e. PMP. Physical Memory Protection

also limits the number of memory regions that can be protected based on PMP entries.

HECTOR-V’s multicore architecture is complex to design and implement, particularly

regarding the two communication between the cores. Along with the complex design, the

hardware architecture and required resources of HECTOR-V could limit its adaptability.

Though these two TEEs use non-chip-specific features that can be implemented across FPGA

vendors, there are still some constraints when it comes to these frameworks.

Additionally, despite these advancements, several critical limitations persist that

must be addressed. Performance overhead, particularly in memory encryption and secure

boot processes, can slow down system operations, making TEEs less viable for resource-

constrained environments like IoT devices and embedded systems, where efficiency is critical.

Integration complexity, especially in heterogeneous architectures, complicates the seamless

coordination between secure and non-secure domains, risking potential security gaps or

performance bottlenecks. Additionally, while TEEs are designed to protect against many

known threats, they remain vulnerable to emerging challenges such as quantum computing

and advanced side-channel attacks. These limitations are crucial because they not only

constrain the current utility of TEEs but also underscore the urgent need for ongoing research

to develop more efficient, adaptable, and resilient security solutions.

Threats to Validity

We examine three potential threats to validity based on the classification scheme of [39]

and [40].

Construct validity refers to how well the study identifies and categorizes TEEs. The
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search strings may have failed to capture relevant papers. This threat was mitigated by

checking references of the included papers for potential oversights. Another threat is the

manual categorization of papers (e.g., application-specific or feature-specific TEEs). This

relies on subjective judgment. To mitigate this, possible features and applications were

reviewed and rechecked.

Content validity may be affected in two ways. First, if the inclusion criteria used to

select the final 27 papers were too restrictive, this would result in excluding papers that offer

theoretical frameworks or nascent areas of research. This threat was minimized by reading

the abstracts of all 109 papers to ensure no relevant studies were excluded. Second, only

IEEE or ACM were searched, possibly excluding relevant papers published elsewhere. This

is not a significant threat because IEEE and ACM conference proceedings and journals are

the primary outlets for publications on edge-computing security.

External validity relates to the ability to generalize the findings of this study. We do

not perceive significant threats to the external validity of this study. The scope of our study

is on SoC-FPGA TEEs. Within this scope, our research captures the state of the published

research. However, extrapolating or generalizing findings beyond this scope to the broader

landscape of edge computing is not advised.

Conclusion

This study systemizes SoC-FPGA TEEs, highlighting research gaps. Through the

analysis of 109 papers sourced from IEEE Xplore and ACM Digital Library, a pool of 27

papers represented the current state of SoC-FPGA-based TEEs. These papers demonstrated

the research challenges of implementing a robust, multi-featured, multi-application TEE,

illustrated by the emphasis on application and feature-based TEEs. A robust, modular

approach emerged in two papers combining critical features for a non-application-specific

approach. The lack of publications related to SoC-FPGA-based TEEs that do not rely on
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third-party technology reveals a gap in the literature and an opportunity for researchers

and developers (Figure 1). Many papers emphasize specific applications or features, but

few combine features to create extensible TEEs. These insights hold significance for future

development of TEEs and emphasize the importance of secure computing across applications

and platforms.
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Abstract

The increasing reliance on Field Programmable Gate Arrays (FPGAs) in security-

critical applications underscores the need for robust protection mechanisms against cyber

threats such as buffer overflow and injection attacks. This paper presents Cybershield, a novel

integration of a Trusted Execution Environment (TEE) within RadPC, a radiation-tolerant

softcore processor featuring Quad Modular Redundancy (QMR). Leveraging RadPC’s four-

core architecture, Cybershield’s TEE employs secure boot from non-volatile memory to

initialize RadPC’s cores with obfuscated instruction codes. The opcode obfuscation and a

hardware-based anti-voter mechanism prevent the execution of unauthorized code and detect

Indicators of Compromise (IoCs). By implementing secure boot and opcode obfuscation,

Cybershield mitigates common attack vectors while maintaining software redundancy and

recoverability. Experimental validation demonstrates the system’s ability to detect buffer

overflow attacks and prevent unauthorized code execution. While the integration of a TEE

introduces computational overhead and development constraints due to RadPC’s bare-metal

environment, this work lays the foundation for combining hardware and software redundancy

to enhance the security of embedded systems.

Introduction

The rapid growth of the Internet of Things (IoT) and edge computing has fundamentally

transformed the way data is processed and analyzed. Unlike traditional cloud computing,

edge computing shifts data processing closer to the source, enabling real-time insights,

reduced latency, and minimized bandwidth usage. This paradigm shift has fueled

advancements in a wide range of industries, from healthcare and automotive systems to

industrial automation and telecommunications. However, as these edge devices become

increasingly interconnected and intelligent, their attack surfaces expand, exposing them to
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many cybersecurity threats.

At the heart of many edge devices are Field Programmable Gate Arrays (FPGAs),

which offer unparalleled flexibility, reconfigurability, and performance[? ]. FPGAs combine

programmable logic with embedded processors and have become particularly attractive for

edge computing due to their ability to handle complex workloads such as artificial intelligence

(AI), signal processing, and real-time control. Despite their advantages, FPGAs were

not originally designed with robust security in mind. As they transition from specialized

applications to widespread use in critical industries including but not limited to radar,

Unmanned Aerial Vehicles (UAVs), Industrial Control Systems (ICS), data centers, neural

networks, and space avionics, the potential for malicious attacks targeting both their

hardware and software components has grown significantly[1, 2].

This increasing reliance on FPGAs in security-critical applications highlights the urgent

need to address their vulnerabilities. From intellectual property theft to fault injection and

side-channel attacks, FPGAs face a diverse array of threats[? ? ]. To ensure the reliability

and security of edge computing systems, new mechanisms must be developed to protect the

hardware, software, and communication protocols of FPGAs.

Trusted Execution Environments (TEEs) offer a promising solution to enhance the

security of FPGAs. TEEs come in many forms with many features. Most major CPU

vendors have introduced their own chip-specific TEEs. These TEEs, i.e., ARM TrustZone12,

Intel SGX 3, and AMD SEV 4 leverage hardware-based security features to protect against

vulnerabilities that traditional process isolation methods cannot address [3]. By isolating

sensitive operations and providing secure boot mechanisms, TEEs can protect edge devices

1https://www.arm.com/technologies/trustzone-for-cortex-a
2https://www.arm.com/technologies/trustzone-for-cortex-m
3https://www.intel.com/content/www/us/en/developer/tools/software-guard-

extensions/overview.html
4https://www.amd.com/en/developer/sev.html
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from tampering and unauthorized access. This paper presents the novel design and

integration of a TEE with a radiation-tolerant softcore processor, RadPC, implemented

on a commercial FPGA platform. This integration is known as CyberShield.

Related Works

Trust Execution Environments specific to FPGAs come in many different forms. Some

TEEs host myriad features and have more general applications, whereas others are use-

specific and intended for a single purpose [? ].

Feature-rich TEEs aim to provide comprehensive security solutions by integrating

elements such as memory encryption, secure boot, attestation, and root of trust, making

them suitable for multi-tenant environments and dynamic workloads [? ]. Conversely,

application-specific TEEs are tailored to address distinct security challenges, such as

mitigating side-channel attacks or securing intellectual property within FPGA deployments

[? ].

Secure boot is a fundamental security feature in TEEs, ensuring that the system

initializes in a trusted state by verifying the authenticity and integrity of critical components.

Several works have explored different aspects of secure boot in TEEs within FPGAs.

Recent advancements in secure boot architectures have explored the integration of

hardware-based security measures to improve the efficiency and robustness of firmware

verification. Loo et al. [4] propose a secure boot implementation for RISC-V using

an FPGA-based approach. Their method introduces a hardware security block at the

Register Transfer Level (RTL) to generate a SHA-512 digest, significantly reducing the

computational burden on software-based secure boot mechanisms. The study highlights that

while secure firmware incurs a 35% increase in boot time and a 3.3 MB increase in binary

size, the FPGA implementation offsets performance costs by accelerating cryptographic

computations, achieving an 1132% improvement in execution time over software-based
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hashing.

Another advancement in secure boot architectures is CARE, a lightweight attack-

resilient secure boot framework designed for RISC-V-based SoCs [5]. Unlike traditional

secure boot mechanisms that focus solely on detecting malware presence, CARE introduces

an onboard recovery mechanism that ensures compromised devices can autonomously restore

their firmware to a trusted state. The framework integrates a Code Authentication and

Resilience Engine (CARE) that verifies firmware integrity using a hardware-accelerated

HMAC-SHA256 cryptographic core. In the event of a detected compromise, CARE employs

a dedicated recovery engine to re-flash only the corrupted memory regions from a secure

backup ROM, preventing unauthorized modifications and minimizing system downtime.

By leveraging Physical Memory Protection (PMP) and secureIbex features of the RISC-

V processor, CARE mitigates fault injection and side-channel attacks while maintaining a

minimal 8% performance overhead.

One of the most notable RISC-v-based TEEs, Keystone, incorporates secure boot as

a critical security primitive, ensuring that only authenticated and unmodified software is

executed within its TEE [6]. The secure boot process in Keystone begins with a hardware-

based root of trust, where a tamper-proof bootloader or cryptographic engine measures

the integrity of the Security Monitor (SM) at system reset. This process generates a

fresh attestation key, which is securely stored in the SM’s isolated memory and signed

using a hardware-visible secret. During boot, Keystone verifies the integrity of enclave

code and runtime components before execution, preventing unauthorized modifications or

tampering. By leveraging RISC-V’s Physical Memory Protection (PMP) and a minimal

trusted computing base (TCB), Keystone ensures strong memory isolation and attestation

capabilities, making it adaptable for various deployment scenarios, from cloud environments

to embedded systems.

Another notable approach by Streit et al. focuses on securely booting from non-volatile
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memory (NVM) in insecure environments by leveraging the reconfigurable logic of an FPGA

as a secure anchor point. The proposed methodology integrates a Trusted Memory-Interface

Unit within the FPGA’s reconfigurable logic region, enabling integrity and authenticity

verification of NVM data before executing any user applications. The boot image is decrypted

using the dynamically generated encryption key, and its integrity is verified by comparing

the calculated hash against the stored token [7].

Background

RadPC

The softcore processor RadPC was chosen for integration with a TEE. RadPC is

a custom radiation-tolerant space computer designed for small satellites with a reduced

instruction set (RISC-V 32I). The radiation tolerance of RadPC specifically relates to

Single Event Effects (SEEs), which are strikes that cause inadvertent switching in logic

circuits. To mitigate single-event effects, RadPC uses an architectural approach in which the

detection and recovery of SEEs is abstracted from software developers. RadPC is developed

in VHSIC Hardware Description Language (VHDL) and implemented as a logic design.

RadPC expands upon the traditionally used Triple Modular Redundancy (TMR) to Quad

Modular Redundancy (QMR) to withstand two SEEs simultaneously (Figure 3). RadPC

is a QMR microcontroller implemented on an FPGA with a RISC-V instruction set, and

implements majority voting as a fault mitigation strategy, which requires a minimum of

three cores to achieve a majority [8, 9]. However, RadPC researchers discovered that by

including a fourth core, they gain additional capabilities: specifically, they have enough time

to perform a partial reconfiguration (PR) of a faulted core, enabling a more comprehensive

repair procedure beyond a simple reset. Because PR takes longer than a register reload,

the fourth core “buys time” during recovery. It also has the added benefit of allowing a

second fault to occur while still maintaining a majority vote. When a fault is detected in
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one of RadPC’s CPUs, its respective registers are reloaded with the correct values using

the majority voter. In the event of an unrecoverable fault using the voting approach, a full

CPU can be partially reconfigured and registers reloaded to fully recover the system [10, 11].

These two recovery methods, complemented by memory scrubbers, provide resilience from

SEEs [8, 10–12].
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Figure 3: Block diagram of the QMR architecture of the RadPC FPGA system [12].
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Cybershield

RadPC’s architectural QMR approach that resists and recovers from radiation-induced

faults was extended into Cybershield, enhancing its resilience against malware attacks,

particularly buffer overflow exploits (Figure 4. Cybershield employs instruction code

obfuscation by assigning unique opcode offsets to each core and updating the software

binaries accordingly, preventing uniform opcode execution and adding resistance to injection

attacks [13]. This approach leverages the flexibility of FPGA-based implementations and

RISC-V architecture to ensure that, even if a vulnerability is exploited, opcode discrepancies

among cores trigger immediate detection and recovery mechanisms. The Cybershield

microcontroller runs multiple obfuscated cores in parallel, with an anti-voter module

monitoring instruction registers to detect any anomaly caused by malware injection[14].

Malware that is injected into CyberShield will be replicated across each core and upon

execution each core will see the same Opcode. This by design is impossible and will be flagged

as an anomaly. While CyberShield is implemented on RadPCs’ four cores, the obfuscation

defense mechanism in CyberShield itself only requires two cores to work effectively; detecting

matching opcodes across two different cores is sufficient to trigger an anomaly flag. This

architectural innovation not only increases security through hardware-level diversity but also

provides an additional defense layer by making unauthorized code execution significantly

more difficult. By integrating RadPC’s proven reconfiguration capabilities with advanced

obfuscation techniques, Cybershield offers a robust solution for securing embedded systems

in critical applications.

In the original proof of concept of CyberShield, the obfuscated instruction decoders and

associated software binaries were embedded in the VHDL description of the system before

implementation. This posed a problem because the system could not be bootloaded like a

traditional microcontroller. Instead, changing the software required a new bitstream to be

generated. This paper proposes a TEE that provides secure boot with obfuscated opcodes for
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Figure 4: System block diagram of RadPC + TEE i.e. Cybershield. Illustrates the
software development flow, FPGA architecture, and the single-board computer.

CyberShield, bootloading it like a traditional microcontroller. These architectural changes

to the original version of CyberShield enhance both security and reliability by addressing

the bootloading challenges of the original version.

Design

The first modification to the CyberShield proof-of-concept was to modify the system

so that it could have software binaries loaded into its instruction memory (IMEM) (e.g.,
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bootloading) over a UART serial port. This allows the system to accept executables in real

time. Based on this work, a TEE that bootloaded CyberShield was developed that could

be implemented on the same FPGA. The TEE needed four key functionalities. First, to be

able to accept an encrypted executable via a UART between CyberShield and an external

computer. Second, to read and write the encrypted executable to the onboard NVM serial

flash chip. Third, to be able to bootload CyberShield over an internal UART on the FPGA

between the TEE and CyberShield’s four cores. Last, the TEE needed to be able to obfuscate

the software binaries before bootloading CyberShield.

The TEE was integrated into the CyberShield architecture as a separate softcore

processor and deployed on a Nexys A7-100T development board. This board utilizes an

Artix-7 Xilinx FPGA. The TEE and CyberShield are “wrapped” at the top level but are

separate entities within the VHDL hierarchy. The architecture of the TEE is similar to the

cores of CyberShield but with limited functionality and only necessary peripherals, i.e., SPI,

UART, and GPIO. The other signals are tied to 0, (others => ’0’), or open for security.

Both the TEE and CyberShield have been modified to include five UART peripherals. These

UARTs are used by the TEE to bootload each individual CyberShield core instead of each

core receiving the same executable.

The executable for the TEE is compiled using GCC on the developer’s computer then

the TEE is bootloaded over a UART. Once the TEE has been bootloaded it is ready to

receive the encrypted executable for CyberShield. The executable for CyberShield is first

compiled using GCC and then encrypted using a one-time pad. The executable is then ready

to be sent in one-byte blocks over UART to the TEE.

Writing the executable to Non-volatile Memory

In order for the TEE to accept the executable for CyberShield a circular buffer was

implemented. The circular buffer was implemented due to memory constraints. The TEE
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and CyberShield share IMEM and DMEM which are both 12.288 kB. The test executable

for CyberShield was 24.308 kB, making it too large for the TEE to accept in one block.

Using a terminal, the developer can send blocks of up to 11520 bytes to the TEE to then be

written over SPI to the NVM. The user specifies the size of the incoming block to the TEE,

and then using a Python script sends the specified number of bytes over UART to the TEE

at a Baudrate of 115200 with a one millisecond delay between bytes. The TEE stores the

block of the executable in a byte array. Once the block of the executable has been accepted

into the TEE it is ready to write to NVM.

The TEE communicates with the NVM via a Serial Peripheral Interface (SPI). The

SPI peripheral on the TEE operates in 3-pin mode at 50 kHz, with the Chip Select (CS)

line being manually toggled. Once a block of the executable is in the buffer, the developer

can use the terminal to tell the TEE to write that block to the NVM. The TEE software

keeps track of the number of bytes written along with the addresses to which that data was

written. The data is written in 256-byte pages, and after each page, the TEE must toggle

CS and reestablish communication with the NVM. Once the program is done writing to

NVM, the circular buffer is reset and ready to receive another block of the executable. This

process is repeated until the entire encrypted executable has been stored. Once this process

is complete, the executable will remain in memory until it is cleared. The TEE is now ready

to read from NVM and bootload CyberShield.

Booting CyberShield with an Encrypted Executable

Booting CyberShield Over One UART Without Offset (Figure 5) The first step in

testing the system was to verify that the TEE could bootload the CyberShield QMR system

without any instruction code obfuscation. To bootload CyberShield from NVM, the TEE

requires two key components: the one-time pad decryption key and the instruction code

offsets specific to CyberShield. Both of these have been manually programmed into the TEE
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software. The CyberShield cores’ bitstreams are generated with their respective offsets when

the executable is compiled.

To successfully bootload CyberShield the TEE must communicate using two different

communication protocols: SPI and UART. When the executable was generated each 32-

bit (four bytes) instruction was broken into four, single-byte pieces. The TEE reads the

encrypted executable one byte at a time from the NVM and decrypts it in real-time.

Initially, this test was performed using a single UART interface to transmit instructions

to the CyberShield system without any instruction offsets.

Booting CyberShield Over Four UARTs Without Offset (Figure 6) After verifying that

CyberShield could be bootloaded using a single UART, the next step was to test bootloading

over four separate UART channels, one for each core. The process remained similar, but

instead of using a single UART for all cores, the TEE distributed the executable to each core

over their respective UART channel. At this stage, no offsets were applied to the instructions,

meaning all four cores received identical instructions. This setup more closely resembled the

intended operational configuration of the system and allowed for independent verification of

each core’s ability to execute the received instructions. The successful execution of this setup

demonstrated that the TEE could correctly handle multi-channel UART communication

while maintaining synchronization.

Booting CyberShield Over Four UARTs with Offset (Figure 7) The final test introduced

instruction code obfuscation to assess its impact on the bootloading process. Figure 7

presents the results of bootloading CyberShield with obfuscated instructions. In this stage,

the TEE applied predefined offsets to the instruction sequences before transmission. Three

of the four cores received obfuscated instructions, while one core continued to run standard

RISC-V 32I instructions. The obfuscation process altered only the last byte of each 32-

bit instruction, ensuring that execution remained functionally equivalent but obscured from
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Figure 5: Diagram of CyberShield + TEE and NVM coupled with its ILA outputs. The
diagram shows CyberShield being bootloaded via one UART with no obfuscation. The ILA
shows the four cores with the program counter running through a dummy function and the
vulnerable overflow function and then falling victim to a buffer overflow attack.

direct analysis.

Additionally, the TEE had to determine when to stop applying offsets to avoid

corrupting non-executable sections of memory. The ret instruction sequence (67 80 00 00)

served as a marker for the end of the IMEM executable section. Once the final occurrence of

this sequence was detected, the TEE ceased applying offsets, leaving the following DMEM

data unaffected.
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Figure 6: Diagram of CyberShield + TEE and NVM coupled with its ILA outputs. The
diagram shows each individual CyberShield core being bootloaded via four UARTs with no
obfuscation. The ILA shows the four cores with the program counter running through a
dummy function and the vulnerable overflow function and then falling victim to a buffer
overflow attack.

Once all four cores were bootloaded with their respective obfuscated instructions,

CyberShield executed the program successfully, confirming that the obfuscation mechanism

did not interfere with normal execution while increasing security.
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Figure 7: Diagram of the CyberShield architecture with CyberShield and TEE integration,
accompanied by ILA outputs. The diagram illustrates how the TEE securely bootloads
each CyberShield core with its assigned opcode offset: Core 1 executes standard RISC-V
opcodes, while Cores 2–4 operate with unique, offset opcodes. The ILA shows the cores
running offset opcodes during normal operation. When a buffer overflow attack occurs, all
four cores are forced to execute identical opcodes. The anti-voter in CyberShield detects
that all four cores are running the same opcode and freezes the program counter to prevent
the cores from executing the malicious code.

Hardware Error Handing, e.g Anti-Voter

While the software for the TEE plays a crucial role in providing security and redundancy

to CyberShield there are also critical hardware components. RadPC contains a voting system

for each of its four cores in order to provide hardware redundancy in the case of a SEE.

This voter compares all the instructions to ensure agreement and then passes the confirmed
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instructions. The anti-voter, inspired by RadPC’s voting system, does the exact opposite.

The anti-voter checks that no two instructions are the same as they are executed. If any of

the cores share an instruction, this is an Indicator of Compromise (IoC), and an error flag

is raised. When the error flag is raised, two actions occur: (1) the PC is halted to prevent

CyberShield from executing any malicious instructions, and (2) both the PC active LED and

the IoC LED turn red (Figures 7 and 8). In the future, this flag will be used by the TEE to

reboot CyberShield after an attack.

Results

Cybershield was deployed on a Nexys A7 FPGA Development Board featuring the

Artix-7 100T FPGA for testing. Cybershield was loaded onto the FPGA using Vivado Design

Suite. Bootloading the TEE and loading the executable into the TEE for NVM were done

over the serial terminal. A demo counting program was created to simulate CyberShield’s

software.

CyberShield’s general operating mode is centered around securing the vulnerable

interface between microcontrollers and the outside world. Any microcontroller that receives

external inputs, whether through serial ports, network connections, or other interfaces, is

susceptible to attacks. CyberShield replaces the traditional microcontroller in such systems

with a hardened, fault-tolerant design capable of detecting when malware has been injected.

It accomplishes this by obfuscating opcodes across multiple redundant cores. If malware

enters the system, it is blindly replicated across all cores. Because each core expects different

opcodes at the same program counter (due to the obfuscation), the malware causes all cores

to present the same opcode—a scenario that is architecturally impossible under normal

conditions and is immediately flagged as an anomaly.

CyberShield operates in tandem with a TEE, which plays two key roles. First, at system

boot, the TEE receives an encrypted executable, decrypts it, applies the opcode obfuscations
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across the redundant cores, and bootloads the CyberShield microcontroller. The second role

of the TEE—currently targeted for future implementation—is to assist in recovery when

malware is detected within the CyberShield cores, potentially orchestrating reconfiguration

or system healing. Once bootloading is complete, the TEE is physically disconnected from

any external inputs, eliminating it as a potential attack surface. Because the TEE is

disconnected from the outside world, attackers cannot target the TEE directly; instead,

an attack would occur through CyberShield’s standard I/O interfaces, where CyberShield’s

architecture is specifically designed to detect and mitigate such threats.

Buffer Overflow Attack

To test the resiliency of the obfuscated opcodes for CyberShield a buffer overflow attack

was designed to overwrite the stack and have the Program Counter (PC) return to a location

outside of IMEM. The payload for the buffer overflow attack was delivered over UART 04 on

CyberShield from a serial terminal. A switch was used to change the serial terminal windows

connection between TEE UART 00 and CyberShield UART 04 so that CyberShield could

be attacked.

The attack to be delivered over the serial terminal was on a modified version of the

test counting program. This program contained a “Dummy” function that had a printf

statement with unregulated input length. This function would continue to write to memory

beyond the length of the buffer as long as data was being supplied. The disassembly for the

test counting C program was used to determine where outside of IMEM the program would

return to when attacked. The stack and surrounding data were repeatedly overwritten with

the address 10001250 or 10001300 which is a location in Data Memory (DMEM) (Figure 5,

6, & 7).

The attack was tested on three different subsets of CyberShield. First, the attack

was tested on CyberShield in which all four cores had been bootloaded with a single
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Figure 8: Two Nexys A7 boards demonstrating CyberShield’s runtime behavior. Left
board: The green LED on the left indicates that CyberShield has booted successfully and
no indicator of compromise (IoC) has been detected. The green LED on the right functions
as a PC active flag, signifying that the cores are currently executing instructions normally.
Right board: In contrast, the left red LED indicates that an IoC has been detected,
signaling that the system has identified an attack. The right red LED, which normally
serves as the PC active flag, now indicates that all cores have been halted to prevent
further execution of potentially malicious instructions.

UART (Figure 5) and didn’t have instruction obfuscation. Second, the attack was tested

on CyberShield in which all four cores were bootloaded using separate UARTs without

obfuscation (Figure 6). Last, the attack was tested on the full Cybershield system (Figure

7). When Cybershield is attacked the PC jumps to the address in DMEM and attempts to

execute the “instruction” at that location. As a result, the opcodes of all four CyberShield

cores become identical, indicating compromise.

This attack demonstrated how the obfuscation of the cores can defend against buffer

overflows and other types of injection attacks. In the absence of a stack guard or address

space layout randomization (ASLR), the redundancy of a quad-core system with obfuscated

opcodes can defend against overflow and injection attacks. The ability to securely boot and

reboot in the event of an attack ensures the continued operation of Cybershield even in the

event of compromise.
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Conclusion

The principal results of this work demonstrate a proof-of-concept design for integrating

a TEE within the RadPC architecture to create CyberShield. Once integrated, the TEE

provided secure boot of obfuscated instructions to detect and defeat injected malware. This

implementation also enhances the security of CyberShield by enabling secure boot using an

encrypted executable. The TEE also provides a mechanism for software recovery in the event

of an IoC. These enhancements collectively strengthen the resilience of CyberShield against

a range of cyber threats, especially command injection and buffer overflow attacks.

Applications & Advantages

The addition of a TEE into CyberShield offers significant advantages over the baseline

RadPC architecture. As an embedded system, RadPC lacks many security features that are

standard in general-purpose computing platforms, such as ASLR and StackGuard, which

serve as defenses against injection and buffer overflow attacks [15]. By incorporating a

TEE, CyberShield gains secure boot, in conjunction with opcode obfuscation, which provides

real-time protection against such attacks [16]. This, in conjunction with, the capability to

securely boot and reboot from NVM with an encrypted executable ensures robust software

redundancy. Secure boot and encryption are particularly valuable for embedded systems

that rely on persistent storage and may lack frequent software updates.

Limitations

Despite the security enhancements introduced by the TEE, certain limitations remain.

This proof-of-concept implementation has not been extensively tested under adversarial

conditions, leaving open questions about its resilience to advanced side-channel attacks and

hardware-level exploits. The buffer overflow attack was detected, but further testing is

needed to ensure it can detect other IoCs. While opcode obfuscation enhances security,
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it introduces compatibility challenges when integrating with existing software toolchains

or debugging frameworks. Additionally, the integration of a TEE imposes additional

computational overhead, which may affect performance, particularly in resource-constrained

embedded environments. This system runs on a 100T FPGA, and smaller chips may not be

conducive to Cybershield.

Future Work

Future research will focus on refining the security and performance of the CyberShield

TEE implementation. Detecting other types of attacks outside of buffer overflows with

ensure a more robust security framework. Moreover, adapting this TEE framework to

other embedded architectures and security-critical applications, such as aerospace, medical

devices, and industrial control systems, could broaden its impact. Finally, improving

software recovery mechanisms through runtime integrity verification and anomaly detection

techniques will further strengthen CyberShield’s resilience against software compromises.

Addressing these areas will ensure that CyberShield remains a secure and adaptable

embedded computing platform capable of countering modern cyber threats.
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CONCLUSION

This thesis presents CyberShield, a Trusted Execution Environment (TEE) designed

to enhance the security of RadPC, an embedded FPGA system, through secure boot and

opcode obfuscation. Developed as a hardware-software extension to the radiation-tolerant

RadPC processor, CyberShield addresses software redundancy in the system.

CyberShield’s design introduces several key innovations. First, it implements a TEE

that operates independently of the main processor and is capable of securely receiving,

decrypting, and bootloading encrypted executables. Second, it enhances protection against

injection attacks through instruction opcode obfuscation, assigning each RadPC core a

unique offset. This architectural asymmetry is monitored by an anti-voter module, which

can detect and respond to anomalies that indicate malicious behavior.

CyberShield is most similar to Operon in its applications and features, but more

closely aligned with HECTOR-V architecturally. All three systems represent trusted

execution environments (TEEs) for embedded systems, but differ in focus and execution

(Figure 9). CyberShield emphasizes malware detection and recovery through redundancy

and opcode obfuscation: each redundant core is loaded with uniquely offset instructions,

making injected malware detectable when identical opcodes appear across cores. Like

HECTOR-V, CyberShield includes a dedicated TEE implemented as a separate RISC-V

core, responsible for secure bootloading and future recovery support. Operon, by contrast,

uses a dual-core model within a shared environment, isolating secure and insecure domains

but lacking a fully independent TEE core. HECTOR-V hardens security at the processor

level, embedding defenses against hardware Trojans and side-channel attacks. Together,

these designs highlight the range of strategies for securing embedded systems—from dynamic

anomaly detection to execution isolation to hardware-rooted protection.

Experimental validation confirmed CyberShield’s ability to detect buffer overflow
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Figure 9: Heatmap of applications and their respective features in the pool of papers. Blue
hue denotes the number of papers discussing the features and applications indicated on the
axes. Boxes marked with an “X” indicate where CyberShield aligns with the identified
features and applications.

attacks by triggering an IoC whenever uniform instructions are observed across cores.

The system was tested in three stages: single UART, unobfuscated boot, quad-UART

unobfuscated boot, and quad-UART obfuscated boot. At each stage, the system was

attacked using a buffer overflow attack. Only the obfuscated system was able to detect

the attack. These results demonstrate that secure boot, combined with obfuscated opcodes

can serve as an effective defense mechanism.

CyberShield’s TEE presents a replicable model for bootloading obfuscated instruction

sets via UART, storing and decrypting executables from non-volatile memory, and integrat-

ing seamlessly with bare-metal embedded systems. Importantly, this framework maintains

compatibility with the existing RadPC QMR design, preserving its resilience to radiation-

induced faults while introducing new defenses against software-level cyber threats. These

two pieces provide combinational hardware and software redundancy.
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Despite its usefulness, CyberShield is not without limitations. The system introduces

computational overhead and increased development complexity, particularly due to the need

for custom encryption, bootloading coordination, and VHDL integration. Furthermore,

opcode obfuscation may limit certain types of debugging or real-time introspection. These

trade-offs must be considered when deploying CyberShield in resource-constrained or time-

critical applications. Future work will explore dynamic opcode re-obfuscation, detection of

other IoCs, and integration with future versions of RadPC.

In conclusion, CyberShield offers a novel, practical, and effective solution to software

redundancy and really time detection of IoCs at boot time and runtime. By combining

hardware diversity, software obfuscation, and TEE principles, this architecture strengthens

embedded security for mission-critical systems operating under real-world constraints. As

edge devices and FPGA-based systems continue to proliferate, solutions like CyberShield

will play a vital role in protecting the integrity and reliability of tomorrow’s computing

infrastructure.
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