
USING IMPROVED MACHINE LEARNING AND STATISTICAL ASSESSMENTS TO MITIGATE

BIAS IN ANOMALY DETECTION SYSTEMS

by

Gerard Shu Fuhnwi

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

Doctor of Philosophy

in

Computer Science

MONTANA STATE UNIVERSITY
Bozeman, Montana

April 2025

©COPYRIGHT

by

Gerard Shu Fuhnwi

2025

All Rights Reserved

ii

DEDICATION

I dedicate this dissertation to my mother, who passed away, my uncle, my wife, daughter,
and son, and my siblings.

iii

ACKNOWLEDGEMENTS

I want to express my deepest gratitude to my advisor, Dr. Clemente Izurieta, for his

unwavering support, motivation, and invaluable guidance throughout this journey. His men-

torship has been instrumental in helping me achieve this significant milestone. I sincerely

appreciate his constructive feedback and insights, which greatly contributed to the completion

of this dissertation. I also appreciate Dr. Matthew Revelle, Dr. Stacey Hancock, and Dr.

Bradley Whitaker for being my valuable committee members and for their continued support

throughout the program.

A special thanks to Dr. John Paxton for providing me with the teaching assistantship

opportunity throughout my program.

I am deeply grateful to Montana State University (MSU) for granting me an incredible

educational experience and enabling me to fulfill my Ph.D. aspirations at such a prestigious in-

stitution. Lastly, I sincerely thank the Gianforte School of Computing and the Graduate School

for providing me with the resources and assistance necessary for the successful completion of

this work.

iv

TABLE OF CONTENTS

1. INTRODUCTION ... 1

2. BACKGROUND & RELATED WORK ... 5

Background ... 5
Anomalies .. 5
Anomaly Detection in Cybersecurity.. 5

Types of Anomaly Detection Methods .. 6
Evaluation Metrics for Anomaly Detection Methods... 9
Rigorous Statistical Assessment .. 12

Bias Problem in Anomaly Detection Models For Cybersecurity.................................. 12
Types of Bias in Anomaly detection Systems: .. 13
Bias Evaluation in Anomaly Detection Systems: ... 15
Bias Mitigation in Anomaly Detection Systems:.. 15

Related Work ... 18

3. RESEARCH OBJECTIVES.. 21

Motivation... 21
GQM.. 23

4. A HYBRID ANOMALY DETECTION APPROACH FOR OBFUSCATED MAL-
WARE... 27

Contribution of Authors and Co-Authors .. 27
Manuscript Information Page.. 28
Abstract ... 29
Introduction .. 29
Related Work ... 32

Static Anomaly Detection... 32
Dynamic Anomaly Detection ... 33
Hybrid Anomaly Detection .. 34

Proposed Approach ... 35
Malware Memory Data... 36
Preprocessing... 36
Train/Test Split... 36
Feature Learning Model ... 37

Deep Autoencoder .. 37
Classification Model... 38
Result Analysis ... 38

Evaluation and Fairness Metrics: .. 38

v

TABLE OF CONTENTS – CONTINUED

Statistical Evaluation:.. 40
Experimental Results... 40
Conclusion and Future work ... 42

5. IMPROVING NETWORK INTRUSION DETECTION PERFORMANCE : AN EM-
PIRICAL EVALUATION USING EXTREME GRADIENT BOOSTING (XGBOOST)
WITH RECURSIVE FEATURE ELIMINATION... 44

Contribution of Authors and Co-Authors .. 44
Manuscript Information Page.. 45
Abstract ... 46
Introduction .. 46
Related Work ... 49
Proposed Approach: XGBoost with RFE... 50

Dataset Description (step 1)... 51
Data Preprocessing (step 2).. 53

Numericalization .. 53
Normalization (step 2) .. 54

Feature Selection (step 3) ... 54
Extreme Gradient Boosting (XGBoost) (step 4) ... 55
Detection and Classification (step 5).. 55
Model Evaluation (step 6)... 55
Statistical Evaluation (step 7) ... 58

Experimental Results... 58
Discussion of Results ... 60

Conclusion and Future work ... 66

6. AN EMPIRICAL INTERNET PROTOCOL NETWORK INTRUSION DETECTION
USING ISOLATION FOREST AND ONE-CLASS SUPPORT VECTOR MACHINES
67

Contribution of Authors and Co-Authors .. 67
Manuscript Information Page.. 68
Abstract ... 69
Introduction .. 69
Related Work ... 71
METHODS... 72

ANOVA F-test ... 72
Isolation Forest .. 73
One-Class Support Vector Machines .. 74

vi

TABLE OF CONTENTS – CONTINUED

Two Sample t-test... 74
EMPIRICAL EVALUATION ... 75

Data Description.. 75
Data Preprocessing .. 76
Confusion Matrix ... 77

Detection Rate (DR) .. 78
Precision: .. 78
F1 Score: ... 78
False Alarm Rate (FAR): ... 79
Receiver Operating Characteristic (ROC) Curve: ... 79

Experimental Results and Discussion .. 80
CONCLUSION and Future work .. 83

7. USING LARGE LANGUAGE MODELS TO MITIGATE HUMAN-INDUCED BIAS
IN SMS SPAM: AN EMPIRICAL APPROACH ... 84

Contribution of Authors and Co-Authors .. 84
Manuscript Information Page.. 85
Abstract ... 86
Introduction .. 87
Related Work ... 90
Experimental Setup ... 91

SMS Spam Data.. 92
LLM Fine-Tuning ... 92
Bias Mitigation ... 92
Implementation ... 93
Model Evaluation ... 93
Comparative Analysis... 95

Results of RQs.. 95
RQ1: What are the most and least successful prompt designs for

LLMs-based to help reduce human-induced labeling bias for
SMS spam datasets? .. 95

RQ2: How well do LLMs reduce human-induced labeling bias
for SMS spam datasets compared to state-of-the-art machine
learning models? ... 97

Discussion... 100
Conclusion and Future work ... 100

vii

TABLE OF CONTENTS – CONTINUED

8. REDUCING HUMAN-INDUCED LABEL BIAS IN SMS SPAM WITH CONTEXT-
ENHANCED CLUSTERING (CEC).. 102

Contribution of Authors and Co-Authors .. 102
Manuscript Information Page.. 103
Abstract ... 104
Introduction .. 104
Related Work ... 107
Our Approach.. 109

SMS Spam Data (Step 1) ... 110
Contextual Metadata Analysis (Step 2) ... 111
Weighted TF-IDF (Step 3) ... 111
Modified Cosine Similarity with Weighted TF-IDF (Step 4) 111
Adaptive Thresholding (Step 5) .. 112
Representative Sample Selection (Step 6)... 112
Fine-Tuning the LLM (Step 7)... 113

Results Evaluation ... 114
Model Performance.. 114
Fairness Metric... 114
Addressing the Research Questions (RQs) .. 116

RQ1: .. 116
RQ2: .. 117

Discussion... 118
Threats to validity .. 118
Conclusion And Future Work... 119

9. CONCLUSION AND FUTURE WORK... 120

Conclusion .. 120
Future Work... 121

REFERENCES CITED .. 124

viii

LIST OF TABLES

Table Page

3.1 Chapters Addressing Research Questions (RQs) ... 25

4.1 Confusion Matrix: A contingency containing four metrics,
True Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN). .. 39

4.2 Accuracy, Detection Rate, MCC, SPD, and Classification Time.
The best results are printed in skyblue.. 41

4.3 Results of Wilcoxon Signed-Rank Test comparing our pro-
posed approach against Logistic Regression ... 42

4.4 Comparison with other obfuscated malware detection methods.......................... 42

5.1 The attack category(class), the number of records in the NSL-
KDD training and testing datasets, and a subset of examples
for each attack category (attack types) .. 52

5.2 Confusion Matrix: A contingency containing four metrics,
True Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN). .. 58

5.3 Approximate Classification Time on NSL-KDD Test. .. 62

5.4 Performance Measure together with standard deviation (STD)
on NSL-KDD Test.. 63

5.5 Results of two-sample t-test comparing our proposed ap-
proach (XGBoost with RFE) against Decision Tree, Random
Forest, and XGBoost ... 64

5.6 Comparison With Other Network Intrusion Detection Methods........................... 65

6.1 The attack types (class) using different internet protocols
(http, smtp and ftp), the number of records in the NSL-KDD
training and testing dataset. ... 76

6.2 Confusion Matrix: A contingency containing four metrics,
True Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN). .. 78

6.3 One-Class SVM Performance Measure on NSL−KDD Test. 81

6.4 Isolation Forest Performance Measure on NSL−KDD Test. 82

ix

LIST OF TABLES – CONTINUED

Table Page

7.1 Evaluation of various prompting techniques across models. 97

7.2 Precision, Recall, Balanced Accuracy (ACC), SPD (free, text),
and EOD (free, text) for Models in best Prompting (Two-Shot)
and State-of-the-art Methods ... 98

7.3 Precision, Recall, Balanced Accuracy (ACC), SPD (free, text),
and EOD (free, text) for Models with the best In-context
prompting (Two-shot) with Different Sample Sizes .. 99

8.1 Precision, Recall, Balanced Accuracy (ACC), SPD (free, win),
EOD (free, win), and TED (free, win) for our approach (CEC),
DBSCAN and K-Means ... 117

8.2 Precision, Recall, Balanced Accuracy (ACC), SPD (free, win),
EOD (free, win), and TED (free, win) for ChatGPT-4 using CEC
for prompt selection ... 118

x

LIST OF FIGURES

Figure Page

2.1 An anomlay is indicated by the black bird .. 5

2.2 Neural Network Architecture [93] ... 8

2.3 Transformation of bias in discriminatory results feedback
loop [82] ... 13

2.4 Overview of Taxonomy of bias mitigation[82] ... 17

3.1 GQM Approach [26] .. 23

4.1 Pipeline of our hybrid approach. Rectangles represent the
model’s processes, cylinders represent stored data, and the
arrows the direction of flow .. 35

5.1 Flow chart of proposed model approach where the rectangles
represent the model’s processes, cylinders represent stored
data, the trapezoid represents the stored training labels (Nor-
mal, DoS, Probe, R2L, and U2L), and the arrows the direction
of flow. .. 51

6.1 Algorithm 1... 74

7.1 Probability Density Plot showing the distribution of Ham
(0) and Spam (1) Messages for ChatGPT-4 with the best In-
contexting prompting (two-shot) ... 99

8.1 This is a flow chart of the proposed CEC approach. The rect-
angles represent the CEC processes, the cylinders represent
stored data, the oval shape represents the final step, and the
arrows indicate the flow direction... 110

113figure.caption.139

xi

ABSTRACT

Anomaly detection systems are crucial to identifying irregular patterns in various do-
mains, such as cybersecurity, marketing, fraud detection, and healthcare. However, bias in
anomaly detection models can lead to unfair outcomes, reduced accuracy, and compromised
decision-making. Traditional machine learning approaches often struggle with biased training
data, inconsistent feature selection, and imbalanced class distributions, leading to unreliable
anomaly detection performance.

Bias mitigation is an emerging research area that aims to identify, quantify, and reduce
biases in machine learning systems to ensure fairness, accuracy, and robustness. This work
focuses on bias detection and quantification using improved machine learning frameworks that
incorporate statistical assessments to improve fairness and robustness in anomaly detection
systems.

First, a hybrid anomaly detection approach is proposed for obfuscated malware detection,
which combines a deep autoencoder with logistic regression to tackle representation bias. The
deep auto-encoder obtains a compact and informative input representation and is fed into the
logistic regression model to classify malware. In addition, an advanced statistical technique,
such as statistical parity difference (SPD), is used quantitatively to assess and mitigate bias.

Second, a technique that combines data pre-processing and feature selection is proposed
to address the measurement bias problem, that is, noisy or irrelevant features generated
from specific sensors or monitoring systems introduced due to network delays, hardware
malfunctions, or software issues in network intrusion detection systems. Furthermore, a
statistical hypothesis test is performed for the model under test to determine its significance
from state-of-the-art approaches.

Finally, to address the problem of human-induced bias, we proposed the following: i)
an unsupervised learning technique, Isolation Forest and a one-class support vector machine
(OC-SVM) to mitigate human-induced labeling bias for intrusion detection, ii) an advanced
language model-based SMS spam classification system to reduce the impact of human-induced
biases in labeling by accurately capturing linguistic patterns, contextual nuances, and textual
ambiguities for fairer keyword and context interpretation, and iii) a context-enhanced clus-
tering approach for SMS spam detection to reduce human-induced bias (subjective labeling,
inconsistent interpretation, limited domain experts).

This work makes a significant contribution to addressing existing gaps in bias mitigation
for anomaly detection, enhancing the body of knowledge at the intersection of machine
learning, statistical assessments, and fairness-aware AI systems.

1

INTRODUCTION

In this digital age, cybersecurity, sentiment analysis, and fraud detection have emerged as

one of the most critical and urgent challenges facing individuals, organizations, and govern-

ments. The need for robust and adaptive security measures becomes increasingly apparent as

cyber threats grow in complexity and scale. Anomaly detection systems are vital components

among the various tools and technologies employed to defend against these urgent cyber

threats. These systems, powered by machine learning algorithms, are designed to detect

unusual patterns or behaviors in data [28] that may indicate the presence of malicious activities,

such as unauthorized access, data breaches, or malware attacks.

Anomaly detection in cybersecurity involves identifying deviations or outliers from es-

tablished behavior patterns within IT systems, networks, credit card fraud, or user activities

[28]. Traditional approaches often need help to cope with the scale and complexity of modern

datasets, particularly in the face of rapidly evolving threats. Machine learning techniques

offer promising solutions to this challenge, allowing automated analysis of large-scale data and

adaptive learning from various sources [4].

Despite their crucial role in modern cybersecurity and fraud detection, machine learning-

driven anomaly detection systems have challenges. One of the most pressing concerns is the

potential for bias [82], which can significantly hamper their effectiveness and lead to severe

consequences. In this context, bias refers to the systematic errors that can creep into the model

due to various factors, such as data bias (e.g., measurement bias, omitted feature bias, sampling

bias, and representation bias), human bias (historical bias, label bias, and cognitive bias), and

learning bias (algorithmic bias and evaluation bias) [79]. These biases can lead to skewed

2

detection outcomes, potentially resulting in a high rate of false positives or false negatives,

both of which can have profound implications for cybersecurity [51], including potential data

breaches and unauthorized access.

For instance, if an anomaly detection system is trained on a dataset where certain types

of attacks are overrepresented, the model may become overly sensitive to those attacks while

neglecting others. This can result in a high rate of false positives, where benign activities are

mistakenly flagged as malicious, or false negatives, where actual threats go undetected. Both

scenarios are problematic: false positives can lead to unnecessary investigations and resource

allocation, while false negatives can leave a system vulnerable to undetected attacks.

Moreover, the ever-evolving nature of cyber threats and financial fraud exacerbates

the issue of bias in machine learning-driven anomaly detection systems. As attackers and

defrauders constantly refine their techniques to evade detection, the training data used to

construct these systems can quickly become obsolete, further amplifying the problem of bias.

This underscores the urgent and ongoing need for continuous updates and enhancements to

the models to effectively detect the latest threats, highlighting the ongoing effort required in

cybersecurity and fraud detection.

My research seeks to address these challenges by investigating the sources and impacts

of bias in machine learning-driven anomaly detection systems and developing strategies to

mitigate these biases. The research will begin with a comprehensive analysis of the various

factors contributing to bias, such as dataset imbalances, feature selection, and algorithmic con-

straints, to understand how these elements influence the performance of anomaly detection

models and lead to biased outcomes. The study will then focus on quantifying the extent of bias

present in existing models and developing metrics and methodologies to better understand

the relationship between bias and model performance. Building on these insights, the goal

of this research is to introduce novel bias mitigation strategies in machine learning-driven

anomaly detection systems. These techniques involve re-weighting training datasets, fair

3

representation methods such as feature selection and feature learning, and enhancing existing

learning algorithms or evaluation metrics to be more resistant to bias. These techniques will

be rigorously tested and validated using real-world datasets and scenarios, ensuring that the

solutions are theoretically sound but also practical and effective in real-world applications.

By leveraging rigorous statistical techniques, the research seeks to enhance the robustness

of anomaly detection frameworks, ensuring that they are not only accurate but also fair and

unbiased in their operations [79].

By addressing these areas, this research aims to make significant contributions to the

field of cybersecurity, particularly in the context of anomaly detection. The ultimate goal is

to enhance the reliability and fairness of machine learning-driven anomaly detection systems,

ensuring they provide accurate and unbiased detection of cyber threats, thereby creating more

secure digital environments.

The remainder of this dissertation is structured as follows. The Background & Related

Work chapter 2 provides the necessary foundation for this research by discussing key concepts

such as anomalies, anomaly detection, which includes types and methods of evaluation,

rigorous statistical assessment, and the bias problem, which involves types, methods of eval-

uation, and bias mitigation strategies. Additionally, it presents an overview of related research

in mitigating bias in machine learning-driven anomaly detection systems. The Research

Objective chapter 3 outlines the motivations driving this study, identifying the key challenges

and research gaps that necessitate further exploration. It introduces the Goal Questions

Metic (GQM) framework, which serves as a structured approach to defining the research

objectives and ensuring alignment between research questions, methods, and evaluation

strategies. Chapter 4 titled ‘A Hybrid Anomaly Detection Approach for Obfuscated Malware‘

presents a novel hybrid approach that integrates a deep autoencoder with logistic regression

to mitigate representation bias in malware detection. This approach leverages deep learning’s

feature extraction capabilities alongside logistic regression’s interpretability, resulting in a more

4

balanced and robust detection mechanism. Chapter 5 titled ‘Improving Network Intrusion

Detection Performance: An Empirical Evaluation Using Extreme Gradient Boosting (XGBoost)

with Recursive Feature Elimination‘ presents a methodologically rigorous approach to address-

ing measurement bias in network intrusion detection. By employing XGBoost with Recursive

Feature Elimination (RFE), this work enhances feature selection efficiency, ensuring that intru-

sion detection systems operate with higher accuracy and reduce false positives. Chapter 6 titled

‘An Empirical Internet Protocol Network Intrusion Detection using Isolation Forest and One-

Class Support Vector Machines‘ explores the applications of unsupervised learning techniques

proposed to combat the human-induced labeling bias problem in intrusion detection. This

work demonstrates an effective approach for detecting anomalies in network traffic without

relying on biased human-labeled data. The ‘Using Large Language Models to Mitigate Human-

Induced Bias in SMS Spam: An Empirical Approach‘ chapter 7 explores reducing human-

induced data labeling bias by leveraging in-context learning with prompts. This approach

enables LLMs to dynamically adapt to specific language tasks and context, effectively mitigating

biases inherent in human-labeled data for more accurate spam detection. In chapter 8 titled

‘Reducing Human-Induced Label Bias in SMS Spam with Context-Enhanced Clustering (CEC),‘

a context-enhanced clustering approach is introduced to address bias in SMS spam detection.

By mitigating challenges such as subjective labeling, inconsistent interpretation, and domain

expertise limitations, this work improves the fairness and reliability of spam classification

models. Finally, the ‘Conclusion and Future Work‘ chapter 9 summarizes the key findings

and contributions of this dissertation, outlying potential future research directions to further

advance bias mitigation in anomaly detection systems across diverse domains.

5

BACKGROUND & RELATED WORK

Background

This section introduces relevant concepts in anomaly detection, describes the bias prob-

lem, and explains the various techniques used to mitigate bias in anomaly detection systems.

It also illustrates the bias challenges and the motivation for using automated methods to help

mitigate bias.

Anomalies

As shown in Figure 2.1, anomalies are data patterns (outcomes, values, or observations)

that deviate from the rest of the other observations or outcomes.

Figure 2.1: An anomlay is indicated by the black bird

Anomaly Detection in Cybersecurity

Anomaly detection is a proactive technique used in cybersecurity to identify patterns,

instances, or events within a dataset that deviate significantly from expected behavior [28].

Anomalies, or outliers, may represent unusual activities, unexpected system behaviors, or

potentially malicious actions. Anomaly detection aims to flag such anomalies for further

6

investigation, as they may indicate security breaches, system failures, or other critical events.

Anomaly detection finds applications in various domains of cybersecurity, such as intrusion

detection, fraud detection, malware identification, etc.

Types of Anomaly Detection Methods Anomaly detection methods can be classified into

the following according to how they detect and model anomalies.

• Statistical Anomaly Detection: Statistical anomaly detection methods rely on the sta-

tistical properties of the data to identify anomalies. These methods assume that regular

data instances follow a known statistical distribution, such as a Gaussian (normal) distri-

bution. Any data instance that significantly deviates from this distribution is considered

an anomaly. Standard statistical anomaly detection techniques include Z-Score Analysis

[53], Grubbs’ Test [38], and Dixon’s Q Test [20].

• Machine Learning-Based Anomaly Detection: Machine learning is the study of com-

putational methods that learn from the data (by extracting the hidden patterns) and

use this information for future predictions [84]. Machine learning techniques are vital

in cybersecurity, particularly in anomaly detection tasks. Supervised learning involves

training machine learning models on labeled data, where each instance is associated with

a known class or category (e.g., normal or abnormal). Unsupervised learning techniques,

such as clustering or density estimation, do not require labeled data and aim to identify

patterns or anomalies based solely on the input features. Semi-supervised learning

methods leverage labeled and unlabeled data for anomaly detection, combining the

benefits of both supervised and unsupervised approaches. Some widely used machine

learning-based anomaly detection algorithms include K-Nearest Neighbors, Support

Vector Machines, Random Forests, Isolation Forests, and Neural Networks.

• Deep learning Anomaly Detection: As shown in Figure 2.2, a fully connected NN is

7

comprised of a series of fully connected layers containing multiple neurons, where each

neuron in a layer l is associated with the neurons in the next layer l+1. A simple neural

network comprises an input layer, a hidden layer, and an output layer. A neural network

is considered deep if it contains multiple hidden layers. A neuron in a neural network is

a fundamental computing unit that receives an input, performs a dot product (of input

and corresponding weight parameter), applies the activation function, and then forwards

the result to the neurons connected in the next layer. Some of the expected activation

functions used in DNNs include sigmoid, ReLU, and Tanh [93]. The output layer has

either the softmax (if the problem is a multi-class classification problem) or the sigmoid

activation function (if the problem is a binary-class classification problem). The output

layer produces the probability vector, and the class for which the probability score is

higher is treated as a predicted output for the given test instance.

Each layer in a neural network extracts and learns the patterns in the training data, using

this knowledge to predict the future. The neurons in each layer are connected with other

neurons using a weight parameter that represents the strength of the connection. The

weights are learned during training to minimize the loss function (e.g., cross-entropy

is used for the classification problem, and mean square error is used for the regression

problem). The most popular algorithm to update the weights and train the neural

network is the gradient descent with backpropagation [96].

Deep learning anomaly detection leverages deep neural network architectures to auto-

matically learn complex patterns and representations from data, enabling the detection

of anomalies in large-scale and high-dimensional datasets. This approach has gained

prominence in cybersecurity due to its ability to capture intricate relationships within

data and adapt to evolving cyber threats. Incorporating deep learning techniques for

anomaly detection can enhance detection accuracy and robustness.

8

Figure 2.2: Neural Network Architecture [93]

• Hybrid Anomaly Detection: Hybrid anomaly detection techniques combine multiple

anomaly detection approaches, including statistical, machine learning-based, feature

learning, and feature engineering methods, to improve detection accuracy and robust-

ness. These techniques leverage the strengths of different methods while mitigating their

weaknesses. Common hybrid anomaly detection approaches include:

– Ensemble Methods: Ensemble methods combine predictions from multiple anomaly

detection models to obtain a more robust and accurate anomaly score. Examples

include bagging, boosting, and stacking. Ensemble methods can integrate diverse

anomaly detection techniques, such as statistical, machine learning-based, and

feature engineering approaches, to perform better than individual methods alone

[37].

– Feature Selection and Feature Learning: Feature selection involves the process of

selecting a subset of the most relevant and informative features from a dataset’s

original set of features. On the other hand, feature learning refers to the automatic

extraction of features from raw data using machine learning techniques, such as

deep learning. Hybrid anomaly detection techniques may combine feature selection

or feature learning approaches, such as deep autoencoder networks with traditional

9

machine learning techniques to capture complex patterns and relationships in the

data. By leveraging both handcrafted and learned features, hybrid techniques can

improve the symbolic power of anomaly detection models and adapt to diverse data

characteristics [55].

– Meta-Learning: Meta-learning frameworks learn to adaptively combine multiple

anomaly detection algorithms based on the dataset’s characteristics or specific

application domain. Meta-learning approaches aim to optimize the selection and

combination of anomaly detection techniques to maximize detection performance

[112]. In hybrid anomaly detection, meta-learning may incorporate feature learning

methods to dynamically adjust the feature representation of the data based on its

intrinsic properties. Meta-learning with feature learning enables anomaly detection

systems to adaptively learn and update feature representations over time, improving

their ability to detect evolving cyber threats.

Evaluation Metrics for Anomaly Detection Methods Evaluation metrics play a crucial role

in assessing the performance of anomaly detection models. These metrics provide quantitative

measures of the model’s effectiveness in identifying and distinguishing anomalies from normal

instances. Evaluation metrics play a crucial role in assessing the performance of anomaly

detection models. These metrics provide quantitative measures of the model’s effectiveness

in identifying and distinguishing anomalies from normal instances. The evaluation metrics for

anomaly detection are described below:

• True Positive (TP): Instances correctly classified as anomalies by the detection model.

• True Negative (TN): Instances correctly classified as usual by the detection model.

• False Positive (FP): Normal instances incorrectly classified as anomalies by the detection

model (Type I error).

10

• False Negative (FN): The detection model incorrectly classified abnormal instances as

normal (Type II error).

• Negative predictive value (NPV): The fraction of negative instances correctly predicted

to belong to the negative class out of all predicted negative instances, which can be

calculated using the formula:

NPV = T N

T N +F N

• False negative rate (FNR): The fraction of positive instances incorrectly predicted to

belong to the negative class out of all actual positive instances, which can be calculated

using the formula:

FNR = F N

T P +F N

• Precision or Positive predictive value (PPV): The proportion of true positive predictions

among all positive predictions, indicating anomaly detection accuracy, which can be

calculated using the formula:

Precision = T P

T P +F P

• Recall (Sensitivity or Detection Rate): The proportion of true positive predictions among

all actual positive instances indicates the model’s ability to detect anomalies, which can

be calculated using the formula:

Recal l = T P

T P +F N

• F1 Score: The harmonic mean of precision and recall provides a balanced measure

11

of model performance that considers false positives and false negatives, which can be

calculated using the formula:

F1 Score = 2∗T P

2∗T P +F N +F P

• Balanced Accuracy (ACC): Balanced Accuracy (ACC) is the mean accuracy calculated

across both the positive and negative classes [106].

ACC =
cor r ectneg ati ve

exampl esneg ati ve
+ cor r ectposi t i ve

exampl esposi t i ve

2

• Matthews correlation coefficient (MCC): It is defined as the Pearson product-moment

correlation coefficient between actual and predicted abnormal instances [32]. MCC

takes into account true positives (TP), true negatives (TN), false positives (FP), and false

negatives (FN) to provide a balanced measure of the model’s performance, particularly in

imbalanced datasets. MCC ranges between [−1,+1], where −1 corresponds to the worst

overall system performance and 1 corresponds to the best overall system performance. A

high MCC score indicates that the binary classifier could correctly predict the majority of

the anomalies and the majority of normal instances.

MCC = T N ∗T P −F N ∗F Pp
(F P +T P)(F N +T P)(T N +F P)(T N +F N)

• False Alarm Rate (FAR) or False positive rate (FPR): It is the fraction of normal instances

that are misclassified as anomalies which can be calculated using the formula:

F AR = F P

F P +T N

• Receiver Operating Characteristic (ROC) Curve: The Receiver Operating Characteristic

12

(ROC) curve is a graphical representation used to evaluate the performance of binary

classification models in machine learning. It is created by plotting the ratio between

the total number of anomalies detected by the anomaly detection system to the total

number of anomalies present in the dataset (detection rate) against the fraction of normal

instances that are misclassified as anomalies (False Alarm Rate) at various classification

threshold levels. The area under the curve (AUC) of the ROC quantifies the overall

performance of the classification model. AUC values range from 0 to 1, with a value of 0.5

representing a random classifier and a value of 1 indicating a perfect classifier. A higher

AUC value suggests a better-performing classification model.

• Jaccard Coefficient: The Jaccard Coefficient measures the fraction of true positive point

pairs, but after ignoring the true negatives [126]. It is defined as follows:

Jaccar d = T P

T P +F N +F P

Rigorous Statistical Assessment Rigorous statistical assessment involves applying statis-

tical methodologies to evaluate the performance and reliability of anomaly detection models.

Statistical techniques such as cross-validation, hypothesis testing, and performance metrics

analysis are used to objectively assess the accuracy, precision, recall, and other relevant metrics

of anomaly detection models [6]. Rigorous statistical evaluation ensures the validity and

generalizability of research findings, enabling informed decision-making in cybersecurity. By

rigorously evaluating anomaly detection models, researchers can identify strengths, weak-

nesses, and areas for improvement, ultimately advancing the state-of-the-art in cybersecurity.

Bias Problem in Anomaly Detection Models For Cybersecurity

Bias in anomaly detection systems refers to systematic errors in data that can lead to

discriminatory results or outcomes. Most anomaly detection systems and algorithms are

13

data-driven and require data upon which to be trained. Thus, data are tightly coupled to

the functionality of these algorithms and anomaly detection systems in cybersecurity. In

cases where the training data contains biases, the algorithms trained on them will learn them

and reflect them in their predictions. As a result, existing biases in the data can affect the

algorithms that use the data, producing biased or discriminatory results. Algorithms can

even amplify and perpetuate existing biases in the data. In addition, algorithms can display

biased behavior due to specific design choices, even if the data are unbiased. The outcomes

of these biased algorithms can then be fed into the data, resulting in discriminatory results

or unfair outcomes. For example, imagine an intrusion detection system; if the algorithm is

trained to flag anomalies based on specific characteristics such as IP address or location, it

may disproportionately flag anomalies from particular regions or countries, leading to biased

results. The loop capturing the feedback between biases in data and algorithms that lead to

unfair outcomes or discriminatory results is shown in Figure 2.3

Figure 2.3: Transformation of bias in discriminatory results feedback loop [82]

Types of Bias in Anomaly detection Systems: Bias can exist in many shapes and forms,

some of which can lead to unfair outcomes or discriminatory results in different anomaly

detection systems. In reference [82], the author talks about the various sources of bias in

14

machine learning for cybersecurity, using their categorizations and descriptions to motivate

future solutions to each source of bias introduced in the paper. In reference [79], the authors

prepare a complete list of different types of biases in machine learning with their corresponding

definitions according to the data, algorithms, and user interaction loop. Here, we will reiterate

the most important sources of bias introduced in these two papers, according to Figure 2.3.

• Data Bias (User to Algorithm): Data bias refers to systematic errors or inaccuracies in the

data used to train and test an anomaly detection system. This bias can lead to incorrect

or incomplete identification of anomalies, as the system cannot accurately learn and

recognize patterns in the data. Data bias can be caused by various factors, such as how

the data set is represented and sampled (representation bias), features considered in the

data set, and how particular features are measured in the data set (measurement bias)

[79].

• Human Bias (User to Data): Many data sources used in training anomaly detection

models are user-generated. Any inherent biases in users might be reflected in the data

generated. Human bias can be caused by factors such as labeling of the data set (label

bias), historical prejudice in the data set (historical bias), and when developers or users

influence the model’s algorithms (cognitive bias) [82].

• Learning Bias (Algorithm to Data): Learning bias is the inherent assumption of an

algorithm when learning data. Algorithms modulate data behavior, and any biases in

the algorithm might introduce biases in data behavior [79]. Learning bias can be caused

by various factors, such as bias not present in the input data and added purely by the

algorithm (algorithmic bias) [14] and inappropriate and disproportionate benchmarks

for evaluating applications, such as imbalance class problems (evaluation bias) [108].

15

Bias Evaluation in Anomaly Detection Systems: Fighting against discrimination and bias

has a long history in philosophy, psychology, and, recently, anomaly detection. However, to

achieve fairness and fight bias, we have to look at what fairness means as used in the context

of anomaly detection. When detecting anomalies, fairness in anomaly detection ensures that

the algorithms, data, and models are unbiased and equitable towards different groups or

individuals. Some of the statistical metrics used to measure fairness [116] in anomaly detection

systems are:

• Equalized Odds: Equalized odds requires that an anomaly detection model provides the

same true positive rate (TPR) and false positive rate (FPR) across different groups (e.g.,

different network traffic sources, user demographics, malware families, or SMS spam-

related keywords) [116].

• Demographic Parity (or Statistical Parity: Statistical parity ensures that anomaly detec-

tion models make positive predictions at the same rate for different groups(e.g., different

network traffic sources, user demographics, malware families, or SMS spam-related

keywords), regardless of actual ground truth labels [116].

• Equal Opportunity: Equal opportunity is a relaxed version of equalized odds, ensuring

that an anomaly detection model maintains equal true positive rates (TPR) across differ-

ent groups (e.g., different network traffic sources, user demographics, malware families,

or SMS spam-related keywords) [116].

• Treatment Equality: Treatment equality ensures that the ratio of false negatives (FN)

to false positives (FP) is the same across different groups (e.g., different network traffic

sources, user demographics, malware families, or SMS spam-related keywords) [116].

Bias Mitigation in Anomaly Detection Systems: Bias mitigation refers to reducing or

eliminating errors that may exist in the data or models. In reference [79], the authors came

16

up with a list of different methods to mitigate biases in classification-based machine-learning

techniques. Also, a survey by Mmaduekwe [82] examines bias and fairness issues with artificial

intelligence-driven cybersecurity applications. Figure 2.4 is the block diagram showing the

taxonomy of bias mitigation in anomaly detection-driven applications, with the rounded

rectangles in green and yellow showing my focus direction. In all these survey papers, non-

addressed how to mitigate data bias, such as representation bias, measurement bias, sampling

bias, etc, human bias, such as labeling bias, and learning bias, such as algorithmic and learning

bias in anomaly detection systems for cybersecurity.

17

Mitigation

Pre-training

Training

Post-training

Fair
governance

Fair
Representation

Feature Selection

Resampling

Large Language
Models (LLMs)

Hybrid and
EmpiricalApproaches

Statistical Parity

Equalized Odds

Treatment Equality

Equal Opportunity

Team

Data

Model

Figure 2.4: Overview of Taxonomy of bias mitigation[82]

18

Related Work

Advancements in cybersecurity have spurred research aimed at mitigating bias in anomaly

detection techniques and rigorous statistical assessment. Various studies have explored novel

approaches to artificial intelligence applications in cybersecurity and cyber defense, such

as intrusion detection, malware detection, hybrid anomaly detection methods, and bias in

machine learning applications.

Applying machine learning and deep learning techniques to cybersecurity problems has

garnered significant attention in recent years. Several studies have contributed to advancing

the field by proposing innovative approaches and methodologies.

A review of bias and fairness in artificial intelligence by González-Sendino et. al [52]

categorize biases and how they are linked with different stages of an AI model’s developement

(including the data generation stage). A review by Mmaduekwe [82] examines bias and fairness

issues with artificial intelligence-driven cybersecurity applications. Farnaaz and Jabbar [41]

introduced a Random Forest modeling approach for Network Intrusion Detection Systems

(NIDS). Their research demonstrated the effectiveness of Random Forest in detecting network

intrusions, showcasing its potential for real-time threat detection and mitigation. Guyon and

Elisseeff [55] provided a comprehensive review of variable and feature selection methods for

intrusion detection systems. Their work outlined various techniques for selecting relevant

features, contributing to optimizing NIDS performance. Hamed, Dara, and Kremer [57]

proposed a novel approach for NIDS based on recursive feature addition and the Bigram

technique. Their study introduced innovative feature engineering methods to improve the

accuracy and efficiency of intrusion detection systems. Meftah, Rachidi, and Assem [78]

focused on network-based intrusion detection using the UNSW-NB15 dataset. Their research

contributed to evaluating intrusion detection algorithms on real-world network traffic data,

providing valuable insights into the effectiveness of different approaches. Saheed, Arowolo, and

19

Tosho [98] presented an efficient K-means and genetic algorithm hybrid based on a Support

Vector Machine for cyber intrusion detection systems. Their study introduced a novel hybrid

approach, aiming to enhance the performance and scalability of intrusion detection systems

in complex network environments. Sharma and Yadav [104] developed an optimal intrusion

detection system using recursive feature elimination and an ensemble of classifiers. Their

research highlighted the importance of feature selection techniques and ensemble learning

methods in building robust and effective intrusion detection systems. Elmasry et al. [40]

explored evolving deep-learning architectures for intrusion detection. Their work utilized a

double PSO metaheuristic to develop deep learning models, contributing to creating more

efficient intrusion detection systems. Mohammed and Gbashi [83] proposed an intrusion

detection system based on deep learning and recursive feature elimination for the NSL-KDD

dataset. Their study showcased the effectiveness of deep learning techniques and feature

selection methods in improving intrusion detection accuracy. Zhang et al. [128] presented a

real-time and ubiquitous attack detection system based on deep belief networks and support

vector machines. Their research demonstrated the feasibility of using deep learning models

for network intrusion detection in real-world scenarios. Carrier et al. [27] investigated the

detection of obfuscated malware using memory feature engineering. Their study focused on

developing techniques to identify stealthy malware through memory analysis, contributing to

advancing malware detection methods. Wang et al. [119] proposed a method for detecting

stealth software with Strider Ghostbuster, which involved analyzing system call sequences to

identify malicious behavior. Their research provided insights into techniques for detecting

stealthy software threats. Darabian et al. [33] introduced a deep-learning approach for

detecting crypto-mining malware using static and dynamic analysis. Their study highlighted

the importance of utilizing deep learning techniques for malware detection, particularly in

emerging threats like crypto mining malware.

Current cybersecurity and cyber defense practices are focused on using machine learning-

20

based techniques, such as anomaly detection, to improve detection rates and reduce false

alarms. Therefore, exploring novel practices that could help alleviate bias issues in anomaly

detection systems for cybersecurity and cyber defense is a significant challenge. This research

direction has the potential to develop fair anomaly detection systems in cyberspace and a fresh

perspective on the field of specific applications.

While efforts have been made to select the best machine learning techniques and applica-

tions in cybersecurity and cyber defense, bias remains a threat that could limit their application.

Further work is needed to develop fair, reliable, and effective systems that can steer the selection

of anomaly detection systems, thereby addressing the bias problem. Possible approaches could

be using unsupervised machine learning methods like DBSCAN and Isolation Forest to alleviate

the human-induced labeling bias to label data for supervised learning, which is fast, or using

feature selection methods like recursive feature elimination to solve measurement bias, and so

forth.

A promising avenue for future research involves incorporating a feature learning method

like deep autoencoders with a traditional machine learning model like logistic regression

for malware detection to alleviate the representation bias problem. The results would be

an advanced method that accomplishes a fair malware detection system and avoids unfair

interference with sensitive features.

21

RESEARCH OBJECTIVES

Motivation

Cybersecurity threats pose significant risks to individuals, organizations, and nations

worldwide, with increasingly sophisticated attacks exploiting vulnerabilities in digital systems.

Traditional cybersecurity measures often struggle to keep pace with the evolving threat land-

scape, necessitating the development of more effective defense mechanisms. Machine learning

(ML) techniques offer promise in bolstering cybersecurity by automating the detection of

abnormal activities indicative of malicious behavior. However, the practical application of

machine learning in cybersecurity is often faced with bias problems limiting its application

[79, 82].

My work is motivated by recognizing and addressing the effect of bias, a critical gap in

existing research on machine learning-driven anomaly detection for cybersecurity. This gap

represents an area for exploration and further investigation because bias limits the usage and

efficiency of machine learning applications in cybersecurity. By addressing the sources and

effects of bias on machine learning for cybersecurity, I aim to focus on mitigating bias in

anomaly detection systems and rigorous statistical assessment within the context of ML-based

cybersecurity; the research seeks to enhance fair and efficient anomaly detection techniques.

By providing unbiased models and robust statistical evaluations, this research aims to develop

more resilient and adaptive cybersecurity defenses, ensuring that the model decisions do not

reflect discriminatory behavior toward certain outcomes, spam keywords, or specific network

segments. The following motivates me to utilize machine learning (ML) in cybersecurity, mainly

through mitigating bias in anomaly detection systems and rigorous statistical assessment.

• Escalating cyber threats: With the proliferation of digital technologies and the inter-

connectedness of systems, cyber threats have become more prevalent and sophisticated.

22

malicious actors continuously develop new techniques to exploit vulnerabilities, posing

significant risks to individuals, organizations, and societies.

• Ineffectiveness of traditional approaches: Traditional cybersecurity measures, such as

rule-based systems and signature-based detection methods, often need help to keep pace

with evolving threats. These approaches rely on predefined rules or patterns and may fail

to detect novel or previously unseen attacks, leaving systems vulnerable to exploitation.

• The power of machine learning: Machine learning techniques offer a promising solution

to enhance cybersecurity defenses. By leveraging algorithms that can learn from data,

ML-based approaches enable automated detection of abnormal activities indicative of

malicious behavior with insignificant human interference [16]. This adaptability and

learning capability make ML well-suited for addressing the dynamic nature of cyber

threats.

• Bias Problem: Despite the applications of ML-based anomaly detection in cybersecurity,

bias still poses a severe threat to these systems, thereby limiting their efficiency and

usage, as outlined in section 2.1.3. The scarcity of this topic in many machine learning

applications in cybersecurity also shows the research gap in this domain [82].

• Importance of Statistical Assessment: Rigorous statistical assessment is crucial to

validate the performance and robustness of anomaly detection models. Statistical

techniques such as hypothesis testing, cross-validation, and significance analysis provide

objective measures to evaluate the efficacy of the model and generalize the findings to

different contexts. By applying a rigorous statistical assessment, researchers can establish

the credibility and trustworthiness of ML-based cybersecurity solutions.

This research aims to explore and adapt machine learning (ML) in cybersecurity, mainly

through mitigating bias in anomaly detection systems and rigorous statistical assessment. It

23

aims to address the bias problem in machine learning-driven anomaly detection applications

in cybersecurity, which can also be extended to other domains.

GQM

The Goal Question Metric (GQM) approach, introduced by Basili et al.[17], is a goal-oriented

framework that we utilize to structure and guide this research. As illustrated in Figure 3.1, the

GQM framework consists of three key components: goals, questions, and metrics. First, a set

of research goals (RGs) is defined. These goals are then refined into specific research questions

(RQs), each designed to address different aspects of the research objectives. Finally,

quantifiable metrics are established to measure and evaluate the answers to these research

questions effectively. Furthermore, in Table 3.1 the specific chapters that address each

research question are outlined, providing a structured roadmap for how this dissertation

contributes to the field.

Figure 3.1: GQM Approach [26]

RG1: My primary research goal is to address the challenge of representation bias in anomaly

detection systems. To achieve this, I will implement a fair representation learning approach

using a deep autoencoder, followed by logistic regression for malware classification. This

approach is designed to improve the automatic extraction of less sensitive and more relevant

features while minimizing the dependence on domain experts for feature engineering.

24

RQ1.1: How can feature or representation learning be used to reduce representation

bias in malware detection-based anomaly detection systems, and how does this affect model

performance and fairness?

RQ1.2: Is there a significant difference in the model with fair representation and other

state-of-the-art approaches?

Research Metrics 1: Detection rate (DR), accuracy, Matthew correlation coefficient (MCC),

statistical parity, and Wilcoxon signed rank test.

RG2: To evaluate the effectiveness of feature selection to mitigate biases that arise from the way

certain features are considered within the datasets of intrusion-based anomaly detection

systems.

RQ2.1: Can feature selection techniques mitigate measurement biases introduced during

data collection?

RQ2.2: Is there a significant difference in the model with selected features and other state-

of-the-art approaches?

Research Metrics 2: F1-Score, False Alarm Rate, MCC, DR, precision, and ROC AUC.

RG3: To mitigate human-induced bias in labeling datasets to train intrusion detection-based

anomaly detection.

RQ3.1: How accurately can unsupervised methods such as isolation forest and one-

class SVM correct human-induced label bias in data sets that train intrusion detection-based

anomaly detection systems?

Research Metrics 3: False alarm rate, F1 score, Area Under the Receiver Operating

Characteristic (AUCROC) curve, detection rate (or recall) and precision.

RG4: To mitigate human-induced label bias in SMS spam detection utilizing the advanced

capabilities of large language models (LLM) and contextualized clustering, thus improving the

accuracy and fairness of SMS spam detection systems.

25

RQ4.1: What are the most and least successful prompt designs for LLMs-based to help

reduce human-induced labeling bias for SMS spam datasets?

RQ4.2: How well do LLMs reduce human-induced labeling bias for SMS spam datasets

compared to state-of-the-art machine learning models?

RQ4.3: How well do LLMs reduce human-induced labeling bias for SMS spam datasets

compared to state-of-the-art machine learning models?

RQ4.4: Can a context-driven clustering technique effectively automate the selection of

representative samples to generate prompts to fine-tune large-language models in SMS spam

detection?

Research Metrics 4: Precision, Recall, Balanced Accuracy (ACC), Statistical Parity Differ-

ence (SPD), Equal Opportunity Difference (EOD) and Treatment Equality Difference (TED).

Table 3.1: Chapters Addressing Research Questions (RQs)

RQ# Paper/Chapter Title

RQ1.1 A Hybrid Anomaly Detection Approach for Obfuscated Malware

RQ1.2 A Hybrid Anomaly Detection Approach for Obfuscated Malware

RQ2.1 Improving Network Intrusion Detection Performance : An Empirical Eval-

uation Using Extreme Gradient Boosting (XGBoost) with Recursive Feature

Elimination

RQ2.2 Improving Network Intrusion Detection Performance : An Empirical Eval-

uation Using Extreme Gradient Boosting (XGBoost) with Recursive Feature

Elimination

RQ3.1 An Empirical Internet Protocol Network Intrusion Detection using Isola-

tion Forest and One-Class Support Vector Machines

RQ4.1 Using Large Language Models to Mitigate Human-Induced Bias in SMS

Spam: An Empirical Approach

26

RQ4.2 Using Large Language Models to Mitigate Human-Induced Bias in SMS

Spam: An Empirical Approach

RQ4.3 Reducing Human-Induced Label Bias in SMS Spam with Context-

Enhanced Clustering (CEC)

RQ4.4 Reducing Human-Induced Label Bias in SMS Spam with Context-

Enhanced Clustering (CEC)

27

A HYBRID ANOMALY DETECTION APPROACH FOR OBFUSCATED MALWARE

Contribution of Authors and Co-Authors

Manuscript in Chapter titled ‘A Hybrid Anomaly Detection Approach for Obfuscated Malware’

Author: Gerard Shu Fuhnwi

Contributions: Problem identification and proposing solution, running experiment, manuscript

writing, creating tables and figures. Primary writer

Co-Author: Dr. Clemente Izurieta and Dr. Matthew Revelle

Contributions: Contribution in manuscript editing/writing, provided feedback, guidance and

advice.

28

Manuscript Information Page

Gerard Shu Fuhnwi, Dr. Matthew Revelle and Dr. Clemente Izurieta

IEEE International Conference on Cyber Security and Resilience (CSR)

Status of Manuscript:

Prepared for submission to a peer-reviewed journal

Officially submitted to a peer-reviewed journal

Accepted by a peer-reviewed journal

× Published in a peer-reviewed journal

IEEE

02 September 2024

10.1109/CSR61664.2024.10679474

© 2021 IEEE. Reprinted, with permission, from [Gerard Shu Fuhnwi, Matthew Revelle &

Clemente Izurieta, A Hybrid Anomaly Detection Approach for Obfuscated Malware, IEEE A

Hybrid Anomaly Detection Approach for Obfuscated Malware, and Sep 2024]

29

Abstract

With the rapid evolution of malicious software, cyber threats have become increasingly

sophisticated, employing advanced obfuscation techniques to evade traditional detection

methods. This study presents a hybrid anomaly detection approach applied to obfuscated

malware. Even though there is a large body of research in this field, existing malware

detection techniques have drawbacks, such as requiring large amounts of data, trustworthiness

(imprecise results) of algorithms, and advanced obfuscation. There is a need to employ solid

and efficient techniques for malware detection to overcome these challenges. This paper

proposes a hybrid approach, combining an autoencoder with traditional machine-learning

methods to create an efficient malware detection framework. We used the malware memory

dataset (MalMemAnalysis-2022) to evaluate this framework. The experimental results show our

proposed approach can detect obfuscated malware when a deep autoencoder used for feature

learning is combined with logistic regression. It is extremely fast with an Accuracy, Detection

Rate (DR), Matthew Correlation Coefficient(MCC), and Statistical Parity Difference (SPD) of

99.97%, 99.98%, 99.93%, and 0.03%, respectively.

Introduction

In an era dominated by interconnected technologies and digital dependence, the cyberse-

curity landscape faces an ever-evolving and persistent threat—malware. Malware are malicious

programs that can potentially compromise computer systems’ integrity, confidentiality, and

availability. As a pervasive threat, malware manifests itself in diverse forms, each using different

tactics, techniques, and procedures (TTPs). Malware can result in consequences ranging from

website defacement [2] to the loss of human life [9]. Moreover, the constant evolution of defense

evasion techniques in malware continues to require advancement in detection methods.

30

There are many categories of malware, such as viruses, trojan horses, spyware, ran-

somware, bots, botnets, worms, and others [27]. While there are many malware categories,

there are a number of common tactics and techniques [27] shared between different types of

malware. A detection system that utilizes features which indicate the implementation of those

tactic and techniques will be capable of detecting malware of various categories. To counteract

malware infiltrating systems, gaining access to information, accessing authorized users, and

other cybercrimes, the best alternative is to create detection systems capable of detecting and

stopping all forms of malware.

Malware is frequently obfuscated to evade signature-based detection methods [15], and

to increase the effort required to reverse engineer the malware when it has been collected. Ob-

fuscation can hide the implementation of malicious behaviors from static analysis and require

sophisticated detection techniques [45]. These detection methods illustrate the applications

of anomaly detection in Machine Learning (ML), which involves identifying data patterns

(outcomes, values, or observations) that differ significantly from the rest of the data and are

essential for identifying and preventing malware [45]. The basic intuition of these learning

systems is figuring out which training data to fit into the machine learning method to make

the quickest and most accurate assessment. Anomaly detection techniques perform malware

detection by attempting to identify malicious behavior. These anomaly detection techniques

use their knowledge of what constitutes normal behavior to decide the maliciousness of a

program under inspection. Anomaly detection systems take in a set of features together with

large sample sizes to compare and contrast differences. These features can be input in different

formats, which is a factor that determines how the anomaly detection system should be used.

While some anomaly detection algorithms are focused on minimizing false positives, others are

focused on speed, scalability, accuracy, and precision. Therefore, choosing different algorithms

corresponding to the objective and input type has an enormous impact on the result of the

anomaly detection system. Hybrid anomaly detection is one such technique, which combines

31

two or more ML models to enhance the overall effectiveness of anomaly detection.

Several approaches to malware detection using hybrid anomaly detection techniques [63]

exist. However, in most of the work, complexity, and time consumption are high, fairness of

the algorithms are not mentioned and there is no statistical analysis to compare the various

models, making them unsuitable for real-world applications. This motivates the development

of a fair, fast, efficient, and easy-to-interpret method for obfuscated malware detection using

the most relevant features captured through autoencoders.

Main Contributions: The main contributions of this research include [46]:

• An anomaly detection approach for malware analysis, combining a deep autoencoder

and logistic regression to increase trustworthiness and transparency in current obfus-

cated malware detection. To the best of our knowledge, this is the first time this approach

has been used in anomaly detection.

• Analysis of the performance of our approach. We perform a comparative analysis

of combining a deep autoencoder with logistic regression against state-of-the-art and

baseline methods.

• Improvements to the overall anomaly detection speed, fairness, and reduced ML model

complexity.

• Improvements in accuracy, detection rates, and MCC when compared to other models

and benchmarks in related works with very low statistical parity difference (SPD).

The rest of this paper is organized as follows. Section II discusses related work. Section

III proposes a hybrid anomaly detection framework for obfuscated malware including dataset

description, data transformation, deep autoencoder, and logistic regression. In Section IV we

analyze empirical results, and Section V concludes the paper.

32

Related Work

Many studies have been conducted to protect devices connected to the Internet from

malware intrusion using anomaly detection-based techniques. Research on static anomaly

detection, which identifies the program’s file structure characteristics under inspection, is

used to detect malicious code [6-7]. However, static anomaly detection techniques can not

detect obfuscated or hidden malware because of their inability to execute software. Conversely,

dynamic anomaly detection techniques can detect malicious code using information gathered

from the program’s execution, making them capable of detecting obfuscated or hidden malware

[8-14]. On the other hand, hybrid anomaly detection techniques can detect malware by

combining both static and dynamic anomaly detection techniques [27, 34, 120].

This section highlights previous studies on anomaly detection techniques for malware

detection through static, dynamic, and hybrid methods.

Static Anomaly Detection

Li et al.[70] proposed a Fileprint (n-gram) analysis as a means to detect malware. During

the training phase, an ML model or set of models is derived to characterize various file types

of a system based on their structural (byte) composition. Li et al.’s technique exhibited 94.5%

detection rate for PDF files with embedded malware.

Zhang et al.[127] proposed a deep learning-based malware detection framework for classifying

eight types of ransomware. To reduce the dimensionality of the opcode sequences used as fea-

tures, the term frequency-inverse document frequency (TF-IDF) algorithm was applied to filter

out N-gram Opcodes with low amount of information according to their TF-IDF values. After

the opcode sequence was divided into several patches, a self-attention convolutional neural

network (SA-CNN) model was trained using these patches. Finally, to analyze the relationship

between opcode sequences and classify the ransomware, a directional self-attention network

33

(Di-SAN) model was used.

Dynamic Anomaly Detection

Wang and Stolfo [66] proposed a tool called PAYL, which calculates the expected payload

for each service (port) on a system by using a centroid model. The detector compares incoming

payloads with the centroid model by measuring the Mahalanobis distance [77] between the

two. The author’s technique had an overall detection rate of approximately 60 % and a false

positive rate of 1 % or lower.

Lee and Stolfo [119] proposed using data mining techniques, association rules, and frequent

episodes for intrusion detection systems. The association rules and frequent episodes are

collectively referred to as rule sets and serve as knowledge of what is normal for the host’s

services.

Boldt and Carlson [22] proposed a Forensic Tool Kit (FTK) to identify Privacy-Invasive Software

(PIS) such as adware and spyware. The basic approach for the baseline consists of initially

creating a system free of PIS, that is, a clean system. This tool is used to depict the file system of

the target host. Boldt and Carlson discovered that their technique produced false positives and

negatives for Ad-Aware.

Hofmeyr et al. [61] proposed a technique to help monitor system call sequences to detect ma-

liciousness by developing profiles that represent the normal behavior of the system’s services.

The Hamming distance determines how closely the system call sequence resembles another,

where processes with large Hamming distances are considered abnormal. The Hofmeyr et al.

technique found intrusions that attempted to exploit various UNIX programs like sendmail, lpr,

and ftpd.

Sekar et al. [102] proposed a Finite State Automata (FSA) for anomaly detection. Each node in

the FSA represents a state (program counter) in the program (static)/process (dynamic) under

inspection (PUI), which the algorithm utilizes to learn normal data faster and perform better

34

detection, where system calls give transitions in the FSA. When a system call is invoked, a new

transition is added to the automation, where automations resulting from multiple executions

are considered normal.

Sato et al. [100] proposed an n-gram approach and compared it to the FSA approach [102]. Sato

et al. evaluated the two approaches on httpd, ftpd, and nsfd, where the FSA was found to have

a lower false positive rate when compared to the n-gram approach.

Joen et al. [65] proposed a decreasing additive-increase/multiplicative-decrease (DAIMD)

model for detecting new and variant IoT malware. Performing dynamic analysis in a closed-

based nested virtual environment, network, process, memory, and virtual file system behaviors

were extracted as features and converted into images. These images are used to train a CNN

model for detecting IoT malware.

Hybrid Anomaly Detection

Carrier et al. [27] proposed using VolMemLyzer to detect obfuscated malware. Using a

memory feature extraction technique called VolMemLyzer, base learners and meta-learners are

combined to detect obfuscated malware by stacking them together. By combining naive Bayes,

random forest, and decision trees as base learners with logistic regression as the meta-learner,

the authors obtained an accuracy of 99.00% and an F1 score of 99.02%.

Wang et al. [120] proposed a technique called the cross-view difference approach for detecting

a type of malware known as ghostware, which is malware that attempts to hide its existence

from the operating system’s querying utilities. For example, the proposed approach to mitigate

hidden files requires comparing results from a user-mode program like dir or corresponding

API calls to the equivalent data found by inspecting the file system data structures directly.

Darabian et al. [34] proposed a method for detecting cryptomining malware through

hybrid analysis. Using opcodes extracted from static analysis and system calls generated

35

from dynamic analysis, then LSTM, attention-based LSTM (ATT-LSTM), and CNN are used to

evaluate their performance for classification by a softmax function.

Overall, these studies demonstrate the effectiveness of anomaly detection techniques and

feature extraction for malware detection. Our study builds on these papers by extending the

work of Tristan et al. [27] on obfuscated malware detection, and mitigates the limitations

mentioned above by combining a deep autoencoder with logistic regression on the obfuscated

malware dataset. We demonstrate high accuracy, MCC, and detection rates in less computa-

tional time. Our proposed approach also has a low statistical parity difference, indicating how

fair, trustworthy, and transparent our approach is.

Proposed Approach

We propose a hybrid anomaly detection approach for malware analysis. The step-by-step

process adopted in the proposed methodology is described herein and shown in Figure 8.1.

Figure 4.1: Pipeline of our hybrid approach. Rectangles represent the model’s processes,
cylinders represent stored data, and the arrows the direction of flow

36

Malware Memory Data

The malware memory dataset is balanced, comprising 50% malicious and 50% benign

memory dumps. Malicious dumps include different malware categories: Ransomware, Spy-

ware, and Trojan Horse. The dataset contains 58,596 records, with 29,298 being benign, 29,298

being malicious, and 55 features. This dataset is designed to test obfuscated malware detection

methods through memory[27].

Preprocessing

The main objective of data preprocessing is to enhance the quality of the data, making it

easier to work with and enabling more accurate and efficient results for ML algorithms [81].

• Normalization: Normalization is a technique that scales numerical variables in a partic-

ular range, typically [0, 1] or [-1, 1]. Normalization aims to bring different features into a

similar scale, making it easier for ML algorithms to process the data and reduce the risk

of certain features dominating the model due to their larger numerical values. Several

normalization methods; the most common are Min-Max Scaling and Z-score.

• Standardization: In our proposed approach, the Z-score standardization, which scales

the value of the entire feature to a standard range of [0,1], is used. In Z-score standardiza-

tion, the average µ of each numerical feature is calculated and then subtracted from the

feature value x. The subtracted average and feature x are then divided by the standard

deviation σ as shown in the formula:

Xi = x −µ

σ

Train/Test Split

The 80/20 split in ML refers to dividing your dataset into two portions: an 80% portion for

training your model and a 20% portion for testing its performance. This division is a common

37

practice to assess how well your model generalizes to new, unseen data. The 80/20 split is a

common choice because it balances having enough training data and a sufficiently large test

set to evaluate performance.

Feature Learning Model

A feature learning model is a cornerstone in machine learning, designed not only to

automatically extract relevant features or representations from raw data but also to uphold

principles of fairness. Instead of relying solely on manually engineered features, these models

can autonomously unearth hierarchical and meaningful representations from the input data

while ensuring fairness across different demographic groups. One example of a feature learning

model that integrates fairness considerations is a deep autoencoder, exemplifying the power of

learning intricate and informative representations through neural network architectures while

promoting equitable outcomes in decision-making processes.

Deep Autoencoder A deep autoencoder, a type of neural network architecture, is a key

player in the realm of unsupervised learning. It’s comprised of two neural networks: an

encoder and a decoder. The deep autoencoder’s primary objective is to acquire a compact

and informative input data representation. The encoder efficiently compresses the input into

a lower-dimensional representation (encoding), and the decoder skillfully reconstructs the

original input from this representation [5]. The architecture of a deep autoencoder is as follows:

• Encoder: The encoder network transforms the raw input data into a lower-dimensional

representation. Each layer of the encoder extracts increasingly abstract and higher-level

features.

• Bottleneck Layer: This is the layer in the middle of the network where the input is highly

compressed. It contains the learned features or encoding of the input data.

38

• Decoder: The decoder network takes the compressed representation from the bottleneck

layer and reconstructs the original input data. Like the encoder, each layer of the decoder

progressively refines the reconstruction.

Classification Model

For malware analysis, we used logistic regression, a supervised learning algorithm, to

classify obfuscated malware into benign and malicious memory dumps.

• Logistic Regression: Logistic regression is a widely used algorithm because of its versatil-

ity and interpretability. It is beneficial when binary classification, probability estimation,

and simplicity are essential. Logistic regression is a statistical technique that helps predict

the probability of obfuscated malware belonging to benign and malicious memory

dumps.

Result Analysis

The result analysis includes evaluation metrics and assessment of their statistical signifi-

cance.

Evaluation and Fairness Metrics: Once the logistic regression classifier is trained using the

80% portion of the dataset, it is evaluated using the 20% portion. The classifier’s performance is

evaluated using accuracy, detection rate (DR), and Matthews Correlation Coefficient (MCC),

while fairness is assessed using the statistical parity difference (SPD). These performance

metrics are calculated using True Positive (TP), False Negative (FN), False Positive (FP), and

True Negative (TN) as shown in the confusion matrix [18] in Table 6.2.

39

Table 4.1: Confusion Matrix: A contingency containing four metrics, True Positive (TP), True
Negative (TN), False Positive (FP), and False Negative (FN).

Memory Dumps
Predicted Class

Yes No

Actual

Class

Yes TP FN

No FP TN

• Accuracy: Is defined as the total number of correctly classified memory dumps divided

by the total number of memory dumps which can be calculated using the formula:

Accur ac y = T P +T N

T P +T N +F P +F N

• Detection Rate: It is the ratio between the total number of malicious memory dumps

detected by the logistic regression classifier to the total number of malicious memory

dumps present in the dataset [41] which can be calculated using the formula:

DR = T P

T P +F N

• Matthews Correlation Coefficient (MCC): Is defined as the Pearson product-moment

correlation coefficient using the confusion matrix in Table 6.2 between the actual ma-

licious memory dumps and predicted malicious memory dumps [32] which can be

calculated using the formula below.

MCC = T N ∗T P −F N ∗F Pp
(F P +T P)(F N +T P)(T N +F P)(T N +F N)

• Statistical Parity Difference (SPD): SPD measures the difference in the proportion of

40

malicious memory dumps between different memory dumps. It aims to ensure the

model’s predictions are balanced across the memory dumps, indicating fairness and

lack of bias in its decision-making process. Smaller values indicate a disparity in the

proportion of malicious predictions between the memory dumps, which is calculated

using the formula:

SPD = T P

T P +F N
− T N

T N +F P

Statistical Evaluation: We utilize the Wilcoxon signed-rank test to assess the statistical

significance of our proposed approach. This non-parametric statistical hypothesis test ranks

the differences between two classifiers, disregards the signs, and compares the ranks of the

positive and negative differences[36]. It is often used when the assumptions of a paired t-test

are violated (such as when the data is not normally distributed). To compare the performance

of our proposed approach against logistic regression, we used the Wilcoxon signed-rank test

to test whether there is a significant difference between the performances on the median of

accuracy, detection rate, and MCC. The null hypothesis (H0) for the Wilcoxon signed-rank

test states that there is no significant difference between the median performances of the two

models. In contrast, the alternative hypothesis (H1) states a statistically significant difference,

unlikely to have occurred by chance, between the median performances of the two models.

Experimental Results

All experiments were performed in Python using default parameters for logistic regression

1. The deep autoencoder consisted of two encoder levels, a bottleneck, and two decoder levels.

All experiments were run on Intel (R) Core(TM) i7-10510U CPU @ 1.80GHz 2.30GHz processor

with 16 GB RAM. Logistic regression Training and testing were performed on the 55 features and

1Sklearn

41

logistic regression with the features learned from the autoencoder with 100 different random

seed values. An 80%/20% training/testing split of the data was used. The proposed approach

was evaluated by finding the median value of the accuracy, detection rate, and MCC metrics.

The highlighted row in Table 4.2 shows the performance of our proposed approach. It is evident

from Table 4.2 that our proposed approach has high accuracy, detection rate, and MCC.

Our proposed approach has a low SPD, which ensures that the model’s predictions are fair

and equitable across the different memory dumps, promoting trust and transparency.

The Wilcoxon signed-rank test was used to compare the differences between our proposed

approach and logistic regression. Table 5.5 compares our proposed approach against logistic

regression on all metrics used. From Table 5.5, comparing our proposed approach against

logistic regression, we can see that the p-values of the test for accuracy, detection rate, and

MCC are all significant at α = 0.05. We can statistically confirm that our proposed approach

outperforms logistic regression.

The highlighted last column in Table 4.2 shows the approximate run times for a memory

dump to be classified as malicious or benign for all samples in the 20% test data. From the

table, we can see that the classification time is linear, which demonstrates the scalability of our

proposed approach. Our proposed approach has a classification time of 0.00007 milliseconds

per sample, significantly lower than all models listed in Table Table 5.6. Comparison of these

related works, as shown in Table 5.6, shows the relevance of our proposed approach as a fast

method to detect hidden or obfuscated malware.

Table 4.2: Accuracy, Detection Rate, MCC, SPD, and Classification Time. The best results are
printed in skyblue.

Model Accuracy Detection Rate MCC SPD Classification Time (seconds)

Logistic Regression 0.9962 0.9966 0.9923 0.0009 1.2665

Proposed Approach 0.9997 0.9998 0.9993 0.0003 0.8541

42

Table 4.3: Results of Wilcoxon Signed-Rank Test comparing our proposed approach against
Logistic Regression

Comparison Evaluation metric Positive Rank Negative Rank Rank (Test Statistics) Hypothesis (α= 0.05) p-value
Accuracy 5050 0 5050 Rejected <0.001

Proposed Approach vs. Logistic Regression

with significant values highlighted in table 4.2
Detection Rate 5050 0 5050 Rejected < 0.001

MCC 5050 0 5050 Rejected < 0.001

Table 4.4: Comparison with other obfuscated malware detection methods

Method Accuracy Detection Rate MCC Speed Statistical Test Complexity SPD

Tristan et al. [27] High Not Mentioned Not Mentioned Very High Not Mentioned Medium Not Mentioned

Xu et al.[125] Very High Not Mentioned Not Mentioned Medium Not Mentioned Medium Not Mentioned

Bozkir et al.[24] High Not Mentioned Not Mentioned Medium Not Mentioned High Not Mentioned

Nissima et al.[89] High Not Mentioned Not Mentioned Medium Not Mentioned Medium Not Mentioned

Javaheri and Hosseninzadeh [64] Medium Not Mentioned Not Mentioned Medium Not Mentioned High Not Mentioned

Proposed Approach Very High Very High Very High Extremely High Included Low Included

Conclusion and Future work

In this paper, a hybrid anomaly detection method combining a deep autoencoder and

logistic regression was implemented on an obfuscated malware dataset. We compared our

proposed approach with logistic regression using the following metrics: accuracy, detection

rate, MCC, and SPD. Because of feature learning, the computational cost is decreased, and our

proposed approach has an accuracy of 99.97%, a detection rate of 99.98%, an MCC of 99.93%,

and an SPD of 0.03%. We also compared our proposed approach with logistic regression using

the Wilcoxon signed-rank test and found that our proposed approach is better or competitive

than state-of-the-art and baseline methods. Moreover, our proposed approach is compared

with related works on malware detection. The comparison results in Table 5.6 showed that a

deep autoencoder with logistic regression has better performance, low SPD, and requires less

classification time.

43

For future work, we would like to use model interpretation tools such as SHAP (SHapley

Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) to gain

insights into potential sources of bias.

44

IMPROVING NETWORK INTRUSION DETECTION PERFORMANCE : AN EMPIRICAL

EVALUATION USING EXTREME GRADIENT BOOSTING (XGBOOST) WITH RECURSIVE

FEATURE ELIMINATION

Contribution of Authors and Co-Authors

Manuscript in Chapter titled ‘Improving Network Intrusion Detection Performance : An Empir-

ical Evaluation Using Extreme Gradient Boosting (XGBoost) with Recursive Feature Elimination’

Author: Gerard Shu Fuhnwi

Contributions: Problem identification and proposing solution, conducting experiment, manuscript

writing, creating tables and figures. Primary writer

Co-Author: Dr. Clemente Izurieta and Dr. Matthew Revelle

Contributions: Contribution in manuscript editing/writing, provided feedback, guidance and

advice.

45

Manuscript Information Page

Gerard Shu Fuhnwi, Dr. Matthew Revelle and Dr. Clemente Izurieta

3rd IEEE International Conference on AI in Cybersecurity (ICAIC)

Status of Manuscript:

Prepared for submission to a peer-reviewed journal

Officially submitted to a peer-reviewed journal

Accepted by a peer-reviewed journal

× Published in a peer-reviewed journal

IEEE

16 February 2024

© 2024 IEEE. Reprinted, with permission, from [Gerard Shu Fuhnwi, Matthew Revelle &

Clemente Izurieta, Improving Network Intrusion Detection Performance : An Empirical Eval-

uation Using Extreme Gradient Boosting (XGBoost) with Recursive Feature Elimination, IEEE

Improving Network Intrusion Detection Performance : An Empirical Evaluation Using Extreme

Gradient Boosting (XGBoost) with Recursive Feature Elimination Intrusion Detection Systems,

and Feb 2024]

46

Abstract

In cybersecurity, Network Intrusion Detection Systems (NIDS) are essential for identifying

and preventing malicious activity within computer networks. Machine learning algorithms

have been widely applied to NIDS due to their ability to identify complex patterns and

anomalies in network traffic. Improvements in the performance of an IDS can be measured

by increasing the Matthew Correlation Coefficient (MCC), the reduction of False Alarm Rates

(FARs), and the maintenance of up-to-date signatures of the latest attacks to maintain con-

fidentiality, integrity, and availability of services. Integrating machine learning with feature

selection for IDSs can help eliminate less important features until the optimal subset of features

is achieved, thus improving the NIDS.

In this research, we propose an approach for NIDS using XGBoost, a popular gradient

boosting algorithm, with Recursive Feature Elimination (RFE) feature selection. We used the

NSL-KDD dataset, a benchmark dataset for evaluating NIDS, for training and testing. Our

empirical results show that XGBoost with RFE outperforms other popular machine learning

algorithms for NIDS on this dataset, achieving the highest MCC for detecting NSL-KDD dataset

attacks of type DoS, Probe, U2R, and R2L and very high classification time.

Introduction

With the increasing reliance on technology in our daily lives, cybersecurity has become a

crucial aspect of ensuring confidentiality, integrity, and availability of information. Network

Intrusion Detection Systems (NIDS) (an application of anomaly detection [45], which in

machine learning, is the process of finding data patterns (outcomes, values, or observations)

that deviate from the rest of the other observations or outcomes) are essential for identifying

and preventing attacks within computer networks. Computer network attacks come in many

forms, including Denial of Service (DoS), Probe, User to Root (U2R), and Remote to User (R2L).

47

Denial of service (DoS) is one of the most common attacks on network resources that make

services inaccessible to users [91]. Remote to User (R2L) is another computer attack where

attackers send packets to another computer or server over a network without permission. User

to Root (U2R) is a third type of attack in which intruders access the network resources as a

normal user, and after several attempts, they gain access as a potential root user. Probing is a

fourth type of computer attack in which the attackers scan through network devices to check

for weaknesses in the network topology and then use them in the future for illegal activities [8].

The most common types of probing attacks are network scans, portsweep, ipsweep, and satan.

Traditional rule-based NIDS have proven insufficient in detecting these attacks (DoS, Probe,

U2R, and R2L), as they often rely on known attack patterns, so machine learning algorithms

have been widely applied to NIDS due to their ability to identify complex patterns and anoma-

lies in network traffic. In recent years, gradient boosting algorithms, such as XGBoost [31], have

become increasingly popular in machine learning due to their ability to handle missing values

in datasets, the integration of regularization techniques, their optimization for parallel and

distributed computing, optimized tree pruning, and a customizable objective function, thereby

making it outperform other baseline and state-of-the-art machine learning algorithms [75]. In

this paper, we present an approach for NIDS using XGBoost with Recursive Feature Elimination

(RFE) for feature selection. RFE is a feature selection technique that recursively eliminates less

important features until the optimal subset of features is achieved. The NSL-KDD dataset [111]

was used for evaluation, and it contains attacks such as DoS, R2L, U2R, and Probe, a benchmark

dataset for evaluating NIDS. Our goal can be stated as:

Goal: Evaluate the effectiveness of XGBoost with RFE in detecting network intrusions and

compare its performance to other baseline and state-of-the-art machine learning algorithms.

Numerous intrusion detection approaches rely on feature selection, but many lack explicit

48

discussions on complexity and time consumption, often rendering them impractical for real-

world applications due to potential inefficiencies. This prompts our proposal for a rapid,

efficient, and straightforward intrusion detection solution that leverages Recursive Feature

Elimination (RFE) to identify the most impactful features, ensuring both speed and effective-

ness in real-world scenarios.

Main Contributions: The main contributions of this research include [47]:

• An intrusion detection framework that uses a two-layer ensemble learning (combining

RFE with XGBoost) to improve current intrusion detection solutions.

• An expansion of the dataset’s feature set by incorporating over 78 new features in the NSL-

KDD for the purpose of testing and evaluating the proposed framework.

• Improvements to the overall speed of detection.

• Evidence of model performance improvements through statistical tests.

• Improvements to detection capabilities on selected attack types when compared to other

models and benchmarks in related work.

This paper presents experimental results, showing that XGBoost with RFE outperforms other

popular machine learning algorithms for NIDS on the NSL-KDD dataset, achieving the highest

MCC for detecting NSL-KDD dataset attacks of type DoS, Probe, U2R, and R2L. This approach

also achieved high precision, recall, ROC AUC, F1-score values, and low False Alarm Rate

(FAR), indicating its effectiveness in detecting network intrusions. Overall, our empirical results

demonstrate the potential of XGBoost with RFE for NIDS and provide valuable insights for

future research in this field.

The rest of this paper is organized as follows. Section 7 discusses related work. Section 5

presents our proposed approach, including phases such as data set description, preprocessing,

49

feature selection, and classification model. The experimental results are presented in Section

7, and Section 5 concludes the paper describing possible future work.

Related Work

Several studies have explored the application of data mining, statistics and machine

learning algorithms for network intrusion detection, including gradient boosting algorithms

like XGBoost and feature selection techniques like RFE.

Alkasassbeh and Almseidin [8] used three machine learning methods (J48, MLP and Bayes

Network classifiers) on the KDD dataset [19] for detecting and classifying attacks such as DoS,

R2L, U2R, and Probe, with the J48 classifier achieving the highest accuracy.

In [41], Farnaaz and Jabbar proposed a detection intrusion system using a random forest

with feature subset selection method called symmetrical uncertainty. Experimental results

were conducted on the NSL-KDD dataset [111]. Empirical results show that the proposed model

achieved a low FAR and high recall.

Recently feature selection has been applied to combine machine learning techniques for

intrusion detection. A study by Meftah et al.[78] applied RFE and random forests as feature

selection methods to the UNSW-NB15 dataset [86], then apply machine learning techniques

such as Logistic Regression, Gradient Boost Machine, and Support Vector Machines. Similarly

other papers such as; Elmasey et al.[40], Network Harmad et al.[57],Sharma et al.[104], Kunhare

et al.[68], Mohammed et al.[83], Saheed et al.[98],Souza et al.[124], Zhang et al.[128], Wang et

al.[117], Aljawarneh et al.[7] and Louk et al.[74] both applied feature selection methods together

with machine learning techniques for network intrusion detection systems. These papers

compare machine learning algorithms with feature selection without the use of statistical

methods for choosing their final model and time-consuming issues in their work. To overcome

these drawbacks in the models listed in the related works, one can look at the statistical

significance tests to compare the performance of machine-learning models and quantify the

50

likelihood of the samples of performance scores being observed, given the assumption that they

were drawn from the same distribution and classification time of each machine learning model.

There are also other limitations in the related works; for example, lack of good preprocessing of

the NSL-KDD dataset for the categorical features such as protocol_type (3 types), service (70

types), flag (11 types), and label (23 types), a lack of evaluation techniques for these machine

learning techniques due to the high level of imbalances in the class labels.

Overall, these studies demonstrate the effectiveness of machine learning and feature

selection for network intrusion detection. Our study builds on these papers to extend the work

of Farnaaz et al.[41], Souza et al.[124], Louk et al.[74] on intrusion detection and the above-

mentioned limitations by applying XGBoost with RFE to the NSL-KDD dataset and achieving

a high MCC. By combining XGBoost with RFE, additional evaluation techniques for class

imbalances, classification time of each attack, and statistical inference, we could identify the

essential features of our model and achieve high performance in detecting network intrusions.

Proposed Approach: XGBoost with RFE

The proposed approach to test the effectiveness of XGBoost with RFE in a network

intrusion detection system has seven steps described herein and shown in Fig. 8.1.

XGBoost with RFE

Step 1: Read NSL-KDD dataset.

Step 2: Preprocess data.

Step 3: Apply recursive feature elimination.

Step 4: Give XGBoost the select features for training.

Step 5: Find the attack type and classes.

Step 6: Evaluate the model performance using detection rate, false alarm, Matthews correlation

coefficient, F1 score, the area under the curve of the receiver operating curve, and precision on

51

the KDDTest dataset.

Step 7: Statistical Evaluation

Training Label

Testing Data

Training Data

Numericalization

Normalization

Feature Selection using
Recursive Feature Elimination

Run XGBoost Classifier

Evaluation of model using DR,
FAR, MCC, ROC, F1 score and

Precision

Preprocessing

Detection and Classification of
attacks

Step 2

Step 3

Step 4

Step 5

Step 6

Step 1

Statistical Evaluation Step 7

Figure 5.1: Flow chart of proposed model approach where the rectangles represent the model’s
processes, cylinders represent stored data, the trapezoid represents the stored training labels
(Normal, DoS, Probe, R2L, and U2L), and the arrows the direction of flow.

Dataset Description (step 1)

The NSL-KDD dataset is an improved version of the KDD99 dataset, in which a large

amount of data redundancy has been removed [109]. This dataset has the same attributes as the

KDD99 having 41 features that are labeled into either normal or one of four attack categories

such as DoS, Probe, U2R, and R2. The NSL-KDD dataset repository has two files; KDDTrain.txt

and KDDTest.txt. Training is performed on the KDDTrain data, which has 23 attack types, and

testing is performed on KDDTest data with 38 (15 additional) attack types, all grouped into the

four attack categories. Table 6.1 shows the attack types, attack categories (classes), and number

52

of data points per category in the NSL-KDD train and test datasets. The NSL-KDD dataset has

125973 data points in the training dataset and 22544 in the testing dataset.

Our proposed approach is also capable of detecting the 15 unknown attacks in the test

dataset.

Table 5.1: The attack category(class), the number of records in the NSL-KDD training and
testing datasets, and a subset of examples for each attack category (attack types)

Attack Class
No. of records

Attack TypesTraining Testing
Normal 67, 343 9,711 Normal traffic data

DoS 45,927 7, 460

Worm, Land, Smurf, Udpstorm,

Teardrop, Pod, Mailbomb,

Neptune, Process table,

Apache2, Back

Probe 11, 656 2, 421
Ipsweep, Nmap, Satan

Portsweep, Mscan, Saint

R2L 995 2, 885

WarezClient, Worm,

SnmpGetAttack, WarezMaster,

Imap, SnmpGuess, Named,

MultiHop, Phf, SPy, Sendmail,

Ftp_Write, Xsnoop, Xlock,

Guess_Password

U2R 52 67

Buffer_Overflow, SQLattack,

Rootkit, Perl, Xterm,

LoadModule, Ps, Httptuneel

53

Data Preprocessing (step 2)

The primary goal of data preprocessing is to improve the quality of the data, making

it easier to work with and enabling more accurate and efficient results for machine learning

algorithms [81].

Numericalization Numericalization converts non-numeric data, such as text or cate-

gorical variables, into a numerical format that can be used as input for machine learning

algorithms, statistical analysis, or other computational methods. Machine learning algorithms

and many statistical methods primarily work with numerical data, so it is essential to represent

non-numeric information in a format that these algorithms can understand and process. It

is important to note that although the labels of a category are now represented by numbers,

the data in it of itself remains categorical and the numbers do not represent ordinal, interval or

ratio scales. The NSL-KDD dataset has 41 features, where each feature represents an attack type

as described in Section 5 and attack category (class feature). These features are both numeric

(38 features) and categorical (3) features. The categorical features are protocol_type (3 types),

service (70 types), and flag (11 types) that need to be converted to numeric features. Label

encoding is then used to assign each unique type in a categorical variable a distinct integer

value. After applying label encoding, one-hot encoding is used in creating binary (0 or 1)

features for each unique type in a categorical variable. The attack category (class) feature is also

labeled with a numeric type, starting with Normal labeled as 0, DoS labeled as 1, Probe labeled

as 2, R2L labeled as 3, and U2R labeled as 4. We further converted the different attack categories

to bit form and used 10000 for Normal, 01000 for DoS, 00100 for Probe, 00010 for R2L, and 00001

for R2L. After numericalization, we are left with 122 features and one categorical class feature.

54

Normalization (step 2) Normalization is a technique used to scale numerical features in

a dataset to a standard range, typically [0, 1] or [-1, 1]. Normalization aims to bring different

features onto a similar scale, making it easier for machine learning algorithms to process

the data and reducing the risk of certain features dominating the model due to their larger

numerical values. There are several methods for normalization, two of the most common

being Min-Max Scaling and Z-score Standardization. In our proposed approach, the Z-score

standardization, which scales the value of the entire feature, is used. In Z-score standardization,

the averageµ of each numerical feature is calculated and then subtracted from the feature value

x. The subtracted average and feature x are then divided by the standard deviation σ as shown

in the formula:

Xi = x −µ

σ

Feature Selection (step 3)

This is a machine learning process that involves selecting a subset of the most relevant

and informative features from a dataset’s original set of features. The goal of feature selection

is to improve machine learning model performance, interpretability, and generalization of

machine learning models by reducing noise, overfitting, and computational complexity. There

are three main categories of feature selection techniques; Filter methods, Wrapper methods,

and Embedded methods [97]. After numericalization, the NSL-KDD has 122 features, which

are not all required for the network intrusion detection system. Essential features are selected

using a wrapper feature selection method called recursive feature elimination, which considers

the interaction between features and their contribution to the specific model being used. Using

recursive feature elimination, the most relevant features in the dataset are identified iteratively,

training the classifier model and eliminating the least important features.

After applying recursive feature elimination, 45 out of 122 features are selected for each of

55

the four attack categories. It is important to note that a feature can be selected in more than

one attack category.

Extreme Gradient Boosting (XGBoost) (step 4)

Extreme Gradient Boosting [30], or XGBoost, is a scalable, high-performance implemen-

tation of the gradient boosting algorithm, a popular ensemble learning method. Gradient

boosting combines weak learners, typically decision trees, iteratively to create a robust model

that minimizes prediction error. XGBoost has several advantages, including speed, paralleliza-

tion, regularization, handling of missing data, customizable loss functions, ability to handle

imbalance classes in the data and built-in cross-validation. The selected features for the

different attacks are then applied to the XGBoost classifier. During this process, the XGBoost

classifier learns to distinguish between normal traffic and various types of attacks based on the

features extracted from the NSL-KDD train and because of the above mentioned advantages,

XGBoost with RFE can improve the detection time, MCC and FAR.

Detection and Classification (step 5)

Detection and classification of attacks in network intrusion detection systems involve

identifying the attack categories on the NSL-KDD Test using the trained XGBoost model.

Model Evaluation (step 6)

Once the XGBoost classifier is trained using the NSL-KDDTrain dataset, it is evaluated

using NSL-KDDTest dataset. The performance of the XGBoost classifier is evaluated using

detection rate (DR), false alarm rate (FAR), Matthews correlation coefficient (MCC), F1 score,

ROC AUC, and precision metrics. These performance metrics are calculated using True Positive

56

(TP), False Negative (FN), False Positive (FP) and True Negative (TN) as shown in the confusion

matrix [18] in Table 6.2.

• Detection Rate (DR): It is the ratio between the total number of attacks detected by the

NIDS to the total number attacks present in the dataset [41] which can be calculated using

the formula:

DR = T P

T P +F N

• Precision: This measures the fraction of examples predicted as attacks that turned out to

be attacks which can be calculated using the formula:

Precision = T P

T P +F P

• F1 Score: It is the harmonic mean of the fraction of examples predicted as attacks that

turned out to be attacks (precision). It can also be described as the ratio between the

total number of attacks detected by the NIDS to the total number of attacks present in the

dataset (detection rate) which can be calculated using the formula:

F1 Score = 2∗T P

2∗T P +F N +F P

• False Alarm Rate (FAR): It is the fraction of non attacks that are misclassified as attacks

which can be calculated using the formula:

F AR = F P

F P +T N

• Matthews correlation coefficient (MCC): It is defined as the Pearson product-moment

correlation coefficient using the confusion matrix in Table 6.2 between the actual attacks

57

and predicted attacks [32] which can be calculated using the formula below. MCC ranges

between [−1,+1], where −1 corresponds to the worst overall system performance and 1

corresponds to the best overall system performance. A high MCC score indicates that the

binary classifier was able to correctly predict the majority of the attacks and the majority

of non-attacks.

MCC = T N ∗T P −F N ∗F Pp
(F P +T P)(F N +T P)(T N +F P)(T N +F N)

• Receiver Operating Characteristic (ROC) Curve: The Receiver Operating Characteristic

(ROC) curve is a graphical representation used to evaluate the performance of binary

classification models in machine learning. It is created by plotting the ratio between the

total number of attacks detected by the NIDS to the total number of attacks present in

the dataset (detection rate) against the fraction of non-attacks that are misclassified as

attacks (False Alarm Rate) at various classification threshold levels. The area under the

curve (AUC) of the ROC quantifies the overall performance of the classification model.

AUC values range from 0 to 1, with a value of 0.5 representing a random classifier and a

value of 1 indicating a perfect classifier. A higher AUC value suggests a better-performing

classification model.

A good NIDS should have high detection rates, precision, MCC, ROC AUC, F1 score but

low FAR.

58

Table 5.2: Confusion Matrix: A contingency containing four metrics, True Positive (TP), True
Negative (TN), False Positive (FP), and False Negative (FN).

Attack
Predicted Class
Yes No

Actual

class

Yes TP FN
No FP TN

Statistical Evaluation (step 7)

We use the two-sample t-test to determine the statistical significance of our proposed

approach. The two-sample t-test, also known as the independent samples t-test or unpaired

t-test, is a statistical hypothesis test used to compare the means of two independent groups

to determine if there is a significant difference between them. The test assumes that the data

is normally distributed and the variances of the two groups are equal (although modifications

are available if this assumption does not hold). To compare the performance of our proposed

approach against the Random Forest and Decision Tree approaches, we used a two-sample t-

test to test whether there is a significant difference between the mean performances of DR,

FAR, MCC, F1 score, ROC AUC, and precision. The null hypothesis (H0) for the two-sample t-

test states that there is no significant difference between the mean performances of the two

models. In contrast, the alternative hypothesis (H1) states a significant difference, unlikely to

have occurred by chance, between the mean performances of the two models.

Experimental Results

All experiments were performed in Python using default parameters for XGBoost library,

Random Forest (Sklearn) and Decision Trees (Sklearn) using Intel(R) Core(TM) i7-10510U CPU

@ 1.80GHz 2.30GHz processor with 16gb RAM. Training and testing of XGBoost, Random Forest

and Decision Tree algorithm were performed on 122 features and the XGBoost model on the 45

59

selected features from the NSL-KDD dataset. Ten StratifiedKFold cross-validation was adopted

during the training and testing of the classifiers to check if the classifiers were not overfitting

on both the training and testing. However, the evaluation of the proposed approach was done

only on the test dataset by finding the average and standard deviation of the DR, F1 score, ROC

AUC, precision, FAR, and MCC metrics. The performance of our proposed approach is shown

in last row of Table 5.4. It is evident from Table 5.4 that our proposed approach have high MCC,

precision, ROC AUC, and low FAR.

To compare the differences of our proposed approach (XGBoost with RFE) against Ran-

dom Forest and Decision Tree, we executed a two-sample t-test (checks for normality and

equal variance assumptions were valid) [23]. Table 5.5 compares XGBoost with RFE) against

the Random Forest and Decision Tree algorithms on various metrics and attack types with

significant values depicted in sky blue. From Table 5.5, comparing XGBoost with RFE against

the Random Forest, we can see that the p-values of the test for MCC (for the U2R attack type)

and FAR (for the R2L attack type) are significant at α = 0.05. Similarly, comparing XGBoost with

RFE against the Decision Tree, we can see that the p-values of the test for MCC (U2R attack

type), FAR (R2L attack type), ROCAUC (for the U2R attack type), and precision (U2R attack

type) are significant at α = 0.05. Also, from Table 5.5 comparing XGBoost with RFE against the

XGBoost, we can see that the p-value of the test for FAR (R2L attack type) is significant at α =

0.05. We can statistically confirm that our proposed approach (XGBoost with RFE) outperforms

Random Forest (on MCC and FAR) and Decision Tree (on MCC, FAR, ROC AUC, and precision).

The last row of Table 5.3 shows the approximate run time for the intrusion to be classified

as DoS, Probe, R2L, and U2R. From this, it can be identified that the classification time displayed

is linear, which proves our proposed approach’s scalability. Overall, the proposed approach

has a classification time of 0.009 milliseconds for Dos, 0.020 milliseconds for Probe, 0.024

milliseconds for R2L, and 0.655 milliseconds for U2R, which all the models in the related works

fail to mention. It is worth noting that the run time of Random Forest and Decision Tree looks

60

better than our proposed approach because there are inherently parallel algorithms compared

to XGBoost, which is a sequential algorithm, and since all the run times in 5.3 are approximately

linear, XGBoost with REF is significantly excellent at classifying Dos, Probe, R2L, and U2R.

Hence, from the results shown in our experiments, we can conclude that XGBoost with

RFE for NIDS is valuable in cybersecurity.

Discussion of Results

In this paper, we investigated the effectiveness of using XGBoost with recursive feature

elimination (RFE) for network intrusion detection. Our primary goal was to empirically deter-

mine whether combining XGBoost and RFE could yield better detection rates than other meth-

ods while reducing false positives and negatives. We employed a comprehensive methodology,

analyzing a diverse network traffic dataset, and evaluated our model using several performance

metrics, variability of the performance metrics (standard deviation), and classification time of

the attack types. Our results indicate that the XGBoost model with RFE achieved a high level

of performance in terms of precision, DR, F1 score, MCC, and ROC AUC. This performance

indicates that the model can accurately detect network intrusions while maintaining a low

false alarms rate (FAR), classification time and low variability (standard deviation) for all the

performance metrics. Our approach improved detection capabilities on selected attack types

when compared to other models and benchmarks in related work. The RFE process identified

several key features highly relevant to network intrusion detection. These features align with

our expectations and prior research [83], [124] and [117], confirming the importance of specific

traffic characteristics in detecting malicious activities. The combination of XGBoost and RFE

not only improved the model’s performance but also improves the detection speed and reduces

the complexity of the model by eliminating redundant and irrelevant features as compared to

related works that focus on network intrusion detection as shown in Table 5.6.

The practical implications of our findings are significant for the field of network intrusion

61

detection. The improved detection rates and speed offered by our approach can help security

practitioners identify and respond to cyber threats more effectively. Additionally, reducing false

positives and negatives can minimize the operational overhead of manually investigating false

alarms. Furthermore, our approach demonstrates potential scalability and adaptability for

different network environments and evolving cybersecurity threats.

Despite these promising results, our study has some limitations and threats to validity:

1. The dataset does not fully capture the diversity of network traffic patterns and evolving

attack techniques. Future work could benefit from more recent and diverse datasets to

validate our approach. This is a threat to the external validity of our work.

2. The XGBoost algorithm, while highly effective, may be prone to overfitting and is often

difficult to interpret. Alternative methods, such as partial dependency plots (PDPs), SHAP

(SHapley Additive explanation), and LIME (Local Additive Interpretable model-agnostic

explanations), could be investigated to address these issues.

62

Table 5.3: Approximate Classification Time on NSL-KDD Test.

Classifier Attack type Time (Seconds)
DoS 170.3

XGBoost

(122 Features)
Probe 109.9

R2L 149.1
U2R 85.3
DoS 57.1

Random Forest

(122 Features)
Probe 36.4

R2L 44.1
U2R 37.4
DoS 8.4

Decision Tree

(122 Features)
Probe 3.8

R2L 6.0
U2R 3.3
DoS 68.1

XGBoost

(45 Features)
Probe 49.6

R2L 68.8
U2R 43.9

63

Table 5.4: Performance Measure together with standard deviation (STD) on NSL-KDD Test.

Classifier Attack type DR ± STD F1 Score ± STD ROC AUC ± STD Precision ± STD FAR ± STD MCC ± STD

DoS 0.99745 ± 0.00423 0.99745 ± 0.00294 0.99997 ± 0.00007 0.99812 ± 0.00215 0.00144± 0.00002 0.99609±0.00008

XGBoost

(122 Features)
Probe 0.99463 ± 0.00617 0.99547 ± 0.00481 0.99988± 0.00021 0.99633 ± 0.00426 0.00123± 0.00002 0.99096±0.00002

R2L 0.97792 ± 0.01218 0.97861 ± 0.01006 0.99914 ± 0.00079 0.97938 ± 0.01088 0.00916± 0.00002 0.95723±0.00001

U2R 0.90217± 0.13172 0.92916± 0.09870 0.99931 ± 0.00150 0.96790 ± 0.10148 0.00041±0.00004 0.86540± 0.00004

DoS 0.99705 ± 0.00335 0.99785 ± 0.00206 0.99989 ± 0.00054 0.99866 ± 0.00240 0.00103± 0.00003 0.99621±0.00009

Random Forest

(122 Features)
Probe 0.99365 ± 0.00588 0.99495 ± 0.00441 0.99986± 0.00026 0.99628 ± 0.00419 0.00113± 0.00001 0.98992±0.00002

R2L 0.97310 ± 0.01232 0.97419 ± 0.01065 0.99855 ± 0.00096 0.97532 ± 0.00974 0.01081± 0.00002 0.94841±0.00002

U2R 0.88064± 0.13087 0.90988± 0.09733 0.99943 ± 0.00162 0.95453 ± 0.11931 0.00062±0.00004 0.82417± 0.00002

DoS 0.99705 ± 0.00506 0.99585 ± 0.00368 0.99647 ± 0.00328 0.99466 ± 0.00505 0.00412± 0.00002 0.99266 ± 0.00002

Decision Tree

(122 Features)
Probe 0.99257 ± 0.00617 0.99303± 0.00645 0.99257± 0.00617 0.99349 ± 0.00695 0.00247± 0.00002 0.98606± 0.00003

R2L 0.96970± 0.01318 0.97052 ± 0.01466 0.97325 ± 0.01259 0.97139 ± 0.01720 0.01277± 0.00001 0.94101±0.00003

U2R 0.90979± 0.09227 0.89307± 0.07719 0.90979 ± 0.09227 0.88295 ± 0.11079 0.00185±0.00001 0.78490± 0.00003

DoS 0.99732 ± 0.00398 0.99725 ± 0.00243 0.99997 ± 0.00008 0.99719 ± 0.00279 0.00216± 0.00002 0.99514±0.00002

XGBoost with RFE

(45 Features.)
Probe 0.99443± 0.00594 0.99535± 0.00493 0.99985± 0.00022 0.99628 ± 0.00496 0.00123±0.00003 0.99070±0.00003

R2L 0.97606± 0.00899 0.97670 ± 0.00711 0.99893 ± 0.00130 0.97738 ± 0.00768 0.00009± 0.00007 0.95341±0.00002

U2R 0.89633± 0.12839 0.93216± 0.09260 0.99875 ± 0.00358 0.98095 ± 0.07407 0.00021± 0.00003 0.87232±0.00003

64

Table 5.5: Results of two-sample t-test comparing our proposed approach (XGBoost with RFE)
against Decision Tree, Random Forest, and XGBoost

Comparison Evaluation metric (Attack Type) Test Statistic Hypothesis (α= 0.05) p-value

MCC (U2R) 18.93 Rejected <0.001

XGBoost with RFE vs. Decision Tree

with significant values highlighted in table 5.4
FAR (R2L) 134.65 Rejected < 0.001

ROC AUC (U2R) 28.42 Rejected < 0.001

Precision (U2R) 2.3 Rejected 0.031941

MCC (U2R) 3.72 Rejected 0.00154

XGBoost with RFE vs. Random Forest

with significant values highlighted in table 5.4
FAR (R2L) 37.99 Rejected < 0.001

XGBoost with RFE vs. XGBoost

with significant values highlighted in table 5.4
FAR (R2L) 393.98 Rejected < 0.001

65

Table 5.6: Comparison With Other Network Intrusion Detection Methods.

Method Attack type FAR ROC AUC MCC Speed Statistical Test Complexity

DoS Low Not Mentioned High Not Mentioned Not Mentioned Medium

Farnaaz et al.[41] Probe Low Not Mentioned High Not Mentioned Not Mentioned Medium

R2L Low Not Mentioned High Not Mentioned Not Mentioned Medium

U2R Low Not Mentioned High Not Mentioned Not Mentioned Medium

DoS Not Mentioned High Not Mentioned Not Mentioned Not Mentioned Medium

Souza et al.[124] Probe Not Mentioned High Not Mentioned Not Mentioned Not Mentioned Medium

R2L Not Mentioned High Not Mentioned Not Mentioned Not Mentioned Medium

U2R Not Mentioned High Not Mentioned Not Mentioned Not Mentioned Medium

DoS Not Mentioned Not Mentioned High Not Mentioned Included Not Mentioned

Louk et al.[74] Probe Not Mentioned Not Mentioned High Not mentioned Included Not Mentioned

R2L Not Mentioned Not Mentioned High Not Mentioned Included Not Mentioned

U2R Not Mentioned Not Mentioned High Not Mentioned Included Not Mentioned

DoS Very Low High High Very High Included Medium

Proposed Approach Probe Very Low High High Very High Included Medium

R2L Very Low High High Very High Included Medium

U2R Very Low High High Very High Included Medium

66

Conclusion and Future work

This paper presents XGBoost with RFE to detect four types of attacks DoS, Probe, U2R, and

R2L. We adopted ten stratified k-fold cross-validations. Our proposed approach is evaluated

using the NSL-KDD dataset. We compared our proposed method with XGBoost, Random

Forest, and Decision Tree using the following metrics: DR, F1 score, ROC AUC, precision, FAR,

and MCC. Because of the usage of feature selection, the computational cost decreases, and our

experimental results indicate that our proposed approach increases the DR, F1 score, ROC AUC,

precision, MCC, and decreases FAR, classification time, variability within all the performance

metrics for all of attacks. We equally compared our proposed method against Random Forest

and Decision Tree for selected attack types using a two-sample t-test, and found that our

proposed approach (with fewer features) is promising. Moreover, this model is compared with

related works that focus on network intrusion detection. The comparison results in Table 5.6

showed that XGBoost with RFE has better performance, and less classification time.

For future work, we will experiment with deep learning approaches like GANs and

autoencoders since they are capable of handling data of higher dimensions and to address

computationally expensive recursive feature elimination.

67

AN EMPIRICAL INTERNET PROTOCOL NETWORK INTRUSION DETECTION USING

ISOLATION FOREST AND ONE-CLASS SUPPORT VECTOR MACHINES

Contribution of Authors and Co-Authors

Manuscript in Chapter titled ‘An Empirical Internet Protocol Network Intrusion Detection using

Isolation Forest and One-Class Support Vector’

Author: Gerard Shu Fuhnwi

Contributions: Problem identification and proposing solution, running experiment, manuscript

writing, creating tables and figures. Primary writer

Co-Author: Victoria Adedoyin and Janet O. Agbaje

Contributions: Contribution in manuscript editing/writing, provided feedback, guidance and

advice.

68

Manuscript Information Page

Gerard Shu Fuhnwi, Victoria Adedoyin and Janet O. Agbaje

International Journal of Advanced Computer Science and Applications (IJACSA)

Status of Manuscript:

Prepared for submission to a peer-reviewed journal

Officially submitted to a peer-reviewed journal

Accepted by a peer-reviewed journal

× Published in a peer-reviewed journal

IJACSA

January 2023

10.14569/IJACSA.2023.0140801

© 2023 IJACSA. Reprinted, with permission, from [Gerard Shu Fuhnwi, Victoria Adedoyin &

Janet O. Agbaje, An Empirical Internet Protocol Network Intrusion Detection using Isolation

Forest and One-Class Support Vector Machines, IJACSA An Empirical Internet Protocol Network

Intrusion Detection using Isolation Forest and One-Class Support Vector Machines Intrusion

Detection Systems, and Jan 2023]

69

Abstract

With the increasing reliance on web-based applications and services, network intrusion

detection has become a critical aspect of maintaining the security and integrity of computer

networks. This study empirically investigates internet protocol network intrusion detection

using two machine learning techniques: Isolation Forest (IF) and One-Class Support Vector

Machines (OC-SVM), combined with ANOVA F-test feature selection. This paper presents an

empirical study comparing the effectiveness of two machine learning algorithms, Isolation

Forest (IF) and One-Class Support Vector Machines (OC-SVM), with ANOVA F-test feature

selection in detecting network intrusions using web services. The study used the NSL-

KDD dataset, encompassing hypertext transfer protocol (HTTP), simple mail transfer protocol

(SMTP), and file transfer protocol (FTP) web services attacks and normal traffic patterns, to

comprehensively evaluate the algorithms. The performance of the algorithms is evaluated

based on several metrics, such as the F1-score, detection rate (recall), precision, false alarm rate

(FAR), and Area Under the Receiver Operating Characteristic (AUCROC) curve. Additionally,

the study investigates the impact of different hyper-parameters on the performance of both

algorithms. Our empirical results demonstrate that while both IF and OC-SVM exhibit high

efficacy in detecting network intrusion attacks using web services of type HTTP, SMTP, and FTP,

the One-Class Support Vector Machines outperform the Isolation Forest in terms of F1-score

(SMTP), detection rate(HTTP, SMTP, and FTP), AUCROC, and a consistent low false alarm rate

(HTTP). We used the t-test to determine that OCSVM statistically outperforms IF on DR and

FAR.

Introduction

Network Intrusion can be referred to as an unauthorized penetration of a computer in an

establishment or an address in one’s assigned domain [121]. The nature and types of network

70

intrusion have evolved over the years and become more rampant in recent years [29].

An intrusion can be passive or active. In passive intrusion, the penetration is gained

stealthily and without detection, while in active intrusion, changes to network resources are

affected. Intrusion can either come from an insider or an outsider. By insider, we mean

an employee, customer, or business partner. Outsider means someone not connected to the

organization. Network intrusions can occur in different ways. Some announce their presence

by defacing the website, while others are malicious, with the goal of siphoning off data until it’s

discovered. Some redirect users who are unaware of their website through cracking passwords

or mimicking your website [121]. Sometimes, intruders absorb network resources intended for

other uses or users, which can lead to a denial of service [85]. These unauthorized penetrations

on the digital network are imperil on many occasions the security of networks and their data

[50].

Network security breaches are rapidly increasing and result in a significant amount of loss

to organizations, and often leads to a loss of confidence in them from their unaware customers

that have fallen victims. The IBM report shows that the average cost of a data breach has risen

12 percent over the past five years to 3.92 million dollars per incident on average [21]. This is

more than the cost of a breach caused by a system glitch or human error.

Many researchers have carried out research and projects on network intrusion detection

[54, 67, 113]. Wang and Battiti identified intrusions in computer networks with principal

component analysis [118]. Liao and Vemuri used a k-nearest neighbour classifier for intrusion

detection [71]. Gaffney and Ulvila evaluated intrusion detectors using a decision theory

approach [115]. But this area still longs for more work as a result of the rapid rise in network

intrusion. Therefore, we need to design an efficient algorithm that can successfully defend

against network intrusions in an ever-evolving threat landscape. To achieve proactive security

control, organizations must put in place a good network security infrastructure and leverage

the potential of machine learning, which has the capability of automatically and continuously

71

detecting network intrusions. This will help block intruders and prevent them from achieving

their goals. The remainder of this paper is organized as follows: In Section 2, we briefly

review some related work in anomaly detection based Network Intrusion Detection. Section

3 gives a description of the algorithms used in this paper. Section 4 analyzes the empirical

evaluation, where we review the data sets used, evaluation metrics description, results, and

result discussion. Section 5 covers the conclusion.

Related Work

Liu and Ting [72] focused on using an Isolation Forest to detect anomalies that have many

applications in the areas of fraud detection, network intrusion, medical and public health,

industrial damage detection, and so on. The goal here is to build a tree-based structure

that isolates anomalies rather than profiles anomalies like in the previous methods such as

classification-based methods [1], and clustering-based methods [60]. Their proposed method,

called Isolation Forest, builds a collection of individual tree structures that recursively partition

a given data set, where anomalies are instances with a short path length on the trees. The

anomaly score is used to determine instances that are anomalies, and has values between 1 and

0, with a score close to 1 being an anomaly and vice versa. The authors compared their results

with other methods for anomaly detection techniques [45] like ORCA, LOF, and RF on real-

world data sets with high dimensions and large data sizes using the metric AUC (Area Under the

Curve) and run times. [87] proposed a hybrid of SVM and decision trees in classifying attacks of

different forms of intrusion in knowledge discovery and data mining 1999 (KDDCUP99) data.

In [99], Sarumi et al. compared SVM and Apriori using Network Security Laboratory

Knowledge Discovery and Data Mining (NSL-KDD) data and the University of South Wales NB

2015 (UNSW NB-15) dataset. From their results, they concluded that SVM outperformed Apriori

in terms of accuracy, while Apriori showed a better performance in terms of speed.

In [41], Farnaaz and Jabbar proposed a detection intrusion system using random forest.

72

Experimental results were conducted on the NSL-KDD dataset. Empirical results show that the

proposed model achieved a low false alarm rate and a high recall. Similarly, [124], [122], [7], and

[57] applied machine learning techniques for network intrusion detection systems.

All the above mentioned papers discuss intrusion detection methods without any statistics

to compare their results, attacks using web services, and no user guidance for using the

proposed algorithms. To overcome this, one can look at the statistical significance of the

various evaluation metrics based on the different machine learning algorithms proposed by

them and also change the various parameters in the machine learning algorithms to observe

their performance.

This paper aims at comparing the performance of One-class SVM and Isolation Forest

machine learning algorithms in network intrusion using a two sample t-test and parameter

alternation to provide some guidance on these algorithms usage to new researchers in this field.

METHODS

This section presents the intrusion detection approach used in this paper. These ap-

proaches include the ANOVA F-test, the Isolation Forest, the One-Class Support Vector Ma-

chines, and the two-sample t-test [44].

ANOVA F-test

The ANOVA F-test, or Analysis of Variance F-test, is a statistical technique used to compare

the means of two or more groups to determine whether significant differences exist. It is

commonly employed in feature selection or variable ranking tasks, where the goal is to identify

the most relevant features or variables for a particular analysis or model.

Applying the ANOVA F-test to a dataset can rank features based on their F-statistic or

p-value. Features with high F-statistic values or low p-values are considered more relevant,

as they exhibit significant differences between the groups or classes. These relevant features

73

can then be selected for further analysis or modeling, while less informative features can be

discarded to reduce dimensionality and improve computational efficiency. In the case of web

network intrusion detection, the ANOVA F-test can be used to identify the most discriminative

features that differentiate between normal network traffic and malicious intrusion attempts. By

selecting the most significant features, it is possible to improve the performance and efficiency

of intrusion detection systems by focusing on the most relevant information and reducing noise

or irrelevant variables.

Isolation Forest

Isolation Forest and One-Class Support Vector Machine has been applied in different

scenarios. Isolation Forest is an unsupervised learning algorithm for anomaly detection that

works on the principle of isolating anomalies, instead of the most common technique of

profiling normal points [123]. It is different from other distance and density based algorithms.

The underlying assumption for this algorithm is that fewer instances of anomalies result in

a smaller number of partitions (shorter path length) and the instances with distinguishable

attribute values are more likely to be separated in early partitioning [12]. This implies that

data points that have a shorter path length are likely to be anomalies. The necessary input

parameters for building Isolation Forest algorithm are the subsampling size,the number of

trees, and the height of the tree [12]. The subsampling size was suggested to be smaller for

the machine learning algorithm to function faster and yield a better detection result [72]. We

can use log to base 2 (number of data points) to get the depth of trees needed, but the path

length converge before t = 100. [72].

74

Figure 6.1: Algorithm 1

One-Class Support Vector Machines

One-Class Support Vector Machines (OC-SVMs) [76] are a natural extension of SVMs. One-

Class SVM is an unsupervised learning technique capable of differentiating test samples from

a particular class from other classes. The One-Class SVM works on the basics of minimizing

the hypersphere of one class in the training set and then considers every other class not within

the hypersphere as anomalies or outliers. In order to identify suspicious observations, an OC-

SVM estimates a distribution that encompasses most of the observations and then labels as

“suspicious” those that lie far from it with respect to a suitable metric. This model uses different

kernel functions or hyperspheres: linear, radial basis, sigmoid, and polynomial.

Two Sample t-test

The two-sample t-test, also known as the independent samples t-test or unpaired t-test, is

a statistical hypothesis test used to compare the means of two independent groups to determine

if there is a significant difference between them. The test assumes that the data is normally

75

distributed and that the variances of the two groups are equal (although there are modifications

available if this assumption does not hold). In order to compare the performance of IF and

OCSVM with the ANOVA F-test, we used a two-sample t-test to test whether there is a significant

difference between the mean performances of DR, FAR,F1 score, AUCROC, and precision. The

null hypothesis (H0) for the two-sample t-test states that there is no significant difference

between the mean performances of the two models, while the alternative hypothesis (H1) states

that there is a significant difference, unlikely to have occurred by chance, between the mean

performances of the two models.

EMPIRICAL EVALUATION

Data Description

The NSL−KDD dataset is an improved version of the KDD99 dataset, in which a large

amount of data redundancy has been removed [109]. This dataset has the same attributes as

the KDD99 having 41 features that are labeled as either normal or attacks using different web

services (http, smtp, ftp, etc.). The NSL−KDD dataset repository has two files: KDDTrain.txt and

KDDTest.txt. Table 6.1 shows the attack categories using different services and the number of

data points per category in the NSL−KDD train and test datasets. The NSL−KDD dataset has

125973 data points in the training dataset and 22544 in the testing dataset.

76

Table 6.1: The attack types (class) using different internet protocols (http, smtp and ftp), the
number of records in the NSL-KDD training and testing dataset.

Attacks using different Internet Protocol
No. of records

Attack Types (class)
Training Testing

Normal 45,078 7,291 Normal traffic data

HTTP 2,289 1,180

Worm, Land, Smurf, Udpstorm,

Teardrop, Pod, Mailbomb,

Neptune, Process table,

Apache2, Back

SMTP 284 316
Ipsweep, Nmap, Satan

Portsweep, Mscan, Saint

FTP 648 48

WarezClient, Worm,

SnmpGetAttack, WarezMaster,

Imap, SnmpGuess, Named,

MultiHop, Phf, SPy, Sendmail,

Ftp_Write, Xsnoop, Xlock,

Guess_Password

Data Preprocessing

The NSL-KDD dataset has 41 features, each representing an attack type described in

Section 4.1 and an attack category (class feature). These features are both numeric (38 features)

and categorical (3 features). The categorical features are protocol _type (3 types), service (70

types), and flag (11 types) that need to be converted to numeric features. We want to extract the

most popular attacks caused by using different internet protocols (the service feature). These

77

widespread attacks use web services (internet protocols) such as hypertext transfer protocol

(HTTP), simple mail transfer protocol (SMTP), and file transfer protocol (FTP). After extracting

the various internet protocols, the attack types (class) feature is labeled with a numeric type,

starting with Normal, labeled as 0 and 1 for the different attack types.

Using ANOVA F-test feature elimination, the most relevant features with the highest F-statistic

values in the dataset are identified, eliminating the least important features. These features are

src bytes (number of data bytes transferred from source to destination in a single connection),

dst bytes (number of data bytes transferred from destination to source in a single connection),

and duration.

Confusion Matrix

The performance of machine learning techniques can be evaluated using different pa-

rameters. These parameters are calculated using True Positive (TP), False Negative (FN), False

Positive (FP), and True Negative (TN) as shown in the confusion matrix [18] in Table 6.2. The

following parameters are used to evaluate our proposed approach.

78

Table 6.2: Confusion Matrix: A contingency containing four metrics, True Positive (TP), True
Negative (TN), False Positive (FP), and False Negative (FN).

Attack

Predicted Class

Yes No

Actual

class

Yes TP FN

No FP TN

Detection Rate (DR) It is the ratio between the total number of attacks detected by the

NIDS and the total number of attacks present in the dataset [41] which can be calculated using

the formula:

DR = T P

T P +F N

Precision: This measures the fraction of examples predicted as attacks that turned out to

be attacks, which can be calculated using the formula:

Pr eci si on = T P

T P +F P

F1 Score: It is the harmonic mean of the fraction of examples predicted as attacks that

turned out to be attacks (precision). It can also be described as the ratio between the total

number of attacks detected by the NIDS and the total number of attacks present in the dataset

79

(the detection rate) which can be calculated using the formula:

F1 Scor e = 2∗T P

2∗T P +F N +F P

False Alarm Rate (FAR): It is the fraction of non attacks that are misclassified as attacks,

which can be calculated using the formula:

F AR = F P

F P +T N

Receiver Operating Characteristic (ROC) Curve: The Receiver Operating Characteristic

(ROC) curve is a graphical representation used to evaluate the performance of binary classifi-

cation models in machine learning. It is created by plotting the ratio between the total number

of attacks detected by the NIDS to the total number of attacks present in the dataset (detection

rate) against the fraction of non-attacks that are misclassified as attacks (False Alarm Rate) at

various classification threshold levels. The area under the curve (AUC) of the ROC quantifies

the overall performance of the classification model. AUC values range from 0 to 1, with a value

of 0.5 representing a random classifier and a value of 1 indicating a perfect classifier. A higher

AUC value suggests a better-performing classification model.

A good NIDS should have high detection rates, precision, AUCROC, F1 score but low

FAR. Most machine learning algorithms are evaluated using predictive accuracy, but this is

not appropriate for network intrusion detection because it mostly involves imbalanced data.

In terms of imbalanced data, we mean that the proportion of data points in each class is

not approximately equal. The evaluation metrics adopted in this paper for evaluation and

comparison of our models are standard AUC (Area under curve). The area under the receiver

operating curve gives an average measure of performance across all possible classification

thresholds.

80

Experimental Results and Discussion

All experiments were performed in Python with alternating parameters for Isolation Forest

(Sklearn) and One-class support vector machines (Sklearn) using the Intel(R) Core(TM) i7-

10510U CPU at 1.80 GHz and 2.30 GHz processor with 16 GB of RAM. Training and testing

of the Isolation Forest took four seconds, while it took 40 seconds to train the One-Class

support vector machine model on the three selected features from the NSL−KDD dataset. The

experimental results for One-class support vector machines and Isolation Forest on different

performance metrics are shown in table 6.3 and table 6.4 respectively.

In table 6.3, the polynomial kernel outperformed the other kernels on HTTP and SMTP subsets

with high DR, F1 Score, AUCROC, Precision, and low FAR. On the other hand, in table 6.3, the

sigmoid kernel performed much better than the different kernels on the FTP subset.

In table 6.4, isolation forest with 100 estimators on the HTTP subset achieved the highest DR,

F1 Score, AUCROC, Precision, and low FAR. The SMTP and FTP subset performs best on the

evaluation metrics with 50 estimators. Generally, both Isolation Forest and One-class support

vector machines didn’t perform well on the FTP subset, having very high FAR and low DR, F1

Score, AUCROC, and Precision. It is evident in tables 6.3 and 6.4 that the one-class support

vector machines outperform Isolation Forest on all subsets, that is, HTTP, SMTP, and FTP having

high DR, F1 Score, and low FAR. Statistical analysis of overall performance on the one-class

support vector machines and Isolation Forest results used a two-sample t-test with two-tailed

probability to determine if each model’s DR and FAR score on the test data yielded statistically

significant differences (p < 0.05). In the HTTP, SMTP, and FTP, the one-class support machines

had a significantly different DR,and FAR score (p < 0.001), which showed that our hypothesis

was accepted.

81

Table 6.3: One-Class SVM Performance Measure on NSL−KDD Test.

Attacks using

different

Internet Protocol

Kernel Gamma DR F1 Score AUCROC Precision FAR

Linear 0.00005 0.9802 0.9303 0.6308 0.8852 0.0198

HTTP Sigmoid 0.00005 0.9969 0.9386 0.8867 0.6383 0.0031

Polynomial 0.00005 0.9969 0.9385 0.6378 0.8866 0.0031

SMTP Linear 0.00005 0.8398 0.7228 0.4468 0.6345 0.1602

Sigmoid 0.00005 0.9806 0.7953 0.5156 0.6689 0.0194

Polynomial 0.00005 0.9838 0.7969 0.5172 0.6696 0.0162

FTP Linear 0.00005 0.3333 0.5000 0.6667 1.0000 0.6667

Sigmoid 0.00005 0.5208 0.6848 0.7604 1.0000 0.4791

Polynomial 0.00005 0.3333 0.5000 0.6667 1.0000 0.6667

82

Table 6.4: Isolation Forest Performance Measure on NSL−KDD Test.

Attacks using

different

Internet Protocol

Estimators maximum samples DR F1 Score AUCROC Precision FAR

50 256 0.9618 0.9563 0.8402 0.9508 0.0382

HTTP 100 256 0.9631 0.9570 0.8409 0.9509 0.0369

200 256 0.9619 0.9563 0.8399 0.9507 0.0381

SMTP 50 256 0.9725 0.7846 0.6697 0.9725 0.0275

100 256 0.9709 0.7838 0.6697 0.9709 0.0291

200 256 0.9693 0.7835 0.6699 0.9693 0.0307

FTP 50 256 0.2917 0.3043 0.6225 0.3182 0.7083

100 256 0.2083 0.2273 0.5809 0.2500 0.7916

200 256 0.2708 0.2857 0.6121 0.3023 0.7292

83

CONCLUSION and Future work

The experiments performed on the NSL-KDD network intrusion data show that One-class

support vector machines had the overall best performance in terms of DR and FAR scores over

the Isolation Forest, with the best performance obtained by tuning the default parameters in

both algorithms. Also, the number of estimators in Isolation Forest is comparable; using 100

and 50 estimators outperformed 200 estimators.

Therefore, One-class support is a good model for network intrusion detection by changing

the default parameters in Sklearn. Also, polynomial or sigmoid kernel functions could be the

best kernels to choose when using One-Class SVM on network intrusion data. Because of

the usage of feature selection, the computational cost decreases (four seconds for Isolation

Forest and forty seconds), and our experimental results indicate that our proposed approach

increases the DR, F1 score, AUCROC, and precision and decreases FAR for three types of attacks.

We equally compared one-class support vector machines and Isolation Forest selected attack

types using a two-sample t-test and found that our proposed approach (with fewer features) is

promising. For future work, we will experiment with deep learning approaches like GANs and

autoencoders since they are capable of handling data of higher dimensions and also evaluate

one-class support vector machines and Isolation forest using supervised learning methods like

the random forest, Xgboost, and support vector machines.

84

USING LARGE LANGUAGE MODELS TO MITIGATE HUMAN-INDUCED BIAS IN SMS SPAM:

AN EMPIRICAL APPROACH

Contribution of Authors and Co-Authors

Manuscript in Chapter titled ‘Using Large Language Models to Mitigate Human-Induced Bias

in SMS Spam: An Empirical Approach’

Author: Gerard Shu Fuhnwi

Contributions: Problem identification and proposing solution, conducting experiment, manuscript

writing, creating tables and figures. Primary writer

Co-Author: Dr. Matthew Revelle, Dr. Bradley Whitaker and Dr. Clemente Izurieta

Contributions: Contribution in manuscript editing/writing, provided feedback, guidance and

advice.

85

Manuscript Information Page

Gerard Shu Fuhnwi, Dr. Matthew Revelle, Dr. Bradley Whitaker and Dr. Clemente Izurieta

4th IEEE International Conference on AI in Cybersecurity (ICAIC)

Status of Manuscript:

Prepared for submission to a peer-reviewed journal

Officially submitted to a peer-reviewed journal

Accepted by a peer-reviewed journal

× Published in a peer-reviewed journal

IEEE

29 January 2025

10.1109/ICAIC63015.2025.1084863

© 2025 IEEE. Reprinted, with permission, from [Gerard Shu Fuhnwi, Dr. Matthew Revelle,

Dr. Bradley Whitaker & Clemente Izurieta, Using Large Language Models to Mitigate Human-

Induced Bias in SMS Spam: An Empirical Approach, IEEE Using Large Language Models to

Mitigate Human-Induced Bias in SMS Spam: An Empirical Approach, and Jan 2025]

86

Abstract

Short Message Service (SMS) is a widely used text messaging feature on both basic and

smartphones. SMS spam detection is a crucial task. Traditional machine learning approaches

often struggle in this domain due to their reliance on manually crafted features, such as keyword

detection, which can result in overly simplistic patterns and misclassification of more complex

messages. With this shortcoming, these models can amplify human-induced biases if the

training data contains inconsistent labeling or subjective interpretations, leading to unfair

treatment of specific keywords or contexts. Conversely, advanced LLMs present effective

approaches to addressing such issues, as they can more accurately capture linguistic patterns,

contextual nuances, and textual ambiguities than traditional models, representing a substantial

advancement in improving label accuracy.

This paper proposes utilizing LLMs to address human-induced labeling bias in spam

detection and applying different prompt design methods to guide the process. In text clas-

sification, we surveyed two leading-edge LLMs, ChatGPT and Gemini, and evaluated them

on the English SMS spam dataset source from UC Irvine’s Machine Learning Repository. We

explored the highest-performing prompt designs using approaches like in-context learning.

The findings indicate that in-context techniques for prompting improve model effectiveness

by reducing human-induced (contextual) labeling bias in SMS spam detection with a Balanced

Accuracy of 82% - 97% and an Equal Opportunity Difference (EOD) of precisely zero, indicating

LLMs’ trustworthiness (fairness) in reducing this bias compared to traditional machine learning

approaches. Our results also suggested that expanding the sample size can decrease LLMs’

ability to reduce human-induced labeling bias in spam detection. In general, this study

provides information on the strengths and limitations of LLMs and suggestions for methods

to minimize human-induced labeling bias in spam detection and can help guide the selection

of appropriate LLMs for this task.

87

Introduction

Short Message Service (SMS) is not just a mode of communication; it is a global phe-

nomenon. Despite the rise of messaging platforms based on the internet, SMS remains one of

the most ubiquitous means of communication. In 2023, 6.89 billion people had smartphones,

expected to grow to 7.86 billion by 2028, with 95% of text read and responded to within 3

minutes of receiving it. In the United States (U.S.) alone, 97% of adults own mobile phones

(85% being smartphones), and the market is projected to reach a value of 12.6 billion dollars

by 2025, with a compound annual growth rate of 20.3%1. The simplicity and availability of

smartphones and essential mobile devices have made it a major target for spam messages,

often leading to fraudulent activities, phishing, and identity theft [80]. A survey conducted in

2022 in the United States indicated that more than 225 billion people received spam texts, an

increase 157% compared to 87.8 billion in 2021. An estimated $20 billion lost from scams2. It

is also important to note that spam causes a burden on network capacity and data storage [90].

As SMS usage grows, so does the need for effective spam detection systems. Traditional spam

detection models are heavily relying on machine learning techniques, which depend on labeled

datasets for training. However, these data sets are often manually labeled, introducing human-

induced bias leading to data imbalances that can compromise the performance and fairness of

the model [79, 82].

Bias generally refers to systematic errors in data that can lead to discriminatory results or

outcomes. Spam detection is critical in maintaining the security and integrity of SMS messages

and economic costs within organisations [94]. Yet, their effectiveness is often downplayed by

human-induced label bias in the datasets used for training [79]. This bias could manifest from

subjective labeling, inconsistent interpretations, fatigue, lack of visibility into the system, and

1https://www.smscomparison.com/sms-statistics/
2https://www.robokiller.com/robokiller-2022-phone-scam-report

88

limited domain expertise. Biases, no matter their source, can lead to inconsistencies in the

training data [69] that distort the model learned by a spam classifier.

LLMs have shown their ability to combat spam [56, 62, 95] and provide cyber defenses [59].

LLMs, built on extensive collections of text and code datasets, have proven to excel in natural

language processing tasks such as translation, text generation, and text summarization[?]. The

capacity of LLMs to learn intricate linguistic structures, combined with their understanding of

how the meaning of words changes depending on the context, provides an opportunity to help

mitigate human-induced data labeling bias in SMS spam datasets. LLMs have proven effective

for text classification tasks, where assigning a predefined label to a given text is the objective[42].

Given the potential of large language models in text classification, the spam detection problem

can be approached as a text classification task, where the LLM processes a short text message

as input and outputs a label as spam or ham. With the massive amount of spam text received

daily by phone users, telecommunication companies can use LLMs to detect spam text thereby

reducing human-induced data labeling bias and economic costs of employing domain experts.

Several approaches exist for using machine learning, deep learning, and LLMs to tackle the

challenge of spam detection[42, 49, 56, 62, 95]. However, most of the work [95] does not mention

how LLMs can reduce human-induced data labeling bias in spam datasets. This motivates us

to develop an LLM-based SMS spam detection system to help reduce human-induced data

labeling bias and costs. Specifically, our research helps answer the following questions:

• Research Question 1 (RQ1): What are the most and least successful prompt designs for

LLMs to help reduce human-induced labeling bias for SMS spam datasets?

• Research Question 2 (RQ2): How well do LLMs reduce human-induced labeling bias for

SMS spam datasets compared to state-of-the-art machine learning models?

Using two prompt designs to investigate these research questions, we evaluated two LLMs

(ChatGPT and Gemini). We designed several prompts (zero-shot, one-shot, two-shot and three-

89

shot) to guide the LLMs. We also investigated their empirical performance and capability of

distinguishing between spam and ham SMS messages. Our results indicate that most models

perform best with prompting. We also found that LLMs can differentiate between spam and

ham messages with 100% Balanced Accuracy and low equal opportunity difference. As the

number of samples increased, LLMs performed with 82% to 97% balanced accuracy, recall of

86% to 97%, precision of 53% to 82%, and fairness metrics, with an equal opportunity difference

of 0 % to 3%. GPT-4 performed the best among the two LLMs and correctly classified 722 out of

747 spam texts with a balanced accuracy of 97% and equal opportunity difference of 0.00%. In

addition to testing GPT-4 and Gemini, we tested traditional approaches like logistic regression

[35] and XGBoost [30].

Our key contributions in this paper include the following [48]:

• Our work evaluated the capabilities of state-of-the-art LLMs in reducing human-induced

data labeling bias in SMS spam datasets, achieving a balanced accuracy of 97%, recall of

97%, and an equal opportunity difference of precisely zero, as compared to conventional

machine learning approaches with a balanced accuracy of 97%, recall of 81% and an equal

difference of 36%.

• In-context learning with prompts is the most significant factor in reducing human-

induced data labeling bias in SMS spam detection with LLMs. It enables LLMs to

dynamically adapt to specific language tasks and contexts, effectively addressing biases

inherent in human-labeled data.

• LLMs can detect 722 out of 747 spam texts (recall of 97%), showing their capability of

reducing human-induced data labeling bias.

The remainder of this research paper is structured as follows: Section 7 covers the related

work. Section 7 describes the experimental setup, including the dataset description, LLM fine-

tuning, bias mitigation, implementation, model performance and fairness metrics. This section

90

also describes the comparative analysis done using two baseline methods. Section 7 discusses

the results of the research questions (RQs). Section 7 discusses the results, and Section 7

concludes the paper.

Related Work

Human-induced bias in data labeling is a persistent challenge in machine learning, partic-

ularly for tasks involving subjective interpretations, such as spam detection. When annotators

are responsible for labeling large datasets, their perspectives often introduce inconsistencies

that significantly hinder the performance of models trained on such data. This variability can be

a significant obstacle in tasks like SMS spam detection. Studies, such as those by Fort et al. [43],

have emphasized how human labelers” personal biases influence their labeling decisions. This

issue is particularly evident in SMS spam datasets, where the line between legitimate and spam

messages is often subjective.

Researchers have increasingly turned to large language models (LLMs) like ChatGPT,

and Gemini to mitigate human-induced bias [62]. These models have effectively automated

the labeling process or assisted human annotators, thereby reducing the subjective nature

of manual labeling. Tida and Hsu introduced a BERT model [114], one of the first models

that significantly improved downstream task performance with minimal fine-tuning. It has

been widely used in NLP tasks, including spam detection, where it helps standardize label

generation.

More recently, NLP models have gained attention for their ability to mitigate human

bias during data labeling. The model’s few-shot learning capabilities, as demonstrated by

Brown [25], allow it to generate labels for large datasets with minimal human supervision. The

capability of natural language processing models to produce contextually accurate labels has

been used in multiple scenarios to reduce human biases, especially in subjective tasks like

content moderation and spam detection. Similarly, Hur et al. [62], also using LLMs for SMS

91

spam detection, achieved an average F1 score of 0.97 and 0.79 for Korean and English datasets,

respectively. By integrating their approach into the labeling pipeline, researchers minimized the

biases introduced by individual annotators, leading to more consistent dataset annotations.

Beyond fully automated labeling, some NLP tasks have been employed in semi-automated

approaches to mitigate labeling bias further. These systems allow human annotators to

collaborate with the model, improving label accuracy while reducing individual annotator

subjectivity. Schick and Schütze [101] explored prompt-based learning, where LLMs guide

human annotators by providing more neutral or standardized label suggestions. This hybrid

approach leverages the contextual understanding of large language models while retaining

human oversight, crucial for subjective tasks like spam classification.

In addition to automated and semi-automated approaches, active learning frameworks

have also been employed to address labeling bias. These frameworks iteratively refine labeled

data by combining machine-learning models with human input [103]. In such systems, LLMs

like GPT can suggest corrections or flag potential bias in labeled datasets, allowing human

annotators to focus on edge cases or ambiguous examples. This collaborative approach helps

to improve the overall labeling process and mitigate the biases introduced by individual human

annotators.

These studies demonstrate the effectiveness of Natural Language Processing and BERT

models for text classification. Our study builds on these papers to extend the works of

[25, 62, 101, 103, 114] by using LLMs like to reduce human-induced labeling bias in SMS Spam

detection, achieving high Balanced Accuracy. Our proposed study also has a Equal Opportunity

Difference (EOD) of zero, indicating how fair, trustworthy, and transparent our study is.

Experimental Setup

We propose a novel approach that uses LLMs to reduce human-induced labeling bias in

SMS spam detection. The step-by-step process of our innovative approach is described below:

92

SMS Spam Data

The SMS Spam collection dataset is provided by UCI Machine Learning Repository [11].

This dataset contains 5572 rows with two columns, with the first column specifying the message

category, whether it’s "spam" or "ham." Spam here means an unsolicited message, while ham

means a standard message. The second column contains the messages. Of the 5572 rows, 4825

are ham messages (86.6%) and 747 spam messages (13.4%).

LLM Fine-Tuning

In this step, we fine-tuned two LLMs: ChatGPT-4 [39] and Gemini-1.0-Pro [110]. We

selected these LLMs because they are well known for their ability in text classification [101, 106].

For both LLMs, we used a context length of 128k. Fine-tuning allows the models to adapt to the

peculiarities of the SMS data and better understand the nuances of spam vs. non-spam (ham)

messages.

Bias Mitigation

The next step involves applying prompt (learning) designs for bias mitigation strategies

within the LLM. These prompt designs instruct the model to perform spam detection with

minimal bias. We incorporated two prompting methods, namely basic (zero-shot) prompting

and in-context (n-shot) prompting, as proposed in existing research [73, 106].

• Basic (zero-shot): This prompting design requires no demonstration and provides only a

task description. It is the most convenient, robust, and challenging to understand, as no

specific example is given. Sometimes, the Basic prompt design setting is identical to the

human task.

• In-context (n-shot): This involves providing the model with examples of inputs and cor-

responding responses to facilitate few-shot learning[25, 106]. These examples help guide

93

the model in generating responses that match the format of the provided examples. The

choice of these examples-based learning can significantly affect the model’s performance.

Implementation

In this phase, the fine-tuned models are implemented using Python. We utilized the APIs

of GPT-4 and Gemini-1.0-Pro hosted by OpenAI3 and Google AI studio4. We selected the text

generation parameters for ChatGPT-4 and Gemini-1.0-Pro: Top-p = 1.0, temperature = 0.0, and

max. tokens generated = 256. We choose the model’s hyper-parameters to ensure deterministic

responses, thereby enhancing the model’s reliability. Our models typically respond with

categorical responses, such as spam/ham, along with their respective probabilities.

Model Evaluation

We used three performance metrics: Recall, Precision, and Balanced Accuracy. Recall (R) is

the ratio of correctly predicted positive instances (spam) to the total number of actual positive

examples:

R = T P

T P +F N

Precision (P) is the fraction of positive examples correctly predicted to be in a positive (spam)

class out of all predicted positive (spam) examples:

P = T P

T P +F P

Balanced Accuracy (ACC) [106] is the average accuracy calculated for both the positive (spam)

and negative (ham) examples:

B al anced Accur ac y =
cor r ectneg ati ve

exampl esneg ati ve
+ cor r ectposi t i ve

exampl esposi t i ve

2

3https://platform.openai.com/docs/overview
4https://aistudio.google.com/app/prompts/new_chat

94

For the fairness metric, we used the statistical parity difference (SPD) [46] and the equal

opportunity difference (EOD) [116]. Statistical parity difference measures the difference in the

probability of a message being predicted as spam by using spam keywords like "free" and "text."

SPD = ∣∣P (Spam | "free")−P (Spam | "text")
∣∣

where,

P (Spam | "free") =
∣∣∣∣ T P f r ee +F P f r ee

T P f r ee +F P f r ee +F N f r ee +T N f r ee

∣∣∣∣
and

P (Spam | "text") =
∣∣∣∣ T Ptext +F Ptext

T Ptext +F Ptext +F Ntext +T Ntext

∣∣∣∣
Equal opportunity difference (EOD) measures the true positive rate difference for spam mes-

sages using spam keywords like "free" and "text."

EOD = |P (True Positive | "free")−P (True Positive | "text")|

where,

P (True Positive | "free") = T Pfree

T Pfree +F Nfree

and

P (True Positive | "text") = T Ptext

T Ptext +F Ntext

SPD and EOD values close to zero means that the algorithm is equally likely to make a mistake

for each spam keyword, indicating how fair the algorithms are in making decisions across the

keywords in spam messages.

95

Comparative Analysis

In the last step of the proposed approach, we compare the fine-tuned LLMs with tradi-

tional machine-learning models such as Logistic regression and Extreme Gradient Boosting

(XGBoost). These state-of-the-art models are commonly used in spam detection but may lack

advanced language understanding of LLMs.

Results of RQs

RQ1: What are the most and least successful prompt designs for LLMs-based to help reduce

human-induced labeling bias for SMS spam datasets?

In this study, we used a ’task context (natural language) description,’ which provides a

detailed context to distinguish whether a message is spam or ham, alongside their respective

probabilities. This context description was tested on both prompt designs as described in

section III B. These natural language descriptions for various prompt designs are as follows:

• Basic (zero-shot) prompting: In this prompt design, we used the following context:

Classify the following SMS message as ham or spam. Also return the probability of

it being spam. The output should only contain two words: ham or spam, and the

probability with two decimal points.

• For in-context prompting, we explored three different configurations:

– One-shot: An example of a ham or spam message is given in this context: Here is

one example:

Example 1: Message: ’Spam example from the dataset’

output: spam 0.98

Now, classify the following message: Message: ’{message}’ Return the classification

96

(ham or spam) and the probability, rounded to two decimal points.

– Two-shot: Two examples of ham or spam messages are given in this context: Here

are two examples:

Example 1:

Message: ’Spam example from the dataset’

output: spam 0.98

Example 2:

Message: ’Ham example from the dataset’

output: ham 0.01

Now, classify the following message: Message: ’{message}’ Return the classification

(ham or spam) and the probability, rounded to two decimal points.

– Three-shot: Three examples of ham or spam messages are given in this context:

Here are three examples:

Example 1:

Message: ’Spam example from the dataset’

output: spam 0.98

Example 2:

Message: ’Ham example from the dataset’

output: ham 0.01

Example 3:

Message: ’Spam example from the dataset’

output: spam 0.99

Now, classify the following message: Message: ’{message}’ Return the classification

(ham or spam) and the probability, rounded to two decimal points.

97

Table 7.1 shows the performance of all prompting methods using the mean class (balance)

accuracy metric. The findings indicate that in-context prompting methods deliver the best

performance, with two-shot and three-shot achieving comparable results.

Table 7.1: Evaluation of various prompting techniques across models.

Model Basic In-Context

One-Shot Two-Shot Three-Shot

Balanced Accuracy (ACC)

ChatGPT-4 0.93 0.96 0.97 0.97

Gemini-1.0-Pro 0.82 0.85 0.88 0.87

Summary for RQ1: In-context prompts performed better for both ChatGPT and Gemini in

reducing human-induced labeling bias for SMS spam datasets.

RQ2: How well do LLMs reduce human-induced labeling bias for SMS spam datasets compared

to state-of-the-art machine learning models?

We used each model’s best prompting method (ChatGPT-4 with two-shot and Gemini

with two-shot) to compare the LLMs’ capabilities for reducing human-induced labeling bias.

ChatGPT-4 achieved a Balanced Accuracy of 97%, recall of 97%, and precision of 82%, show-

casing its ability to classify spam and ham SMS messages accurately while maintaining fairness

with an equal opportunity Difference (EOD) of 0, as shown in Table 8.1. Traditional models, with

higher precision but comparable accuracy, are better suited for scenarios prioritizing fewer false

positives. High precision but low recall in these models allow more spam to bypass filters. In

98

contrast, ChatGPT -4’s high recall and lower precision reflect an aggressive filtering approach,

minimizing spam at the cost of some ham misclassification. Figure 7.1 highlights ChatGPT -4’s

confident and decisive classifications, with ham near 0 and spam near 1. Figure 7.1 further

illustrates ChatGPT -4’s decisive classifications, with ham predictions clustering near 0 and

spam near 1, confirming its confident and low-variability decision-making.

Table 7.3 presents the performance of each model based on samples classified as spam

or ham. Notably, ChatGPT-4 continues to stand out with a Balanced Accuracy, precision, and

recall of 100%, and an equal opportunity difference of 0%.

Table 7.2: Precision, Recall, Balanced Accuracy (ACC), SPD (free, text), and EOD (free, text) for
Models in best Prompting (Two-Shot) and State-of-the-art Methods

Model P R ACC SPD EOD

ChatGPT-4 0.82 0.97 0.97 0.03 0.00

Gemini-1.0-Pro 0.53 0.86 0.88 0.09 0.02

Logistic regression 0.96 0.64 0.95 0.04 0.36

XGBoost 0.96 0.81 0.97 0.04 0.36

99

Figure 7.1: Probability Density Plot showing the distribution of Ham (0) and Spam (1) Messages
for ChatGPT-4 with the best In-contexting prompting (two-shot)

Table 7.3: Precision, Recall, Balanced Accuracy (ACC), SPD (free, text), and EOD (free, text) for
Models with the best In-context prompting (Two-shot) with Different Sample Sizes

Model Sample Size P R ACC SPD EOD

ChatGPT-4 10 1.00 1.00 1.00 0.00 0.00

ChatGPT-4 20 1.00 1.00 1.00 0.00 0.00

ChatGPT-4 30 1.00 1.00 1.00 0.00 0.00

ChatGPT-4 60 1.00 1.00 1.00 0.00 0.00

ChatGPT-4 100 0.80 1.00 0.98 0.03 0.00

Gemini-1.0-Pro 10 0.67 1.00 0.94 0.13 0.13

Gemini-1.0-Pro 20 0.57 1.00 0.91 0.19 0.19

Gemini-1.0-Pro 30 0.50 1.00 0.90 0.20 0.20

Gemini-1.0-Pro 60 0.47 0.89 0.86 0.07 0.07

Gemini-1.0-Pro 100 0.42 0.92 0.87 0.08 0.08

100

Summary for RQ2: ChatGPT outperformed Gemini, achieving a balanced accuracy of 97%

and an EOD of 0.00, highlighted in yellow, compared to leading machine learning models.

Discussion

Our experimental findings emphasize the transformative potential of LLMs in mitigating

human-induced labeling bias in SMS spam datasets. These LLMs demonstrate superior

recall, statistical parity difference (SPD), and equal opportunity difference (EOD) compared

to traditional methods, although with lower precision tradeoffs. This suggests a promising

avenue for further exploration in prompt fine-tuning to enhance performance. By reducing

reliance on human-labeled training data, our proposed approach offers a more efficient and

adaptive solution for environments with rapidly evolving SMS spam techniques, outperforming

conventional machine learning models.

The availability of English only SMS messages is a limitation to the generalisation of this

work and poses an external threat to validity. Using spam messages in other languages was

not considered. Secondly, the SMS spam dataset can be considered outdated, as it was made

available in 2012. Third, we only tested two models and two prompting methods, which does

limit the conclusion validity of our results.

Conclusion and Future work

Our research evaluated the capabilities of LLMs using Basic and In-context prompting

methods to reduce human-induced labeling bias. We found that LLMs are ineffective with the

Basic (zero-shot) prompting method; results improved from one-shot to 2-shot. From two-

shot to three-shot, the performance is decreased slightly. The study also reveals that in In-

context prompting methods, LLMs achieve high Balanced Accuracy, recall, and precision, and

low statistical parity, and equal opportunity differences. This demonstrates the potential of

101

leveraging LLMs in an In-context setting for efficient and accurate SMS spam detection without

previous state-of-the-art machine learning or deep learning, requiring large labeled datasets,

which are costly in terms of labeling by humans and pre-processing. In-context prompting

only requires a few examples of messages, and using this method, patterns of recent SMS

spam messages can be quickly updated and filtered in digital communication channels. A

key strength of our research is its ability to eliminate the need for manual data collection and

labeling. The labels generated by LLMs are largely free from the bias typically introduced by

human annotators.

For future work, one could expand the study to different languages and explore different

LLMs and prompting techniques [106]. Secondly, one can explore the benefit of integrating

LLM-based labeling into machine learning or deep learning pipelines. Thirdly, one research

direction is to develop auto-optimization prompting techniques instead of relying on manual

prompting.

102

REDUCING HUMAN-INDUCED LABEL BIAS IN SMS SPAM WITH CONTEXT-ENHANCED

CLUSTERING (CEC)

Contribution of Authors and Co-Authors

Manuscript in Chapter titled ‘Reducing Human-Induced Label Bias in SMS Spam with Context-

Enhanced Clustering (CEC)’

Author: Gerard Shu Fuhnwi

Contributions: Problem identification and proposing solution, conducting experiment, manuscript

writing, creating tables. Primary writer

Co-Author: Dr. Ann Marie Reinhold and Dr. Clemente Izurieta

Contributions: Contribution in manuscript editing/writing, provided feedback, guidance and

advice.

103

Manuscript Information Page

Gerard Shu Fuhnwi, Dr. Ann Marie Reinhold, and Dr. Clemente Izurieta

IEEE International Conference on Cyber Security and Resilience (CSR)

Status of Manuscript:

Prepared for submission to a peer-reviewed journal

Officially submitted to a peer-reviewed journal

× Accepted by a peer-reviewed journal

Published in a peer-reviewed journal

IEEE

7th April 2025

104

Abstract

Short Message Service (SMS) is a widely used text messaging feature available on both

basic and smartphones, making SMS spam detection a critical task. Supervised machine

learning approaches often face challenges in this domain due to their dependence on manually

crafted features, such as keyword detection, which can result in simplistic patterns and mis-

classification of more complex messages. Furthermore, these models can exacerbate human-

induced bias if the training data include inconsistent labeling or subjective interpretations,

leading to unfair treatment of specific keywords or contexts.

We propose a Context-Enhanced Clustering (CEC) approach to address these challenges

by leveraging contextual metadata, adaptive thresholding, and modified similarity measures

for clustering. We evaluate our approach using the English SMS spam dataset source from

UC Irvine’s Machine Learning Repository. CEC identifies representative samples from the

SMS dataset to fine-tune LLMs such as ChatGPT-4, improving the robustness and fairness of

spam classification. Our approach outperforms traditional clustering techniques such as K-

means and DBSCAN in mitigating bias, as demonstrated through experiments measuring a

balanced accuracy of 85% and a treatment equality difference (TED) of precisely zero. When

used to identify representative samples to fine-tune ChatGPT-4, the CEC achieves a balanced

accuracy of 98%, an equal opportunity of difference (EOD), and a treatment equality difference

(TED) of zero. These results significantly reduce human-induced bias while maintaining high

classification accuracy.

Introduction

Short Message Service (SMS) is not merely a mode of communication but a global

phenomenon. Despite the increasing dominance of Internet messaging platforms, SMS is one

of the most ubiquitous and reliable communication methods. In 2023, there were 6.89 billion

105

smartphone users worldwide, projected to increase to 7.86 billion by 2028. SMS remains highly

effective, with 95% of text messages read and responded to within three minutes after receiving.

In the United States alone, 97% of adults own mobile phones (85% of which are smartphones),

and the SMS market is projected to reach a value of 12.6 billion dollars by 2025, experiencing a

significant growth compound annual rate of 20.3% 1. However,the simplicity and widespread

availability of mobile devices have made SMS a significant target for spam messages, leading

to fraud, phishing, and identity theft [80]. In 2022, a survey in the United States revealed that

more than 225 billion spam texts were sent, a staggering 157% increase from 87.8 billion in 2021.

These scams resulted in an estimated 20 billion dollars in financial losses2.

Furthermore, spam significantly burdens network capacity and data storage, further

compounding its negative impacts [90]. As SMS usage increases, the demand for effective

and robust spam detection systems becomes increasingly critical. Addressing this challenge

is essential to ensure user safety, maintaining network efficiency, and preserving SMS’s trust

and reliability as a communication platform. Existing spam detection methods often rely on

manually labeled datasets, which introduce human biases arising from inconsistencies in the

way messages are labeled, affecting classification fairness and accuracy [79, 82]. Although clus-

tering techniques such as K-means [58] and DBSCAN [45] are widely used for pre-processing

and semisupervised learning, they fail to address these biases due to static configurations and

limited adaptability to contextual features.

Human-induced bias refers to systematic patterns of unfairness introduced into data due

to human decisions, perspectives, or behaviors that can result in discriminatory outcomes.

Spam detection plays a crucial role in ensuring the security and reliability of SMS communi-

cations while minimizing economic losses for organizations [94]. However, its effectiveness is

often compromised by the human-induced label bias present in the training datasets [79]. This

1https://www.smscomparison.com/sms-statistics/
2https://www.robokiller.com/robokiller-2022-phone-scam-report

106

bias can arise from subjective labeling, inconsistent interpretations, annotator fatigue, limited

domain expertise, or a lack of transparency in the labeling process. Such biases introduce

inconsistencies in the training data [69], ultimately distorting the models developed for spam

classification.

Several clustering techniques have been proposed for SMS spam detection, offering a

combination of methods to enhance effectiveness [3, 13, 88, 92, 105]. However, in most existing

work, incorporating contextual metadata, such as spam-related keywords and fairness, still

needs to be addressed, limiting their applicability in real-world scenarios. This motivates

the development of a fair, efficient, and context-aware clustering approach, such as Context-

Enhanced Clustering for SMS spam detection, which incorporates adaptive techniques and

contextual metadata to improve clustering quality and reduce human-induced labeling bias.

Our research specifically addresses the following questions:

• RQ1: How effective is the context-driven clustering approach in reducing human-

induced label bias compared to traditional clustering techniques such as DBSCAN and

K-means in SMS spam detection?

• RQ2: Can a context-driven clustering technique effectively automate the selection of

representative samples to generate prompts to fine-tune large-language models in SMS

spam detection?

The main contributions of our approach are as follows:

• We introduce a novel context-driven clustering framework that incorporates contextual

metadata, modified cosine similarity, and adaptive thresholding to improve clustering

quality in SMS spam detection.

107

• We automate the selection of representative samples from clusters, enabling efficient and

unbiased prompt generation for LLM fine-tuning and eliminating manual effort.

• We demonstrate significant reductions in human-induced label bias and improved fair-

ness in SMS spam detection using metrics such as equal opportunity, statistical parity,

and treatment equality differences while maintaining high classification performance.

The rest of this paper is organized as follows: Section II discusses related work. Section III

introduces the Context-Enhanced SMS Clustering (CESC) framework, detailing the integration

of contextual metadata, modified cosine similarity, adaptive thresholding, and the selection

of representative samples for fine-tuning LLMs. Section IV describes model performance

evaluation, fairness metrics, and results addressing the research questions (RQs). Section

V provides an in-depth discussion of the empirical results. Section VI presents a threat to

the validity of our approach. Finally, Section VII concludes the paper and suggests potential

directions for future research.

Related Work

Human-induced bias in data labeling remains a persistent challenge in machine learning,

especially for tasks that require subjective interpretations, such as spam detection. When

annotators label large datasets, their perspectives can introduce inconsistencies that adversely

affect the performance of models trained on these data. This variability poses a considerable

challenge in tasks such as SMS spam detection. Research, including the work by Fort et al.

[43], highlights how human labelers’ backgrounds and personal biases can shape their labeling

decisions. Although several research studies have been conducted about data labeling in the

SMS spam detection domain using clustering algorithms such as K-means [58] and DBSCAN

108

[45], little research has been conducted to address human-induced biases due to the large

number of short messages in SMS.

A contextual term is defined by its meaning and the surrounding words and sentences that

decorate the word. Some terms such as "free" or "win" are more suspect in short SMS messages.

Therefore, special clustering techniques are needed to reduce human-induced label bias in

SMS text messages for spam detection, since existing clustering methods have limitations in

adapting to contextual terms in short text data such as SMS.

Specifically, with respect to SMS detection, Nagwani and Sharaff [88] investigated a bi-level

text classification and clustering approach employing K-means to improve SMS spam filtering

and thread identification. Their approach demonstrated that integrating clustering with

classification techniques can effectively enhance spam detection but has limited adaptability

to varying message densities.

Anjali et al. [105] introduced optical character recognition for image data using un-

supervised and deep semi-supervised learning for the detection of SMS scams. This study

employs a combination of K-means, Non-Negative Matrix Factorization, and Gaussian Mixture

Models along with feature extraction techniques such as TF-IDF and PCA, with K-means feature

extraction and vectorizer achieving a superior accuracy.

Hind and Rachid [13] explored unsupervised and supervised learning techniques, a hybrid

model combining K-means and Naive Bayes, Random Forests, Logistic regression, and a

Support Vector Machine for SMS spam detection, with K-means-SVM having outstanding

precision. Similarly, Darshit [92] also combines clustering with the Support Vector Machine

for SMS spam detection.

A comparative analysis by Songfeng et al. [107] evaluated the performance of K-means

and DBSCAN on synthetic datasets. The study provided valuable insights into the strengths and

limitations of each algorithm, informing their application in SMS spam detection. In a similar

research work by Ahmad and Shilpa [3], they analyze four clustering algorithms, namely K-

109

means, DBSCAN, HCA, and MDBCA, and compare their performance using different datasets.

These studies demonstrate the ability of clustering for text classification. Our study

builds on these papers to extend the works of [13, 88, 92, 105, 107] by using context-enhanced

clustering to reduce human-induced labeling bias in SMS spam detection. We expand on

previous approaches by addressing the evolving nature of spam messages and contextual

features that are present in short SMS texts.

Our Approach

This section describes the proposed Context-Enhanced Clustering (CEC) framework for

mitigating human-induced labeling bias in SMS spam detection. CEC leverages contextual

metadata, modified cosine similarity, and adaptive clustering to help create high-quality

clusters of SMS messages as shown in Figure 8.1. Our CEC approach automatically selects

representative samples from the generated clusters, ensuring a diverse and unbiased selection

of messages. These representative samples are then used to create prompts for fine-tuning

a Lareg Language Model (LLM), enhancing its ability to classify SMS spam more fairly and

accurately while mitigating human-induced labeling bias.

110

Figure 8.1: This is a flow chart of the proposed CEC approach. The rectangles represent the CEC
processes, the cylinders represent stored data, the oval shape represents the final step, and the

arrows indicate the flow direction.

SMS Spam Data (Step 1)

The SMS spam collection dataset from the UCI Machine Learning Repository comprises

5572 entries with two columns [10]. The first column specifies the message category, either

spam (unsolicited message) or ham (regular message), while the second column contains the

message text. Of the 5572 entries, 4825 are ham messages (86.6 %) and 747 spam messages (13.4

111

%).

Contextual Metadata Analysis (Step 2)

CEC begins by analyzing the contextual metadata of SMS messages to assign importance

to terms that are more relevant to spam messages. Spam-related keywords ("free," "win,"

"offer") are identified based on domain knowledge and their frequency in spam-labeled

messages. Each term ti j in a message mi is assigned a weight based on its relevance and

frequency:

wi j = Relevance(ti j)×Frequency(ti j , Mspam)

Where wi j is the contextual weight for term ti j , calculated based on term relevance and its

frequency in spam, and Mspam denotes the subset of messages labeled as spam.

Weighted TF-IDF (Step 3)

Each SMS message is transformed into a weighted Term Frequency Inverse Document

Frequency (TF-IDF) vector, emphasizing contextually essential terms. The weighted TF-IDF

score for a term ti j is computed as:

Weighted TF-IDF(ti j) = TF-IDF(ti j) ·wi j

The weighted TF-IDF helps capture the importance of each term within a message, accounting

for the contextual significance in spam detection.

Modified Cosine Similarity with Weighted TF-IDF (Step 4)

A modified cosine similarity metric is applied to measure the similarity between SMS

messages. Consider two messages A = [a1, a2, . . . , an] and B = [b1,b2, . . . ,bn]. Let W =
[w1, w2, . . . , wn] represent the vector of contextual weights. Then, the modified cosine similarity

112

is defined as:

Modified Cosine SimilarityAB =
∑n

k=1 wk ·ak ·bk√∑n
k=1 wk ·a2

k ·
√∑n

k=1 wk ·b2
k

Where wk is the contextual weight of term k, and ak , bk are the weighted term frequencies for

messages A and B , respectively.

Adaptive Thresholding (Step 5)

To allow clusters to adapt dynamically, thresholds for grouping messages must be deter-

mined. For each message mi , the local density is calculated using the average similarity of its

k-nearest neighbors :

Di = 1

k

∑
j∈Neighborsk (i)

Si j

where Si j is the similarity between messages mi and m j . The thresholding for clustering is then

computed as:

ϵi =α ·Di

where α is a scaling factor that adjusts sensitivity to message density, this adaptive threshold

ensures that clustering accounts for local variations in message density. Messages in high-

density areas (many similar messages) require higher similarity to be grouped, preventing

overgeneralization. In contrast, messages in low-density regions (rare or unique messages) are

allowed looser similarity thresholds, ensuring rare spam patterns are captured.

Representative Sample Selection (Step 6)

When the adaptive clusters are formed based on local message density as described in

step 5, representative samples are selected from these clusters to provide a balanced and

unbiased subset for fine-tuning LLMs. These samples are selected based on the centrality score

for a message x in the cluster Ci . Messages with the highest centrality score are selected as

113

representative samples, ensuring they are most indicative of the cluster characteristics. This

centrality score is calculated as the average similarity Sx y between x and all other messages y

in the cluster Ci as follows:

R(x) = 1

|Ci |
∑

y∈Ci

Sx y

Fine-Tuning the LLM (Step 7)

The selected representative samples generate prompts for fine-tuning a pre-trained LLM,

such as ChatGPT, for SMS spam detection. LLM fine-tuning trains the model to classify

messages as spam or non-spam, using the selected samples as input. This process reduces

human-induced label bias by relying on the contextually balanced generated prompts from the

clusters, which helps improve both fairness and model performance in classification.

The pseudo-code of our approach is shown in Figure 8.2.

Algorithm 1 Context-Enhanced Clustering (CEC)

Require: SMS corpus M , spam-related keywords K, TF-IDF, LLM model
1: Preprocess messages and compute TF-IDF vectors
2: Assign contextual weights to terms in K
3: Compute weighted TF-IDF vectors
4: Calculate modified cosine similarity for all messages
5: Perform adaptive thresholding:
6: for each message mi do
7: Compute local density using k-nearest neighbors
8: Calculate threshold ϵi = α×mean density
9: end for
10: Perform adaptive clustering:
11: Initialize clusters as empty
12: for each pair of messages (mi,mj) do
13: if Sij ≥ min(ϵi, ϵj) then
14: Assign mi and mj to the same cluster
15: end if
16: end for
17: for each cluster do
18: Calculate centrality scores for messages
19: Select representative samples with the highest scores
20: end for
21: Fine-tune LLM using representative samples as prompts
22: return Fine-tuned LLM model for spam detection

1Figure 8.2: Pseudocode for Context-Enhanced Clustering (CEC) Approach.3

114

Results Evaluation

Here, we describe how we evaluated our approach and provide the results that answer our

research questions.

Model Performance

The performance of our approach was evaluated using three performance metrics: pre-

cision (P), recall (R), and balanced accuracy (ACC). Precision (P) measures the proportion

of correctly predicted positive (spam) examples relative to all examples classified as positive

(spam):

P = T P

T P +F P

Recall is the proportion of positive instances (spam) correctly predicted out of the total number

of actual positive examples:

R = T P

T P +F N

Balanced Accuracy (ACC) is the mean accuracy calculated across both the positive (spam) and

negative (ham) classes [106]:

ACC =
cor r ectneg ati ve

exampl esneg ati ve
+ cor r ectposi t i ve

exampl esposi t i ve

2

Fairness Metric

Fairness refers to the ability of a spam detection model to classify spam and ham messages

equitably without introducing biases that disproportionately affect specific message patterns,

keywords, or context. We evaluated fairness using three metrics: statistical parity difference

(SPD), equal opportunity difference (EOD), and treatment equality difference (TED) [116].

3https://github.com/gshufuhnwi/CEC-Approach

115

Statistical parity difference quantifies the difference in the likelihood of a message being

classified as spam based on the presence of keywords such as "free" and "win."

SPD = ∣∣P (Spam | "free")−P (Spam | "win")
∣∣

where,

P (Spam | "free") =
∣∣∣∣ T P f r ee +F P f r ee

T P f r ee +F P f r ee +F N f r ee +T N f r ee

∣∣∣∣
and

P (Spam | "win") =
∣∣∣∣ T Pwi n +F Pwi n

T Pwi n +F Pwi n +F Nwi n +T Nwi n

∣∣∣∣
Equal opportunity difference (EOD) calculates the difference in true positive rates for spam

messages containing keywords such as "free" and "text."

EOD = |P (True Positive | "free")−P (True Positive | "text")|

where,

P (True Positive | "free") = T Pfree

T Pfree +F Nfree

and

P (True Positive | "win") = T Pwin

T Pwin +F Nwin

Treatment equality difference (TED) is satisfied if messages containing spam keywords like

"free" and "text" have an equal ratio of false negatives (FN) and false positives (FP).

TED = |
(

FN

FP

)
free

−
(

FN

FP

)
win

|

SPD, EOD, and TED values near zero indicate that the algorithm is equally likely to make errors

for each spam keyword, reflecting the fairness of its decision-making across keywords in spam

116

messages.

Addressing the Research Questions (RQs)

RQ1: How effective is the context-driven clustering approach in reducing human-induced

label bias compared to traditional clustering techniques such as DBSCAN and K-means in SMS

spam detection?

To answer this research question, we applied our approach described in Section 3, which

utilizes contextual metadata, modified cosine similarity, and adaptive clustering techniques

to generate high-quality clusters of SMS messages to help reduce human-induced label bias.

Our approach demonstrated a balanced accuracy of 85 %, recall of 68%, and precision of

100%, highlighting its effectiveness in accurately classifying spam and ham SMS messages.

Furthermore, it maintained fairness with a treatment equality difference of 0, as shown in

Table 8.1. DBSCAN, with similar precision and low accuracy, is better suited for scenarios

where minimizing false positives is a priority but might fail to deliver consistent results across

all messages. In contrast, K-means with low precision and low accuracy is unsuitable for

applications where reliable and accurate message classification is essential. DBSCAN, with high

precision but low recall, allows more spam messages to evade detection and pass through the

filters. In contrast, our approach with high precision and low recall demonstrates a conservative

filtering strategy, accurately identifying legitimate messages while allowing some spam to

bypass detection.

117

Table 8.1: Precision, Recall, Balanced Accuracy (ACC), SPD (free, win), EOD (free, win), and TED
(free, win) for our approach (CEC), DBSCAN and K-Means

Model P R ACC SPD EOD TED

CEC 1.00 0.68 0.85 0.13 0.02 0.00

DBSCAN 0.99 0.59 0.79 0.14 0.07 0.02

K-Means 0.82 0.44 0.71 0.14 0.06 0.08

Summary for RQ1: As highlighted in yellow, CEC surpassed DBSCAN and K-Means,

achieving a balanced accuracy of 85% and a TED score of 0.00.

RQ2: Can a context-driven clustering technique effectively automate the selection of rep-

resentative samples to generate prompts to fine-tune large-language models in SMS spam

detection?

Today, most applications rely on manual prompts to bridge the gap between human

and LLM language to achieve the best performance. To address this problem in SMS spam

detection, we used our CEC approach to help automate the selection of samples, which can

be used as prompts for fine-tuning large-language models (LLMs). This eliminates the need

for manual labeling and prompt generation, which is time-consuming and prone to human-

induced bias. In this study, we used our CEC approach to select samples, which are used as

input to fine-tune ChatGPT-4. CEC, together with ChatGPT-4, achieved a balanced accuracy

of 98%, recall of 97%, and precision of 88%, showing the ability of ChatGPT-4 to learn from

unbiased, high-quality examples from our CEC approach while maintaining fairness with an

EOD and a TED of 0, as shown in Table 8.2.

118

Table 8.2: Precision, Recall, Balanced Accuracy (ACC), SPD (free, win), EOD (free, win), and TED
(free, win) for ChatGPT-4 using CEC for prompt selection

Model P R ACC SPD EOD TED

ChatGPT-4 0.88 0.97 0.98 0.06 0.00 0.00

Discussion

Our experimental results highlight the significant potential of CEC to effectively mitigate

human-induced label bias by incorporating context-aware clustering and adaptive threshold-

ing in SMS spam datasets. Compared to traditional methods like DBSCAN and K-means, which

have lower recall and balanced accuracy, CEC demonstrates superior balanced accuracy, recall,

treatment equality difference (TED), and equal opportunity difference (EOD), and also ensures

balanced representation of spam-related context, reducing over-reliance on specific keywords.

Using CEC to select samples for fine-tuning LLMs such as ChatGPT-4 further enhances fairness

and classification accuracy, addressing the limitations of existing clustering methods. Our

approach minimizes the dependence on human-induced labeled training data, providing a

more adaptive and efficient solution for rapidly evolving SMS spam patterns while surpassing

traditional machine learning models.

Threats to validity

While our Context-Enhanced Clustering (CEC) approach effectively mitigates human-

induced label bias in SMS spam detection, certain factors may impact its generalizability and

validity:

• The reliance on English-only SMS messages restricts the applicability of this approach

119

to non-English languages. Spam characteristics, contextual meanings, and linguistic

structures vary across different languages, potentially affecting model performance when

applied to multilingual datasets.

• CEC relies on adaptive clustering with contextual weighting, which improves fairness but

may be sensitive to hyperparameter selection (clustering thresholds, similarity metrics).

Variability in parameter tuning could impact model outcomes, requiring further opti-

mization strategies for different datasets and spam trends.

• SPD, EOD, and TE assess spam detection’s fairness, minimizing classification disparities

across different message types. However, these metrics alone may not capture all forms

of subtle bias in spam detection.

Conclusion And Future Work

Our research presents a novel approach to mitigate human-induced label bias in SMS

spam detection using a context-enhanced clustering (CEC) framework. The study demon-

strates that CEC and using CEC to select samples for fine-tuning large language models such

as ChatGPT-4 achieved highly balanced accuracy, recall, and precision while maintaining low

equal opportunity and treatment equality differences compared to the work of G.S. fuhnwi et al.

[?]. This highlights the potential of CEC for efficient and accurate SMS spam detection, elim-

inating the need for traditional state-of-the-art machine learning or deep learning approaches

that rely on large, labeled datasets, which are costly in terms of human labeling.

Future work will focus on extending the CEC approach to multilingual datasets, sentiment

analysis, explore additional fairness evaluation frameworks and implementing real-time spam

filtering capabilities.

120

CONCLUSION AND FUTURE WORK

Conclusion

This dissertation presents a comprehensive exploration of bias mitigation in anomaly

detection systems through the design and evaluation of advanced machine learning and

statistical frameworks. The work is motivated by the critical need for fairness, accuracy,

and robustness in domains such as malware detection, network intrusion detection, and

SMS spam classification. To address existing literature gaps, this research proposes a series

of innovative techniques validated through multiple case studies involving supervised and

unsupervised learning approaches. The first part of this work introduces a novel hybrid

framework for malware detection that integrates a deep autoencoder with logistic regression.

This combination effectively mitigates representation bias by leveraging deep learning’s feature

extraction strengths and logistic regression’s interpretability. Quantitative fairness assessments,

such as Statistical Parity Difference (SPD), are employed to evaluate the proposed system’s bias

mitigation capacity. Next, the dissertation presents an empirical evaluation of a bias-aware

intrusion detection method using Extreme Gradient Boosting (XGBoost) and Recursive Feature

Elimination (RFE). This approach addresses measurement bias by refining feature selection,

improving model performance, and minimizing false alarms. In addition, a statistical hypoth-

esis testing procedure is introduced to benchmark the proposed system against traditional

baselines. To combat human-induced labeling bias in anomaly detection, the study explores

the use of unsupervised models, specifically isolated forests and one-class SVMs, capable of

detecting anomalies without reliance on human-annotated data. These techniques demon-

strate high utility in intrusion detection, where accurate labeling is often scarce or subjective.

To address similar challenges in natural language domains, the dissertation proposes using

large language models (LLMs) such as ChatGPT and Gemini for SMS spam detection. A

prompt-based in-context learning approach is employed to reduce the influence of subjective

121

or inconsistent human-labeled training data. This method enables the LLM to dynamically

adapt to task-specific contexts and improves overall classification fairness. Finally, the work

introduces a context-based clustering approach (CEC) to reduce bias in the classification of

SMS spam. By incorporating contextual metadata, adaptive thresholding, and a modified

measure of cosine similarity, the CEC method facilitates the creation of fairer clusters and

the selection of representative samples for downstream fine-tuning with LLMs. Collectively,

this dissertation offers a unified bias-aware framework to improve anomaly detection systems

through a combination of hybrid architectures, unsupervised learning, and prompt-based LLM

fine-tuning. These contributions not only address significant gaps in the current literature,

but also extend the body of knowledge in machine learning fairness and trustworthy anomaly

detection, with practical implications across a range of high-impact applications.

Future Work

This dissertation presents a comprehensive study on bias mitigation in anomaly detection

systems using improved machine learning and statistical frameworks. It addresses human-

induced, measurement, and representation biases in malware detection, network intrusion de-

tection, and SMS spam classification. In the future, we intend to make additional contributions

to this evolving research space by extending the scope, methods, and practical applicability

of the proposed approaches. First, we plan to incorporate model interpretability techniques

such as SHAP (SHapley Additive Explanations) and LIME to better understand the decision-

making processes of the hybrid autoencoder-logistic regression model for malware detection

[46]. This will not only help identify sources of bias, but will also improve transparency and

accountability. We also aim to extend this approach to other forms of obfuscated malware and

evaluate its adaptability in real-time detection environments.

Second, building on our XGBoost-based intrusion detection approach [47], our goal is

to explore deep learning techniques such as GANs and deep autoencoders. These models

122

are more capable of capturing complex patterns in high-dimensional data and can reduce

the computational burden introduced by Recursive Feature Elimination (RFE). In addition, we

will explore the integration of fairness-aware objectives into the training loop of these models

and assess their impact on bias metrics such as Statistical Parity Difference (SPD) and Equal

Opportunity Difference (EOD).

Third, in addressing human-induced labeling bias [44], future work will involve a com-

parative evaluation of unsupervised models like Isolation Forest and One-Class SVM against

supervised models, such as cost-sensitive SVMs and ensemble classifiers. This will help

determine under which conditions each category of model is better suited for fair and robust

intrusion detection. We also plan to extend these studies to datasets that include dynamic and

evolving threat patterns, thus improving the generalization between attack types.

Fourth, to further investigate the role of large language models (LLMs) in reducing bias

[48] in NLP tasks, we plan to (i) extend the current work to multilingual SMS datasets, (ii)

evaluate different LLMs and in-context prompting strategies, and (iii) develop automated

prompt optimization methods to eliminate manual intervention. We also aim to explore the

integration of LLM-generated annotations into machine learning training pipelines to improve

both scalability and fairness.

Lastly, we intend to expand the Context-Enriched Clustering (CEC) approach to other

applications, such as sentiment analysis and real-time SMS spam filtering. We aim to test

CEC’s scalability under streaming conditions and evaluate additional fairness frameworks to

support responsible deployment. In addition, we plan to optimize the adaptive thresholding

mechanism within the CEC using data-driven techniques to improve its robustness across

various distributions.

Through these future efforts, we aim to broaden the impact of this work and further

strengthen the intersection between fairness, machine learning, and cybersecurity. Our

ultimate goal is to enable the development of trustworthy anomaly detection systems that can

123

operate reliably in sensitive, real-world environments where accuracy and fairness are both

critical.

124

REFERENCES CITED

[1] Naoki Abe, Bianca Zadrozny, and John Langford. Outlier detection by active learning.
In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 504–509, 2006.

[2] Narasimha R Adiga, George Almási, George S Almasi, Yariv Aridor, Rajkishore Barik,
D Beece, Ralph Bellofatto, Gyan Bhanot, Randy Bickford, M Blumrich, et al. An overview
of the bluegene/l supercomputer. In SC’02: Proceedings of the 2002 ACM/IEEE Conference
on Supercomputing, pages 60–60. IEEE, 2002.

[3] HP Ahmad and Shilpa Dang. Performance evaluation of clustering algorithm using
different dataset. International Journal of Advance Research in Computer Science and
Management Studies, 8, 2015.

[4] Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu. A survey of network
anomaly detection techniques. Journal of Network and Computer Applications, 60:19–
31, 2016.

[5] Saeed Ahmed, YoungDoo Lee, Seung-Ho Hyun, and Insoo Koo. Mitigating the impacts of
covert cyber attacks in smart grids via reconstruction of measurement data utilizing deep
denoising autoencoders. Energies, 12(16):3091, 2019.

[6] Mousa Alalhareth and Sung-Chul Hong. An improved mutual information feature
selection technique for intrusion detection systems in the internet of medical things.
Sensors, 23(10):4971, 2023.

[7] Shadi Aljawarneh, Monther Aldwairi, and Muneer Bani Yassein. Anomaly-based intru-
sion detection system through feature selection analysis and building hybrid efficient
model. Journal of Computational Science, 25:152–160, 2018.

[8] Mouhammad Alkasassbeh and Mohammad Almseidin. Machine learning methods for
network intrusion detection. arXiv preprint arXiv:1809.02610, 2018.

[9] Julia Allen and Howard Lipson. Technical leadership. CERT RESEARCH ANNUAL
REPORT, page 72.

[10] Tiago Almeida and Jos Hidalgo. SMS Spam Collection. UCI Machine Learning Repository,
2011. DOI: https://doi.org/10.24432/C5CC84.

[11] Tiago A Almeida, José María G Hidalgo, and Akebo Yamakami. Contributions to the
study of sms spam filtering: new collection and results. In Proceedings of the 11th ACM
symposium on Document engineering, pages 259–262, 2011.

125

[12] Nari Sivanandam Arunraj, Robert Hable, Michael Fernandes, Karl Leidl, and Michael
Heigl. Comparison of supervised, semi-supervised and unsupervised learning methods
in network intrusion detection system (nids) application. Anwendungen und Konzepte
der Wirtschaftsinformatik, (6):10–19, 2017.

[13] Hind Baaqeel and Rachid Zagrouba. Hybrid sms spam filtering system using machine
learning techniques. In 2020 21st International Arab Conference on Information Technol-
ogy (ACIT), pages 1–8. IEEE, 2020.

[14] Ricardo Baeza-Yates. Bias on the web. Communications of the ACM, 61(6):54–61, 2018.

[15] Mohammad Bagher Bahador, Mahdi Abadi, and Asghar Tajoddin. Hlmd: a signature-
based approach to hardware-level behavioral malware detection and classification. The
Journal of Supercomputing, 75:5551–5582, 2019.

[16] Solon Barocas and Andrew D Selbst. Big data’s disparate impact. Calif. L. Rev., 104:671,
2016.

[17] Victor R Basili. Software modeling and measurement: the Goal/Question/Metric
paradigm. Technical report, 1992.

[18] E Beauxis-Aussalet and L Hardman. Ieee conference on visual analytics science and
technology (vast)-poster proceedings. In IEEE Conference on Vi-sual Analytics Science
and Technology (VAST)-Poster Proceedings, pages 1–2, 2014.

[19] Pooja Bhoria and Kanwal Garg. Determining feature set of dos attacks. International
Journal of Advanced Research in Computer Science and Software Engineering, 3(5):875–
878, 2013.

[20] Christopher M Bishop. Pattern recognition and machine learning. Springer google schola,
2:5–43, 2006.

[21] David Bisson. How to foil the 6 stages of a network intrusion,tripwire state of se-
curity news. https://www.tripwire.com/state-of-security/security-data-protection/security-
hardening/6-stages-of-network-intrusion-and-how-to-defend-against-them, 2019.

[22] Martin Boldt and Bengt Carlsson. Analysing privacy-invasive software using computer
forensic methods. ICSEA, Papeetee, 2006.

[23] C Allan Boneau. A comparison of the power of the u and t tests. Psychological Review,
69(3):246, 1962.

[24] Ahmet Selman Bozkir, Ersan Tahillioglu, Murat Aydos, and Ilker Kara. Catch them
alive: A malware detection approach through memory forensics, manifold learning and
computer vision. Computers & Security, 103:102166, 2021.

126

[25] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural information processing systems,
33:1877–1901, 2020.

[26] Victor R Basili1 Gianluigi Caldiera and H Dieter Rombach. The goal question metric
approach. Encyclopedia of software engineering, pages 528–532, 1994.

[27] Tristan Carrier. Detecting obfuscated malware using memory feature engineering. 2021.

[28] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM
computing surveys (CSUR), 41(3):1–58, 2009.

[29] Thomas M Chen. Guarding against network intrusions. In Computer and information
security handbook, pages 149–163. Elsevier, 2013.

[30] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and
data mining, pages 785–794, 2016.

[31] Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang, Hyunsu Cho,
Kailong Chen, Rory Mitchell, Ignacio Cano, Tianyi Zhou, et al. Xgboost: extreme gradient
boosting. R package version 0.4-2, 1(4):1–4, 2015.

[32] Davide Chicco and Giuseppe Jurman. The advantages of the matthews correlation
coefficient (mcc) over f1 score and accuracy in binary classification evaluation. BMC
genomics, 21:1–13, 2020.

[33] Hamid Darabian, Sajad Homayounoot, Ali Dehghantanha, Sattar Hashemi, Hadis Karim-
ipour, Reza M Parizi, and Kim-Kwang Raymond Choo. Detecting cryptomining malware:
a deep learning approach for static and dynamic analysis. Journal of Grid Computing,
18:293–303, 2020.

[34] Hamid Darabian, Sajad Homayounoot, Ali Dehghantanha, Sattar Hashemi, Hadis Karim-
ipour, Reza M Parizi, and Kim-Kwang Raymond Choo. Detecting cryptomining malware:
a deep learning approach for static and dynamic analysis. Journal of Grid Computing,
18:293–303, 2020.

[35] Bilge Kagan Dedeturk and Bahriye Akay. Spam filtering using a logistic regression model
trained by an artificial bee colony algorithm. Applied Soft Computing, 91:106229, 2020.

[36] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of
Machine learning research, 7(Jan):1–30, 2006.

[37] Thomas G Dietterich. Ensemble methods in machine learning. In International workshop
on multiple classifier systems, pages 1–15. Springer, 2000.

127

[38] Wilfred J Dixon. Analysis of extreme values. The Annals of Mathematical Statistics,
21(4):488–506, 1950.

[39] Adrian Egli. Chatgpt, gpt-4, and other large language models: the next revolution for
clinical microbiology? Clinical Infectious Diseases, 77(9):1322–1328, 2023.

[40] Wisam Elmasry, Akhan Akbulut, and Abdul Halim Zaim. Evolving deep learning archi-
tectures for network intrusion detection using a double pso metaheuristic. Computer
Networks, 168:107042, 2020.

[41] Nabila Farnaaz and MA Jabbar. Random forest modeling for network intrusion detection
system. Procedia Computer Science, 89:213–217, 2016.

[42] John Fields, Kevin Chovanec, and Praveen Madiraju. A survey of text classification with
transformers: How wide? how large? how long? how accurate? how expensive? how safe?
IEEE Access, 12:6518–6531, 2024.

[43] Karën Fort, Gilles Adda, and Kevin Bretonnel Cohen. Amazon mechanical turk: Gold
mine or coal mine? Computational Linguistics, 37(2):413–420, 2011.

[44] Gerard Shu Fuhnwi, Victoria Adedoyin, and Janet O. Agbaje. An empirical internet
protocol network intrusion detection using isolation forest and one-class support vector
machines. International Journal of Advanced Computer Science and Applications, 14(8),
2023.

[45] Gerard Shu Fuhnwi, Janet O Agbaje, Kayode Oshinubi, and Olumuyiwa James Peter.
An empirical study on anomaly detection using density-based and representative-based
clustering algorithms. Journal of the Nigerian Society of Physical Sciences, pages 1364–
1364, 2023.

[46] Gerard Shu Fuhnwi, Matthew Revelle, and Clemente Izurieta. A hybrid anomaly detec-
tion approach for obfuscated malware. In 2024 IEEE International Conference on Cyber
Security and Resilience (CSR), pages 159–165, 2024.

[47] Gerard Shu Fuhnwi, Matthew Revelle, and Clemente Izurieta. Improving network intru-
sion detection performance : An empirical evaluation using extreme gradient boosting
(xgboost) with recursive feature elimination. In 2024 IEEE 3rd International Conference
on AI in Cybersecurity (ICAIC), pages 1–8, 2024.

[48] Gerard Shu Fuhnwi, Matthew Revelle, Bradley Whitaker, and Clemente Izurieta. Using
large language models to mitigate human-induced bias in sms spam: An empirical
approach. In 2025 IEEE 4th International Conference on AI in Cybersecurity (ICAIC), pages
1–7, 2025.

[49] Sridevi Gadde, A Lakshmanarao, and S Satyanarayana. Sms spam detection using
machine learning and deep learning techniques. In 2021 7th international conference

128

on advanced computing and communication systems (ICACCS), volume 1, pages 358–362.
IEEE, 2021.

[50] Isabell Gaylord. Network intrusion: How to detect and prevent it. Retrieved from United
States Cybersecurity Magazine: https://www. uscybersecurity. net/network-intrusion, 2021.

[51] Aurélien Géron. Hands-on machine learning with scikit-learn, keras, and tensorflow:
concepts. Aurélien Géron-Google Kitaplar, yy https://books. google. com. tr/books, 2019.

[52] Rubén González-Sendino, Emilio Serrano, Javier Bajo, and Paulo Novais. A review of bias
and fairness in artificial intelligence. 2023.

[53] Frank Ephraim Grubbs. Sample criteria for testing outlying observations. University of
Michigan, 1949.

[54] Dikshant Gupta, Suhani Singhal, Shamita Malik, and Archana Singh. Network intrusion
detection system using various data mining techniques. In 2016 International Conference
on Research Advances in Integrated Navigation Systems (RAINS), pages 1–6. IEEE, 2016.

[55] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection.
Journal of machine learning research, 3(Mar):1157–1182, 2003.

[56] Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah, Muhammad Irfan, Anas Zafar,
Muhammad Bilal Shaikh, Naveed Akhtar, Jia Wu, Seyedali Mirjalili, et al. A survey on large
language models: Applications, challenges, limitations, and practical usage. Authorea
Preprints, 3, 2023.

[57] Tarfa Hamed, Rozita Dara, and Stefan C Kremer. Network intrusion detection system
based on recursive feature addition and bigram technique. computers & security, 73:137–
155, 2018.

[58] John A Hartigan, Manchek A Wong, et al. A k-means clustering algorithm. Applied
statistics, 28(1):100–108, 1979.

[59] Mohammed Hassanin and Nour Moustafa. A comprehensive overview of large lan-
guage models (llms) for cyber defences: Opportunities and directions. arXiv preprint
arXiv:2405.14487, 2024.

[60] Zengyou He, Xiaofei Xu, and Shengchun Deng. Discovering cluster-based local outliers.
Pattern recognition letters, 24(9-10):1641–1650, 2003.

[61] Steven A Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion detection using
sequences of system calls. Journal of computer security, 6(3):151–180, 1998.

[62] Minseok Hur, Sooyon Seo, Jaeho Hwang, Hyelim Lim, and Moohong Min. Utilizing large
language models for detection of sms spam in few-shot settings. Available at SSRN
4815382.

129

[63] Nwokedi Idika and Aditya P Mathur. A survey of malware detection techniques. Purdue
University, 48(2):32–46, 2007.

[64] Danial Javaheri and Mehdi Hosseinzadeh. A framework for recognition and confronting
of obfuscated malwares based on memory dumping and filter drivers. Wireless Personal
Communications, 98:119–137, 2018.

[65] Jueun Jeon, Jong Hyuk Park, and Young-Sik Jeong. Dynamic analysis for iot malware
detection with convolution neural network model. Ieee Access, 8:96899–96911, 2020.

[66] Wang Ke. Anomalous payload-based network intrusion detection. Proc. of Recent
Advance in Intrusion Detection (RAID), September 2004, 2004.

[67] Amit Kumar, Harish Chandra Maurya, and Rahul Misra. A research paper on hybrid in-
trusion detection system. International Journal of Engineering and Advanced Technology
(IJEAT) Vol, 2, 2013.

[68] Nilesh Kunhare, Ritu Tiwari, and Joydip Dhar. Particle swarm optimization and feature
selection for intrusion detection system. Sādhanā, 45:1–14, 2020.

[69] Maxime Labonne and Sean Moran. Spam-t5: Benchmarking large language models for
few-shot email spam detection. arXiv preprint arXiv:2304.01238, 2023.

[70] Wei-Jen Li, Ke Wang, Salvatore J Stolfo, and Benjamin Herzog. Fileprints: Identifying file
types by n-gram analysis. In Proceedings from the Sixth Annual IEEE SMC Information
Assurance Workshop, pages 64–71. IEEE, 2005.

[71] Yihua Liao and V Rao Vemuri. Use of k-nearest neighbor classifier for intrusion detection.
Computers & security, 21(5):439–448, 2002.

[72] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation-based anomaly detection. ACM
Transactions on Knowledge Discovery from Data (TKDD), 6(1):1–39, 2012.

[73] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham
Neubig. Pre-train, prompt, and predict: A systematic survey of prompting methods in
natural language processing. ACM computing surveys, 55(9):1–35, 2023.

[74] Maya Hilda Lestari Louk and Bayu Adhi Tama. Dual-ids: A bagging-based gradient
boosting decision tree model for network anomaly intrusion detection system. Expert
Systems with Applications, 213:119030, 2023.

[75] Batta Mahesh et al. Machine learning algorithms-a review. International Journal of
Science and Research (IJSR).[Internet], 9(1):381–386, 2020.

[76] Larry M Manevitz and Malik Yousef. One-class svms for document classification. Journal
of machine Learning research, 2(Dec):139–154, 2001.

130

[77] Goeffrey J McLachlan. Mahalanobis distance. Resonance, 4(6):20–26, 1999.

[78] Souhail Meftah, Tajjeeddine Rachidi, and Nasser Assem. Network based intrusion
detection using the unsw-nb15 dataset. International Journal of Computing and Digital
Systems, 8(5):478–487, 2019.

[79] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan.
A survey on bias and fairness in machine learning. ACM computing surveys (CSUR),
54(6):1–35, 2021.

[80] Moohong Min, Jemin J Lee, and Kyungho Lee. Detecting illegal online gambling
(iog) services in the mobile environment. Security and Communication Networks,
2022(1):3286623, 2022.

[81] Tom M Mitchell and Tom M Mitchell. Machine learning, volume 1. McGraw-hill New
York, 1997.

[82] Ugochukwu Mmaduekwe. Bias and fairness issues in artificial intelligence-driven cyber-
security. Current Journal of Applied Science and Technology, 43(6):109–119, 2024.

[83] Bilal Mohammed and Ekhlas K Gbashi. Intrusion detection system for nsl-kdd dataset
based on deep learning and recursive feature elimination. Engineering and Technology
Journal, 39(7):1069–1079, 2021.

[84] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine
learning. MIT press, 2018.

[85] Robert Moskowitz. Network intrusion: Methods of attack. In RVS Conference, 2020.

[86] Nour Moustafa and Jill Slay. The significant features of the unsw-nb15 and the kdd99
data sets for network intrusion detection systems. In 2015 4th international workshop on
building analysis datasets and gathering experience returns for security (BADGERS), pages
25–31. IEEE, 2015.

[87] Snehal A Mulay, PR Devale, and Goraksh V Garje. Intrusion detection system using sup-
port vector machine and decision tree. International journal of computer applications,
3(3):40–43, 2010.

[88] Naresh Kumar Nagwani and Aakanksha Sharaff. Sms spam filtering and thread identifi-
cation using bi-level text classification and clustering techniques. Journal of Information
Science, 43(1):75–87, 2017.

[89] Nir Nissim, Omri Lahav, Aviad Cohen, Yuval Elovici, and Lior Rokach. Volatile memory
analysis using the minhash method for efficient and secured detection of malware in
private cloud. Computers & Security, 87:101590, 2019.

131

[90] Tu Ouyang, Soumya Ray, Mark Allman, and Michael Rabinovich. A large-scale empirical
analysis of email spam detection through network characteristics in a stand-alone enter-
prise. Computer Networks, 59:101–121, 2014.

[91] Swati Paliwal and Ravindra Gupta. Denial-of-service, probing & remote to user (r2l)
attack detection using genetic algorithm. International Journal of Computer Applications,
60(19):57–62, 2012.

[92] Darshit Pandya. Spam detection using clustering-based svm. In Proceedings of the 2019
2nd International Conference on Machine Learning and Machine Intelligence, pages 12–
15, 2019.

[93] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore: Automated whitebox
testing of deep learning systems. In proceedings of the 26th Symposium on Operating
Systems Principles, pages 1–18, 2017.

[94] Justin M Rao and David H Reiley. The economics of spam. Journal of Economic
Perspectives, 26(3):87–110, 2012.

[95] Sergio Rojas-Galeano. Zero-shot spam email classification using pre-trained large lan-
guage models. In Workshop on Engineering Applications, pages 3–18. Springer, 2024.

[96] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations
by back-propagating errors. nature, 323(6088):533–536, 1986.

[97] Yvan Saeys, Inaki Inza, and Pedro Larranaga. A review of feature selection techniques in
bioinformatics. bioinformatics, 23(19):2507–2517, 2007.

[98] Yakub Kayode Saheed, Micheal Olaolu Arowolo, and Abdulrauf U Tosho. An efficient
hybridization of k-means and genetic algorithm based on support vector machine for
cyber intrusion detection system. International Journal on Electrical Engineering and
Informatics, 14(2):426–442, 2022.

[99] Oluwafemi A Sarumi, Adebayo O Adetunmbi, and Fadekemi A Adetoye. Discovering
computer networks intrusion using data analytics and machine intelligence. Scientific
African, 9:e00500, 2020.

[100] Izuru Sato, Yoshinori Okazaki, and Shigeki Goto. An improved intrusion detection
method based on process profiling. IPSJ Journal, 43(11):3316–3326, 2002.

[101] Timo Schick and Hinrich Schütze. Exploiting cloze questions for few shot text classifica-
tion and natural language inference. arXiv preprint arXiv:2001.07676, 2020.

[102] R Sekar, Mugdha Bendre, Dinakar Dhurjati, and Pradeep Bollineni. A fast automaton-
based method for detecting anomalous program behaviors. In Proceedings 2001 IEEE
Symposium on Security and Privacy. S&P 2001, pages 144–155. IEEE, 2000.

132

[103] Burr Settles. Active learning literature survey. 2009.

[104] Neha V Sharma and Narendra Singh Yadav. An optimal intrusion detection system
using recursive feature elimination and ensemble of classifiers. Microprocessors and
Microsystems, 85:104293, 2021.

[105] Anjali Shinde, Essa Q Shahra, Shadi Basurra, Faisal Saeed, Abdulrahman A AlSewari, and
Waheb A Jabbar. Sms scam detection application based on optical character recogni-
tion for image data using unsupervised and deep semi-supervised learning. Sensors,
24(18):6084, 2024.

[106] Benjamin Steenhoek, Md Mahbubur Rahman, Monoshi Kumar Roy, Mirza Sanjida Alam,
Earl T Barr, and Wei Le. A comprehensive study of the capabilities of large language
models for vulnerability detection. arXiv preprint arXiv:2403.17218, 2024.

[107] Songfeng Sun, Kaibo Lei, Zunshun Xu, Wubin Jing, and Guang Sun. Analysis of k-means
and k-dbscan commonly used in data mining. In 2023 International Conference on
Intelligent Media, Big Data and Knowledge Mining (IMBDKM), pages 37–41, 2023.

[108] Harini Suresh and John V Guttag. A framework for understanding unintended conse-
quences of machine learning. arXiv preprint arXiv:1901.10002, 2(8):73, 2019.

[109] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A Ghorbani. A detailed analysis
of the kdd cup 99 data set. In 2009 IEEE symposium on computational intelligence for
security and defense applications, pages 1–6. Ieee, 2009.

[110] Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati,
Garrett Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Un-
locking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

[111] Cao Tien Thanh. A study of machine learning techniques for cybersecurity. In 2021 15th
International Conference on Advanced Computing and Applications (ACOMP), pages 54–
61. IEEE, 2021.

[112] Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. In
Learning to learn, pages 3–17. Springer, 1998.

[113] Li Tian and Wang Jianwen. Research on network intrusion detection system based on
improved k-means clustering algorithm. In 2009 International Forum on Computer
Science-Technology and Applications, volume 1, pages 76–79. IEEE, 2009.

[114] Vijay Srinivas Tida and Sonya Hsu. Universal spam detection using transfer learning of
bert model. arXiv preprint arXiv:2202.03480, 2022.

[115] Jacob W Ulvila and John E Gaffney Jr. Evaluation of intrusion detection systems. Journal
of Research of the National Institute of Standards and Technology, 108(6):453, 2003.

133

[116] Sahil Verma and Julia Rubin. Fairness definitions explained. In Proceedings of the
international workshop on software fairness, pages 1–7, 2018.

[117] Jin Wang, Chang Liu, Xin Shu, Hui Jiang, Xiao Yu, Jie Wang, and Wenna Wang. Network
intrusion detection based on xgboost model improved by quantum-behaved particle
swarm optimization. In 2019 IEEE Sustainable Power and Energy Conference (iSPEC),
pages 1879–1884. IEEE, 2019.

[118] Wei Wang and Roberto Battiti. Identifying intrusions in computer networks based on
principal component analysis. 2005.

[119] Y-M Wang, Doug Beck, Binh Vo, Roussi Roussev, and Chad Verbowski. Detecting stealth
software with strider ghostbuster. In 2005 International Conference on Dependable
Systems and Networks (DSN’05), pages 368–377. IEEE, 2005.

[120] Y-M Wang, Doug Beck, Binh Vo, Roussi Roussev, and Chad Verbowski. Detecting stealth
software with strider ghostbuster. In 2005 International Conference on Dependable
Systems and Networks (DSN’05), pages 368–377. IEEE, 2005.

[121] Michael West. Preventing system intrusions. In Network and system security, pages 29–56.
Elsevier, 2014.

[122] Wikipedia. Performance analysis of nsl-kdd dataset using ann. In 2015 international
conference on signal processing and communication engineering systems, pages 92–96.
IEEE, 2015.

[123] Wikipedia. Wikipedia contributors: Isolation forest. The Free Encyclopedia, 2020.

[124] Jenif D Souza WS and B Parvathavarthini. Machine learning based intrusion detection
framework using recursive feature elimination method. In 2020 International Conference
on System, Computation, Automation and Networking (ICSCAN), pages 1–4. IEEE, 2020.

[125] Zhixing Xu, Sayak Ray, Pramod Subramanyan, and Sharad Malik. Malware detection
using machine learning based analysis of virtual memory access patterns. In Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017, pages 169–174. IEEE,
2017.

[126] M.J. Zaki and W. Meira. Data Mining and Machine Learning: Fundamental Concepts and
Algorithms. Cambridge University Press, 2020.

[127] Bin Zhang, Wentao Xiao, Xi Xiao, Arun Kumar Sangaiah, Weizhe Zhang, and Jiajia
Zhang. Ransomware classification using patch-based cnn and self-attention network on
embedded n-grams of opcodes. Future Generation Computer Systems, 110:708–720, 2020.

[128] Hao Zhang, Yongdan Li, Zhihan Lv, Arun Kumar Sangaiah, and Tao Huang. A real-
time and ubiquitous network attack detection based on deep belief network and support
vector machine. IEEE/CAA Journal of Automatica Sinica, 7(3):790–799, 2020.

	Titlepage
	Copyright
	Dedication
	Acknowledgements

	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Abstract
	Chapter 1 — Introduction
	Chapter 2 — Background & Related Work
	Background
	Related Work

	Chapter 3 — Research Objectives
	Motivation
	GQM

	Chapter 4 — A Hybrid Anomaly Detection Approach for Obfuscated Malware
	Contribution of Authors and Co-Authors
	Manuscript Information Page
	Abstract
	Introduction
	Related Work
	Proposed Approach
	Experimental Results
	Conclusion and Future work

	Chapter 5 — Improving Network Intrusion Detection Performance : An Empirical Evaluation Using Extreme Gradient Boosting (XGBoost) with Recursive Feature Elimination
	Contribution of Authors and Co-Authors
	Manuscript Information Page
	Abstract
	Introduction
	Related Work
	Proposed Approach: XGBoost with RFE
	Experimental Results
	Conclusion and Future work

	Chapter 6 — An Empirical Internet Protocol Network Intrusion Detection using Isolation Forest and One-Class Support Vector Machines
	Contribution of Authors and Co-Authors
	Manuscript Information Page
	Abstract
	Introduction
	Related Work
	METHODS
	EMPIRICAL EVALUATION
	CONCLUSION and Future work

	Chapter 7 — Using Large Language Models to Mitigate Human-Induced Bias in SMS Spam: An Empirical Approach
	Contribution of Authors and Co-Authors
	Manuscript Information Page
	Abstract
	Introduction
	Related Work
	Experimental Setup
	Results of RQs
	Discussion
	Conclusion and Future work

	Chapter 8 — Reducing Human-Induced Label Bias in SMS Spam with Context-Enhanced Clustering (CEC)
	Contribution of Authors and Co-Authors
	Manuscript Information Page
	Abstract
	Introduction
	Related Work
	Our Approach
	Results Evaluation
	Discussion
	Threats to validity
	Conclusion And Future Work

	Chapter 9 — Conclusion and Future Work
	Conclusion
	Future Work

	References Cited

