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ABSTRACT

Software plays an important role in our daily operations and is a critical component
of our infrastructure. Testing is necessary to evaluate the effectiveness of any software. To
accomplish this, there is a fundamental need for an oracle, which determines whether the
observed behavior of the software accurately reflects its intended functionality. However,
software testing can pose significant challenges due to its complexity and the necessity
of having a reliable oracle, often referred to as the oracle problem in software testing.
Metamorphic Testing (MT) can alleviate the oracle problem because it focuses on evaluating
software based on its inherent characteristics or properties. MT is a sophisticated technique
that involves generating a variety of inputs for a program, subjecting them to predefined
transformations, and subsequently comparing the resulting outputs with the original ones
to verify the correctness of the program’s behavior. Metamorphic Relations (MRs) are
central to MT because they establish the relationships between the inputs and outputs of
the system being tested and specify how they should change when the inputs are altered.
Typically, identifying MRs is a manual process that often necessitates collaboration with
domain experts, especially when testing complicated programs. Consequently, this task can
be labor-intensive and prone to errors. Therefore, the development of automated methods
for identifying MRs holds the potential to enhance the efficiency and effectiveness of MT,
making it a more practical and reliable approach for ensuring the reliability of complex
software systems. Hence, I employ MT techniques to analyze the software’s behavior and
anticipate and define MRs to achieve this goal. By predicting MRs, I streamline the testing
process significantly. This entails automating the assessment of software behavior, reducing
the reliance on manual testing procedures.

In this thesis, I use machine learning classification models to predict MRs using data
from diverse fields to identify faults. This approach predicts MRs for more complicated
programs, such as Matrix Calculation Programs. Next, I examine the feasibility of MRpredT,
a Text Classification-Based Machine Learning approach to predict MRs using only their
program documentation as input. Then, I study the scope of testing applications with
security flaws using MT. A systematic mapping study that documents the latest empirical
research in web application security vulnerability detection indicates that vulnerability
testing also encounters the oracle problem due to the vast range of inputs. Afterward, I
introduce new MRs through a case study to test banking functions and demonstrate an MT
framework. Finally, I detected vulnerabilities using MT, which led me to build an automated
approach for vulnerable programs in online banking applications. It offers a catalog of 8
system-agnostic MRs to automate security testing for detecting these vulnerabilities among
the OWASP Top 10. All the study results demonstrate that these approaches are theoretical
and practical. It scales effectively, allowing for overnight automated software testing, and
positions MT as a valuable and powerful tool for enhancing the correctness of any software
system application.
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INTRODUCTION

Advancements in science and technology have significantly evolved the software industry

in recent years [1]. With the growing demand for scientific and E-type software in

modern society, most applications involve complex scientific calculations and data processing,

requiring software engineers to ensure software meets all reliability [2] criteria. E-type

systems refer to real-world systems, and one of Lehman’s Laws states that these systems

constantly evolve, and their complexity continues to increase unless measures are taken to

minimize it [3]. Every software system is a highly reusable E-type system whose functionality

directly impacts economic growth [3]. Thus, software development and testing are vital

steps in the software life cycle. Moreover, efficient validation and verification methods are

crucial for guaranteeing the reusability of these applications [2]. As consumer needs for

software have increased, projects have grown more complex, prompting further investigation

into different facets of software [4]. Testing software demands high complexity, security,

and accuracy, with users expecting them to be secure and accurate [1]. Software includes

intricate designs and multi-layered workflows, offering various features and functions while

handling sensitive data like personal information [2]. Thus, software testing must be

thorough since any gaps in test coverage can lead to data breaches, vulnerabilities, fraud, and

other criminal activities [5]. Additionally, automating testing techniques can significantly

enhance the software development process. Testing is a mandatory and significant part

of the software development life-cycle despite the progress in software implementation

technologies and programming languages [2]. Testing bears more than 50% of the total

software development costs, as it is an expensive, time-consuming, and complex activity [5].

Creating dependable software systems remains an ongoing challenge, and researchers and
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practitioners continuously explore more efficient methods to test software [6].

The process of testing is often prone to human error. During testing, test cases are

performed on the system under test. A test oracle, either automated or manual, is then

used to determine whether it acted as anticipated [6]. In either case, the actual output is

compared with the expected outcome. The challenge of using a test oracle arises when testing

complex software [7]. It occurs when it is too difficult to determine whether the program

outputs on test cases are correct or not [7]. This is called the oracle problem [7]. For

example, banking software often includes functionality that can encounter this problem [7].

For instance, with electronic payment software, there may be situations where the consumer

needs clarification on how much is being charged for a given input. The challenge becomes

even more pronounced when the payment concerns transfer charges among different bank

accounts or currency exchange applications.

Metamorphic Testing (MT) is a technique that has proven helpful in certain circum-

stances to address the challenge of the oracle problem [8]. The principle behind MT is that it

might be easier to analyze the relations between the results of multiple test executions, which

are referred to as Metamorphic Relations (MRs), rather than specifying the input-output

behavior of a system [8]. MT employs MRs to determine system properties, automatically

altering the initial test input into follow-up test input [8]. If the system fails to meet the

MRs when tested with the initial and follow-up input, it is inferred that it is defective [8]. A

significant number of studies have focused on creating MT methods for specific areas such

as computer graphics [9], web services [10], and embedded systems [11]. MRs are crucial

for boosting the efficiency of fault detection in testing. Traditionally, pinpointing these

relations involves a labor-intensive, error-prone manual process, often requiring input from

domain experts, mainly when dealing with intricate programs. Hence, developing techniques

to identify MRs is a promising avenue. Such automation has the potential to improve the

efficiency and effectiveness of MT significantly, rendering it a more feasible and dependable
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method for guaranteeing the reliability of complex software systems.

Contributions of the Dissertation

The overall contributions of this thesis are outlined in this section. They exhibit

developing MRs that capture properties (i.e., characteristics that are compromised when

the system is at risk) and automate testing using prediction models for scientific and E-type

software. Each of these contributions is thoroughly discussed in the respective proceedings

cited.

• An improved Graph Kernel-Based Machine Learning method for programs performing

matrix calculations, which uses Control Flow Graphs (CFGs) to extract feature

information from the programs. Random walk and graphlet kernels are used to extract

the features to build the models [12].

• A text mining-based machine learning approach to systematically identify MRs for

functions that perform matrix calculations. This method leverages Javadoc, a

structured documentation framework, as the primary data source for training the

model. By utilizing the Bag of Words (BoW) technique, I build a model to recognize

patterns that enhance the accuracy and automation of MR identification, contributing

to more efficient and reliable software testing [13].

• A systematic mapping study that develops a classification scheme for systematically

categorizing research articles on vulnerability detection. Additionally, it presents a

comprehensive systematic mapping study that analyzes 76 relevant studies published

over the past two decades (2001–2021). This mapping study provides a structured

overview of related research, highlighting trends, gaps, and advancements in the field

[14].
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• An approach to investigate and uncover the essential points in employing MT to test

banking software, presented through a list of new MRs for banking functions. To

demonstrate the applicability of the proposed MRs, I conduct a case study on banking

software functionalities. The study indicates the significance of using MT for testing

banking functions. Additionally, I utilize mutation analysis to evaluate the effectiveness

of the MT approach [15].

• A catalog of 8 MRs targeting the well-known top 10 OWASP security vulnerabilities

commonly found in online banking applications, along with a framework that

automatically predicts MRs for unseen programs susceptible to vulnerabilities, using a

Graph-based Convolutional Neural Network (GCNN) model.

Overview of the Dissertation

The dissertation is structured as follows. The Introduction Chapter provides the

context for this thesis. Chapter 2 outlines the motivation for the thesis, goals, and problem

decomposition. The research goals (RGs), the research questions (RQs), and the research

metrics (RMs) are presented in this chapter, along with the proceedings contribution of

the thesis. In Chapter 3, I introduce the key concepts relevant to this thesis, including

software testing, test oracle, MT, MRs, mutation testing, and prediction models. It also

summarizes the pertinent work in the field, positioning our research within the domain of

MT. It particularly emphasizes the selection and classification of MRs, reviewing previous

contributions and highlighting gaps. Chapter 4 discusses improving the graph kernel-based

machine learning method for programs performing matrix calculations. Chapter 5 describes

the methodology of the text mining-based machine learning approach to identify MRs for a

function. Chapter 6 details a systematic mapping study of related research over the past 20

years (2001-2021) by analyzing 76 articles. Chapter 7 outlines a framework for MT in banking
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software and discusses a case study that tests primary banking functions. Chapter 8 offers

a catalog of 8 MRs targeting the widely recognized top 10 OWASP security vulnerabilities,

along with a framework that automatically predicts MRs for previously unseen programs

vulnerable to threats using a Graph-based Convolutional Neural Network (GCNN) model.

In Chapter 9, I conclude by summarizing the contributions, threats to validity, and discussing

avenues for future research.
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RESEARCH OBJECTIVES

Motivation

In software engineering, there is often a significant focus on creating systems that exhibit

a high level of accuracy, functionality, and innovation. However, ensuring the correctness

of these systems is an equally critical aspect. Software testing has become a vital area of

research aimed at improving its dependability. This thesis primarily focuses on automating

software testing, particularly in adapting and enhancing traditional testing methods to

enhance software accuracy, which guarantees its intended functions and operates without

serious errors or vulnerabilities. Among the various software testing techniques, I have

selected MT as an especially effective method for addressing the oracle problem, which

involves the difficulty of verifying whether the actual behavior of software corresponds with

its expected behavior. By systematically comparing transformed inputs and outputs, MT

shows promise in tackling this challenge and automating this testing process can significantly

improve its efficiency. My work is motivated by recognizing specific gaps in the existing

research landscape, which present exciting opportunities for exploration and further study.

By tackling these gaps, I aim to enhance software testing practices and ultimately improve

the software testing process. Below are the motivations for employing MT in software testing

and automating the process.

• Principle of Simplicity: The core idea and technical foundation of MT are straightfor-

ward and refined. Previous research shows that people with minimal testing experience

can understand MT concepts in just a few hours and successfully apply them across

various systems [16].

• Easy Implementation: According to the established concept, implementing MT is

straightforward. It depends on MRs to create test cases and validate results. Previous
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studies on MT suggest that identifying MRs, particularly when many have been

discovered, tends to be relatively easy, even if some aspects may be automatable [16].

Additionally, it should be feasible for users to build MT tools customized to their

particular domains.

• Automation Feasibility of MRs: In addition to the initial identification of MRs,

automating the core phases of MT—like test case generation, execution, and verifica-

tion—should be relatively simple. Creating specific test cases is a direct process since

they can be produced using well-established testing techniques. Following this, new

test cases can be developed by applying transformations based on MRs. Executing

test cases is generally straightforward, making it one of the most easily automated

components in various testing strategies. Additionally, verifying test results in MT

can be automated through scripts that cross-reference test outputs with the relevant

MRs. The only element in the MT workflow that might not be fully automated is

the identification of MRs. Still, this area shows promise for enhancement due to

recent studies investigating MR identification techniques [17]. While current tools cover

the full MT process for certain application domains, further exploration is necessary

to create a comprehensive framework that optimizes automation throughout all MT

stages. This ongoing research strives to establish a flexible system that automates as

many parts of the MT process as feasible [18].

• Affordable Approach: MT is more cost-effective than traditional testing methods. It

focuses on identifying MRs, imposing only slight computational costs for generating and

running subsequent test cases and verifying their outcomes. Although manual effort

is required for MR identification, leading to some overhead, this is an expected and

inherent aspect of the process. However, there is potential for automation through

MR prediction [18]. As mentioned, creating follow-up test cases using MR-based
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transformations is efficient and usually requires few resources [16]. Moreover, the

overhead associated with the test result verification, which consists of comparing

outputs with MRs, is considerably lower compared to costs in situations where the

oracle problem exists [16].

Goal

The primary objective of my thesis is to automate the process of MT by successful

automatic predictions of MRs. As it has already been established that MT is a very effective

way of tackling the oracle problem in software testing, automation of MT by predicting MR

discussed in this thesis improves testing efficiency, minimizes manual effort, and enhances the

dependability of complex systems, especially in areas where conventional testing methods

fall short.

Research Approach

This section presents the problem statement and research approach addressed in this

thesis. The section also shows how each question is followed up by another. Figure 1

illustrates the research approach. I have followed the GQM (Goal Question Metric) method,

which is the basis for my research plan and directs the entire thesis. To reach my primary

objective, I craft research questions (RQs) that align with specific research goals (RGs) and

later develop metrics (RMs) to evaluate these questions quantitatively. The RGs are labeled

with numbers from one to six (e.g., RG1 , RG2, etc.). The RQs, and the RMs are numbered,

respectively (e.g., RQ1.1, RQ1.2, etc., and, e.g., RM1, RM3, etc.).

MT relies on identifying MRs to validate software behavior, and manually identifying

MRs is a time-consuming and labor-intensive process that limits scalability and efficiency.

I selected two types of subject programs, numerical programs and vulnerable programs,
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Problem Statement

MT relies on identifying MRs to 
validate software behavior, and 
manually identifying MRs is a 

time-consuming and 
labor-intensive process that limits 

scalability and efficiency. This 
research aims to develop an 
automated MR identification 
approach, improving existing 
methods to enhance accuracy, 

reduce human effort, and 
streamline the testing process for 

complex software systems.

RG 1:  To address the challenge of systematically testing scientific applications that involve 
matrices by employing a machine-learning strategy based on program execution flow to 
predict MRs.
RQ 1.1: Which MRs are appropriate for testing matrix calculation programs, and how 
effective are they?
RQ 1.2: How significant are the features related to the execution path flow of calculation 
matrix programs in developing predictive models for MRs?
RM 1: Area Under the Receiver Operating Characteristic Curve (AUC)

Chapter 4 ACM/IEEE publication 2018

RG 4: To test complex and highly reusable functions in banking software systems using MT 
by identifying new MRs, alleviating the oracle problem.
RQ 4.1: Is MT effective for testing functions in banking applications?
RQ 4.2: What MRs are suitable for testing banking functions?
RM 4.1: Mutation Score
RM 4.2: Test Strength 

Chapter 7 IEEE publication 2023

RG 5: To enhance MT integration in evaluating vulnerable programs and automate the 
process by predicting new MRs, minimizing the reliance on manual MR identification.
RQ 5.1: What vulnerabilities can be tested using metamorphic testing?
RQ 5.2: What are the effective MRs for testing the selected vulnerabilities?
RQ 5.3: What is the best approach for feature extraction when building predictive models 
for vulnerable programs?
RM 5: Area Under the Receiver Operating Characteristic Curve (AUC)

Chapter 8 IEEE publication 2025 (Under review)

RG 3: To offer an overview of existing research on security testing in web applications, 
serving as a foundation for developing automated testing techniques.
RQ 3.1: How many studies showcase effective security testing methods?
RQ 3.2: Are these methods sufficient for identifying vulnerabilities in web applications?
RM 3: Paper Counts, indicating the number of papers that address various research 
questions.

Chapter 6 IEEE publication 2022

RG 2: To investigate the feasibility of employing a machine learning approach that 
exclusively depends on program documentation to predict MRs in matrix calculation 
programs.
RQ 2.1: How effective is the use of text features in the prediction model?
RQ 2.2: How accurate is the model at predicting MRs?
RM 2: Area Under the Receiver Operating Characteristic Curve (AUC)

Chapter 5 ACM/IEEE publication 2020

Subject 
Program 1:
Numerical 
programs 

Subject 
Program 2:
Vulnerable 
programs

Figure 1: Research Approach Decomposition
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to address the problem of identifying an MR. Software applications designed to perform

numerical computations, often dealing with mathematical models, scientific simulations, and

engineering calculations, are classified as numerical programs [19]. Applications that might

have security vulnerabilities, flaws, or weaknesses that can be exploited to compromise the

security of that application are classified as vulnerable programs [20].

Research Goal 1: To address the challenge of systematically testing scientific

applications that involve matrices by employing a machine-learning strategy based on

program execution flow to predict MRs.

Research Question 1.1: Which MRs are appropriate for testing matrix calculation

programs, and how effective are they?

Research Question 1.2: How significant are the features related to the execution

path flow of calculation matrix programs in developing predictive models for MRs?

Research Metric 1: Area Under the Receiver Operating Characteristic Curve (AUC)

- AUC quantifies the probability that a randomly selected negative example will have a lower

prediction score than a randomly chosen positive example.

Research Goal 2: To investigate the feasibility of employing a machine learning

approach that exclusively depends on program documentation to predict MRs in matrix

calculation programs.

Research Question 2.1: How effective is the use of text features in the prediction

model?

Research Question 2.2: How accurate is the model at predicting MRs?

Research Metric 2: Area Under the Receiver Operating Characteristic Curve (AUC).

Research Goal 3: To offer an overview of existing research on security testing in web

applications, serving as a foundation for developing automated testing techniques.

Research Question 3.1: How many studies showcase effective security testing

methods?
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Research Question 3.2: Are these methods sufficient for identifying vulnerabilities

in web applications?

Research Metric 3: Paper Counts, indicating the number of papers that address

various research questions.

Research Goal 4: To test complex and highly reusable functions in banking software

systems using MT by identifying new MRs, alleviating the oracle problem.

Research Question 4.1: Is MT effective for testing functions in banking applications?

Research Question 4.2: What MRs are suitable for testing banking functions?

Research Metric 4.1: Mutation Score- The MS calculates the percentage of mutants

killed out of the total number of mutants. (i.e., excluding the equivalent mutants) created

without test coverage.

Research Metric 4.2: Test Strength-Test Strength measures the ratio of mutants

killed out of all mutants with test coverage. The Test Strength metric does not include

mutants that survive due to a lack of coverage.

Research Goal 5: To enhance MT integration in evaluating vulnerable programs

and automate the process by predicting new MRs, minimizing the reliance on manual MR

identification.

Research Question 5.1: What vulnerabilities can be tested using metamorphic

testing?

Research Question 5.2: What are the effective MRs for testing the selected

vulnerabilities?

Research Question 5.3: What is the best approach for feature extraction when

building predictive models for vulnerable programs?

Research Metric 5: Area Under the Receiver Operating Characteristic Curve (AUC).

The following table provides a structured overview of how the thesis chapters and

related academic proceedings contribute to addressing the core RQs. Each research question
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is mapped to specific thesis chapters that provide theoretical foundations, methodological

frameworks, experimental findings, and discussions. Additionally, relevant proceedings are

included to highlight peer-reviewed contributions that reinforce and validate the thesis

findings. In Table 1, I outline the thesis chapters and the respective proceedings that address

each RQ raised.

Table 1: Mapping of Dissertation Chapters and Research Publications to Research
Questions (RQs)

Research

Question

Chapter No. & Title Proceedings

RQ1.1 4: Predicting Metamorphic

Relations for Matrix Calcu-

lation Programs

K. Rahman and U. Kanewala, ”Predicting

Metamorphic Relations for Matrix Calcula-

tion Programs,”2018 IEEE/ACM 3rd Inter-

national Workshop on Metamorphic Testing

(MET), Gothenburg, Sweden, 2018, pp. 10-

13.

RQ1.2 4: Predicting Metamorphic

Relations for Matrix Calcu-

lation Programs

K. Rahman and U. Kanewala, ”Predicting

Metamorphic Relations for Matrix Calcula-

tion Programs,”2018 IEEE/ACM 3rd Inter-

national Workshop on Metamorphic Testing

(MET), Gothenburg, Sweden, 2018, pp. 10-

13.
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Table 1 – continued from previous page

RQ2.1 5: MRpredT: Using Text

Mining for Metamorphic

Relation Prediction

K. Rahman, I. Kahanda, and U. Kanewala,

“MRpredT: Using Text Mining for Metamor-

phic Relation Prediction,” In Proceedings

of the IEEE/ACM 42nd International Con-

ference on Software Engineering Workshops,

2020, pp. 420–424.

RQ2.2 5: MRpredT: Using Text

Mining for Metamorphic

Relation Prediction

K. Rahman, I. Kahanda, and U. Kanewala,

“MRpredT: Using Text Mining for Metamor-

phic Relation Prediction,” In Proceedings

of the IEEE/ACM 42nd International Con-

ference on Software Engineering Workshops,

2020, pp. 420–424.

RQ3.1 6: A Mapping Study of

Security Vulnerability De-

tection Approaches for Web

Applications

K. Rahman and C. Izurieta, ”A Mapping

Study of Security Vulnerability Detection

Approaches for Web Applications,”2022 48th

Euromicro Conference on Software Engi-

neering and Advanced Applications (SEAA),

Gran Canaria, Spain, 2022, pp. 491-494, doi:

10.1109/SEAA56994.2022.00081.
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Table 1 – continued from previous page

RQ3.2 6: A Mapping Study of

Security Vulnerability De-

tection Approaches for Web

Applications

K. Rahman and C. Izurieta, ”A Mapping

Study of Security Vulnerability Detection

Approaches for Web Applications,”2022 48th

Euromicro Conference on Software Engi-

neering and Advanced Applications (SEAA),

Gran Canaria, Spain, 2022, pp. 491-494, doi:

10.1109/SEAA56994.2022.00081.

RQ4.1 7: An Approach to Test-

ing Banking Software Using

Metamorphic Relations

K. Rahman and C. Izurieta, ”An Approach

to Testing Banking Software Using Meta-

morphic Relations,” 2023 IEEE 24th Inter-

national Conference on Information Reuse

and Integration for Data Science (IRI), Belle-

vue, WA, USA, 2023, pp. 173-178, doi:

10.1109/IRI58017.2023.00036.

RQ4.2 7: An Approach to Test-

ing Banking Software Using

Metamorphic Relations

K. Rahman and C. Izurieta, ”An Approach

to Testing Banking Software Using Meta-

morphic Relations,” 2023 IEEE 24th Inter-

national Conference on Information Reuse

and Integration for Data Science (IRI), Belle-

vue, WA, USA, 2023, pp. 173-178, doi:

10.1109/IRI58017.2023.00036.
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Table 1 – continued from previous page

RQ5.1 8: Metamorphic Relation

Prediction for Security Vul-

nerability Testing of Online

Banking Applications

K. Rahman and C. Izurieta, “Metamorphic

Relation Prediction for Security Vulnerabil-

ity Testing of Online Banking Applications,”

submitted on 2025 IEEE International Con-

ference on Cyber Security and Resilience,

Greece, 2025.

RQ5.2 8: Metamorphic Relation

Prediction for Security Vul-

nerability Testing of Online

Banking Applications

K. Rahman and C. Izurieta, “Metamorphic

Relation Prediction for Security Vulnerabil-

ity Testing of Online Banking Applications,”

submitted on 2025 IEEE International Con-

ference on Cyber Security and Resilience,

Greece, 2025.

RQ5.3 8: Metamorphic Relation

Prediction for Security Vul-

nerability Testing of Online

Banking Applications

K. Rahman and C. Izurieta, “Metamorphic

Relation Prediction for Security Vulnerabil-

ity Testing of Online Banking Applications,”

submitted on 2025 IEEE International Con-

ference on Cyber Security and Resilience,

Greece, 2025.
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BACKGROUND & RELATED WORK

This chapter offers a comprehensive overview of software testing, specifically for

scientific and vulnerable applications, and addresses the related test oracle problem. It

explains how MT operates by following the appropriate MRs for the system under test.

It also covers mutation testing, which is commonly used to evaluate the effectiveness of

MRs. The chapter also describes the machine learning approaches applied in this thesis by

reviewing relevant literature on MT and various methods for detecting MRs across different

software types. Lastly, it discusses the justification for using classification techniques to

uncover MRs.

Software Testing

Software testing is a quality assurance activity that is crucial to software development.

It requires conducting tests of the software system with a specified set of test inputs to

identify possible failures in them [2]. When the actual output of the system varies from the

expected output as outlined in its requirements, a failure is identified [2]. This results in

abnormal behavior, system issues, or security vulnerabilities in the system. The primary

objective of software testing is to ensure the software meets the requirements and delivers

a high quality, reliable and secure product. [21]. A successful case of the testing process

requires a clearly specified set of input values that can be systematically processed by the

system under test, which covers a wide range of functional, non-functional, and edge-case

scenarios [21]. Testers can determine if a test case has passed or failed by implementing a

structured process that compares the actual results with the expected outcomes for specific

inputs [21]. This systematic approach to software testing allows for early detection of defects

during the development life-cycle, reducing the risk of costly failures after the deployment.

As noted by Ammann and Offutt [2], software testing can only uncover existing failures
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within a system and does not ensure the total absence of defects. Even with thorough

test planning and execution, testing has inherent limitations due to the complexity of

contemporary software systems. Executing flawless system performance would require

testing the software against every possible input and execution path, which is practically

unachievable because of the enormous number of potential input combinations and system

states [22]. Rather than exhaustive testing, software testers utilize various methods, such

as black-box and white-box testing and automated testing, to improve defect detection

effectiveness [2].

Testing Web Applications

Testing techniques in modern web development are often incomplete or flawed,

introducing vulnerabilities in web applications. These vulnerabilities enable malicious users

to inject harmful artifacts, such as script injections, data flow attacks, and input validation

attacks, into web content [4]. Web applications operate with large volumes of user data

and provide critical functionalities that make them secure and reliable. The complexity

of web applications originates because of their dynamic nature, various user roles, and

multiple input interfaces, such as web pages, forms, and cookies. [23]. Given these elements,

thorough testing is essential to identify vulnerabilities and ensure that web applications

operate securely and efficiently. Functional and security testing are critical in detecting and

mitigating risks that could jeopardize application integrity and user data. Frequent changes

to configurations and different input parameters make testing more difficult. To ensure

web applications are secure, it’s important to use both automated tools and manual testing

methods. This approach helps identify and fix potential threats effectively.

Test Oracle Problem

A test oracle is important because it can automate software testing and also improve

its cost-effectiveness and reliability. A test oracle is a tool that evaluates whether a test case
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Test Oracle
System 
Under 
Test

Test Cases

Comparator

Pass Fail

 Expected Output    Actual Output

Figure 2: Overview of the mechanism of the test oracle for a program under test

has passed or failed [7]. William E. Howden [24] was the pioneer in introducing test oracles.

Most of the time, a tester can function as an oracle, though at times, an oracle may indicate

a specification or another application. Figure 2 provides an overview of how a test oracle

operates.

One of the most challenging events in software testing is the oracle problem [7], also

known as the test oracle problem. This problem mainly refers to the fact that identifying

the correct output for a specific input is difficult for a system [7]. Due to its complexity,

the oracle problem is very common in scientific and security software. Therefore, verifying

the correctness of the output usually depends on manual testing. However, manually testing

any system can be prone to errors, may miss subtle faults, and is time-consuming.

Due to the lack of a test oracle in the testing of scientific software and software that can

be vulnerable to security threats, it is very difficult to determine whether a test has passed or

failed. The lack of the test oracle and its intricate implementation can lead to the test oracle
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problem. Test oracle problem complicates the detection of subtle faults and isolated errors

in a system [7]. Such complications can especially affect the correctness and resilience of

the software system. A domain expert can manually identify whether the output generated

by the system under test is accurate for a given set of inputs in such cases[7]. Sanders et

al., [6] noted that because of insufficient knowledge of software engineering, scientists often

conduct testing inconsistently. Therefore, a test oracle is needed to automate software testing

techniques to simplify the testing process.

Metamorphic Testing (MT)

MT is a testing technique that can alleviate the well-known test oracle problem [7]. The

test oracle problem arises when determining the correctness of individual program output is

too difficult or impossible. MT technique was developed by Chen et al. [8] in a technical

paper in 1998. It builds upon specific predefined MRs properties by checking if a program

satisfies them. These MRs explain how modifications to a program’s input should influence

its output [7]. If the output does not function as intended according to these MRs, it may

suggest a flaw in the program [7]. MT is especially useful for detecting defects in programs

where traditional test oracles are not available or practical [8]. By examining the relationships

between inputs and outputs across many executions, MT can identify faults even when the

correct result of each execution is not known [7].

The general steps for implementing MT are as follows (Figure 3) [8]:

• Identify MRs: Specify a set of MRs that the program under test must satisfy.

• Create Initial Test Cases: Create a set of test cases to act as the source inputs.

• Generate Follow-Up Test Cases: Apply the input transformations outlined in the

MRs to generate follow-up test cases from the initial ones.
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Program 
Under 
Test

P

Source Test 
Case (i,o)

O2=P(𝕿(i,o))
Follow-up 

Test Case 𝕿
(i,o)

O1=P(i,o)

Transformation 𝕿
MR(O1,O2)==TRUE

Metamorphic 
Relation MR

Pass

Fail

Figure 3: Overview of the Metamorphic Testing (MT) Process

• Execute and Compare Outputs: Run the source and follow-up test cases to see if

the output changes align with the expected behavior outlined in the MRs. If a runtime

violation of an MR occurs, it indicates a fault in the program.

A straightforward and commonly used example of MT is testing the SINE function.

y = sin(x). For any input angle x, according to its property, adding 2π to the input should

have an unchanged output. This means y = sin(x) = sin(x+2π), making it a valid MR. By

utilizing this property, the function can be evaluated as follows:

• Develop a source test case with input x and output sin(x).

• Create a follow-up test case by implementing the transformation x′ = x + 2π and

calculate y = sin(x′) = sin(x+ 2π).

• Evaluate the outputs. If sin(x′) ̸= sin(x), the MR is violated, indicating a fault in the

sine function’s implementation.
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By systematically implementing these steps, MT offers an effective and efficient

alternative for detecting faults in the absence of traditional test oracles [7].

Metamorphic Relations (MRs)

As previously mentioned, MRs establish crucial connections between a program’s inputs

and outputs. For example, M and N serve as the inputs for the matrix multiplication

function, resulting in an initial output of O. If matrix M is multiplied by a positive integer

p and matrix M remains unchanged after that, the output alters consequently O′ = (M ×

p)×N = M ′ ×N = O× p. Here M ′ is the follow-up input. Imagine a simple case of matrix

multiplication,

M =

1 2

3 4

 , N =

1 2

3 4



M ×N =

1 2

3 4

×

1 2

3 4

 =

 7 10

15 22

 = O

A positive integer of 2 is multiplied by the matrix M . After the multiplication of M ′ = M×2

and N , the output is O′.

M ′ = M × 2 =

1 2

3 4

× 2 =

2 4

6 8

 , N =

1 2

3 4



M ′ ×N =

2 4

6 8

×

1 2

3 4

 =

14 20

30 44

 =

 7 10

15 22

× 2 = O × 2 = O′

Consequently, this method of multiplying a positive constant can be applied to develop a

follow-up test case for each initial test case. Additionally, the output of the follow-up can

be anticipated based on changes in the output.
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MRs can be derived for vulnerable programs as well. Suppose a web application

processes a user login credentials using an SQL query. This vulnerable login function can be

written as the following:

query = "SELECT * FROM users WHERE username = ’" + user input +

"’ AND password = ’" + password input + "’;"

If the user input is not adequately sanitized, this implementation can be subjected to

SQL Injection. Attackers can alter input values to bypass authentication, for example, by

entering:

SELECT * FROM users WHERE username = ’’ OR ’1’=’1’ AND password = ’’;

Authentication is bypassed since ’1’=’1’ is always true. A metamorphic relation (MR)

for SQL Injection vulnerability testing can be identified where the input modification should

not alter authentication behavior. Authentication should succeed with a valid username-

password pair (u, p). If the username field is changed to attempt SQL injection (u’ = u

OR ’1’=’1’), but the password remains unchanged, authentication should fail if the system

is secure. By employing MT, we create test cases:

• Source test cases: If the input is (username="admin", password="admin123"), the

expected output will be Login Successful.

• Follow-up test cases: Using the transformation specified for the MR, the input is altered

to (username="admin’ OR ’1’=’1", password="admin123"), if the output is Login

Successful means the authentication has been passed and the system is not secure.

If the MR is violated (e.g., if an unauthorized user is granted a login), the program is

flagged as vulnerable to SQL injection.

Thus, if a program’s output changes as anticipated after altering the input, it indicates

that the function meets the defined metamorphic relation. Accurately identifying these

relationships is crucial for effectively implementing MT on the relevant program. However,
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testers frequently struggle to compile a set of MRs because they lack sufficient domain

knowledge about the programs. Furthermore, identifying these relationships often demands

manual effort, rendering the process labor-intensive and time-consuming.

Mutation Testing

Mutation testing is a widely utilized approach for evaluating the effectiveness of testing

techniques and the sufficiency of test suites [25]. This method uses mutation operators on

the program under test to introduce a variety of faults and create a set of mutant variants.

A test case is intended to ”kill” a mutant if it causes the mutant to exhibit behavior that

differs from that of the original program [25]. The count of killed mutants is utilized to

determine the mutation score (MS), indicating the effectiveness of a test suite in eliminating

mutants [25]. The MS is calculated using the following formula:

M S =
Mk

Mt −Me

In the equation, the number of killed mutants is represented as Mk, the total number of

mutants is represented asMt, and the number of equivalent mutants is represented asMe (i.e.,

mutants that consistently behave in the same manner). Automatically generated mutants

are believed to be more equivalent to real-life faults than manually seeded ones. Thus, the

mutation score effectively reflects the effectiveness of the testing technique.

Machine Learning

Machine learning (ML) has recently been applied to automate many software engineer-

ing activities, including software testing. ML primarily consists of algorithms that design

models and analyze data [26]. Mohri et al. [27] describe ML algorithms as data-driven
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methods. Additionally, it integrates fundamental computer science theories with concepts

from statistics, probability, and optimization [26]. According to Shalev-Shwartz and Ben-

David [28], ML focuses on enabling computers to learn; therefore, algorithmic ideas are

crucial. The application of ML to address software testing problems is a relatively new area

of research. Numerous researchers in this field have published their findings over the past

two decades [23].

An ML classification algorithm, when an adequate amount of data is provided, builds

a model and makes decisions based on that model. If more data are added, the machine

recognizes patterns more accurately. Thus, the machine learning method teaches computer

programs to make better decisions based on experience [26]. The examples used by a machine

learning algorithm are divided into two groups: a training set and a test set [26]. The training

set is used to create a predictive model using ML algorithms, while the test set assesses the

performance of that predictive model [26].

Supervised Learning

Supervised learning is a machine learning approach that utilizes a set of examples to

recognize a pattern [26]. This pattern is then employed to connect unseen inputs to the

desired outputs. More specifically, a supervised learning algorithm analyzes the training

data and generates a targeted function, which is used to assign labels to the unseen test data

[26].

Support Vector Machine (SVM)

SVM algorithms are commonly utilized in practical applications for classification and

regression tasks. The core concept of SVMs involves linear classification by creating a

hyperplane within a high-dimensional space [29]. This hyperplane can distinguish examples

of different classes in the training sets based on the information associated with their class
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labels [29]. Numerous kernel functions, including the linear kernel, polynomial kernel,

Gaussian kernel, and sigmoid kernel, can map original low-dimensional data sets into a

higher-dimensional space [29]. SVMs identify a hyperplane within the data points that

separate the different classes of data. A hyperplane maximizes the margin between itself

and the support vectors, reducing classification error [29]. SVMs are inductive models,

predicting testing sets based on mathematical models derived from the training sets [29].

They develop a classification model, or classifier, using labeled data. This model is then

utilized to predict labels for data that has not been seen before and can also handle binary

classification.

Neural Networks

A neural network is a machine learning model that makes decisions like those of the

human brain. It uses processes that mimic how biological neurons work together to recognize

patterns, evaluate choices, and make decisions [30].

Neural networks consist of layers of nodes called artificial neurons. These layers consist

of an input layer, several hidden layers, and an output layer [30]. Each node connects

to others and has its weight and threshold. When a node’s output exceeds its specified

threshold, that node is activated and sends data to the next layer in the network [30]. No

data is transmitted to the next layer if the output falls below the threshold [30].

Neural networks depend on training data to learn and enhance their accuracy over time.

Once fine-tuned, they become powerful tools in computer science and artificial intelligence,

allowing us to classify and cluster data quickly [30].

Graph Convolutional Neural Networks (GCNN)

Graph Neural Networks (GNNs) are among the most fascinating and rapidly developing

architectures in the deep learning field. Designed to process data structured as graphs, GNNs
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provide exceptional versatility and robust learning capabilities [31].

Among the various types of GNNs, Graph Convolutional Networks (GCNs) have become

the most widely used and implemented models [31]. A Graph Convolutional Neural Network

(GCNN) is a deep learning model tailored for graph-structured data, where nodes and edges

symbolize complex relationships [31]. Unlike traditional CNNs, GCNNs gather information

from neighboring nodes, allowing for the extraction of local and global structural features

[31]. Key components include graph representation, where nodes with feature vectors

connect through edges; graph convolutional layers, which iteratively update node embeddings

by aggregating information from neighboring nodes; activation and normalization; and

pooling and fully connected layers, which accommodate varying graph sizes and process

final representations for classification [31].

Related Works

A crucial element in effectively implementing MT is having a set of MRs that streamlines

the creation of test cases and validates test outputs. In the first ten years following the

implementation of MT, most related studies relied on MRs identified in an ad-hoc manner

[17]. The ad hoc identification process has its inherent limitations; however, these MRs

showed a strong capability for fault detection. Because this identification mainly depends

on the knowledge, skills, and experience of the tester, constructing enough high-quality MRs

can be challenging. This challenge has led to numerous investigations into the systematic

generation of MRs. MR generation has recently emerged as one of the most significant

and widely discussed topics in MT research. The significant rise in publications about

MR generation in the past decade clearly indicates this. This trend has been particularly

pronounced in the last five years [17]. A total of 81 papers have investigated the systematic

generation of MRs, with 63 published between 2019 and 2024 [17].

Several previous studies have examined the automatic generation and prediction of
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MRs. Liu et al. introduced a novel method called Composition of Metamorphic Relation

(CMR), wherein the creation of new MRs is achieved by combining existing ones [32].

Similarly, Dong et al. conducted a related study in which Compositional MR was produced

based on the speculative law of propositional logic [33]. Their empirical studies showed

that the fault-detection effectiveness of composite MRs depended on their corresponding

individual component MRs and the order of composition [33]. Additionally, it was observed

that a composite MR appeared to outperform its individual component MRs, as the former

could detect faults collectively [33]. Zhang et al. suggested a technique in which an algorithm

searches for MRs represented as linear or quadratic equations [34]. Su et al. [35] introduced

KABU, which is developed to automatically identify MRs by generating new inputs for

the program being tested and then inferring relationships in a rule-based manner. Chen et

al. presented a technique DESSERT where the DividE-and-conquer method was utilized to

determine the categorieS, choiceS, and choicE MRs for generating test cases [36]. Afterward,

Chen et al. again introduced another mechanism METRIC, where MRs were determined

with category-choice framework [37].

Kanewala et al. [38, 39] conducted a study where machine learning methods could

predict MRs in previously unseen programs. They have used features from the control

flow graphs (CFGs) of the functions and then used them to create a predictive model [39].

Kanewala et al. [38] introduced MRpred, a method that is developed using a graph kernel-

based machine learning approach to predicting MRs for programs that perform numerical

calculations. The first step in this approach is to transform a function into its graphical

representation, which uses the control flow and data dependency information of the program

[38]. They then use a graph kernel function to compute a similarity score between graph

representations of programs. The graph kernel values are provided to a support vector

machines (SVMs) classification algorithm to build the predictive model [38]. They assessed

the effectiveness of their proposed methods using a code corpus that includes 100 functions
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taking numerical inputs and producing numerical outputs [38]. Six types of MRs were

identified: Permutative, Additive, Multiplicative, Invertive, Inclusive, and Exclusive. Their

findings indicate that graph kernels enhance the prediction accuracy of MRs compared to

explicitly extracted features. Furthermore, their results reveal that control flow information

of a program is more effective than data dependency information for predicting MRs. In

some cases, both can contribute to increased accuracy.

In 2018, Hardin et al. extended the study for predicting MRs by implementing machine

learning models that utilize support vector machines and the label propagation algorithm

[40]. Their feature set includes path information across the graph representations of the

program being tested. Their results indicate that label propagation outperformed the SVMs

for 5 out of 6 MRs [40]. Furthermore, they conclude that unlabeled data enhances the

prediction rate of a classifier [40]. These studies motivated the use of various types of

applications as the subject programs for the experiments described in this paper. Many

studies have used MT to test machine learning models. Moreover, there are few studies

done by Faqeer et al. where the author used MT to verify different machine learning models

[41, 42], clustering-based anomaly detection systems [43], and neural network-based detection

systems [44, 45].

To identify vulnerabilities in web applications and assist with security testing, various

techniques are employed, including static application security testing (SAST) [46], dynamic

application security testing (DAST) [47], penetration testing, fuzz testing, risk-based testing

[48], and manual code reviews [48]. However, these methods frequently face challenges

such as limited test coverage, susceptibility to human error, and difficulties in addressing

dynamic behaviors [14]. Another significant challenge is the variability in testing tools

themselves, as updates and modifications can lead to differing security assessments and

scores across versions [49]. MT can also be utilized to detect vulnerabilities and enhance

security testing. The application of MT in security testing mainly focuses on the functional
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testing of security components, such as encryption programs, code obfuscators, and login

interfaces [10]. It also verifies low-level properties impacted by specific security vulnerabilities

like the Heartbleed bug [10]. However, current research has been restricted to particular

vulnerabilities and lacks automation for creating executable metamorphic test cases with

efficiency [17]. Most methods necessitate manually implementing MRs [17] or defining them

in imperative programming languages [17], which limits system-level security verification.

Many previous efforts have aimed to establish criteria for identifying appropriate MRs,

but they remain predominantly qualitative. Developing further measurable methods is

necessary to effectively assist in selecting suitable MRs and addressing the oracle problem. A

promising avenue for future research indicates the process of selecting proper MRs with the

systematic identification of MRs. This can create an advanced technique that accomplishes

MR identification and selection. This method would identify MRs independently and

systematically determine a set of MRs that excel in detecting various faults.
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PREDICTING METAMORPHIC RELATIONS FOR MATRIX CALCULATION

PROGRAMS

Approach

This section explains the enhancement of the graph kernel-based machine learning

approach for programs that execute matrix calculations.

Method Overview

This method utilizes kernel-based machine learning algorithms to develop a classifier

that predicts metamorphic relations (MRs) for programs not seen before. Figure 4 shows an

overview of this method. The process involves two phases. The first phase is the training

phase, which begins by creating a graph representation of functions written in Java. Each

function is labeled with its respective metamorphic relations, which are identified manually

for this experiment. Graph kernels are then employed to determine the similarity score for

each graph pair. The result of the graph kernel function is a similarity score matrix, also

known as a gram matrix. The final step of this phase involves training a classifier using

kernel-based machine learning algorithms. The second phase is the testing phase, which

retrieves the graph representation from an unseen function, following the same procedure as

the training phase. Subsequently, the graph kernel function calculates the similarity scores

between this new graph and all training graphs. Finally, the trained classifier predicts the

MRs for the unseen function.

Function Representation - Control Flow Graph (CFG)

The first step of this method is to convert a function into its Control Flow Graph

(CFG). This representation is specifically used since it allows the extraction of information

about the sequence of operations performed in a control flow path that is directly related to
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Figure 4: The overview of the graph kernel-based machine learning approach

the MRs satisfied by a given function.

A CFG is a directed graph, denoted as Gf = (V , E), representing a function f. Each

statement x in f corresponds to a node vx ∈ V . The operation associated with each x is

indicated by label(vx). If x and y are statements within f, then upon executing x, y will

subsequently execute. Thus, e is defined as an edge where e = (vx , vy) ∈ E. The control

flow of f is illustrated by all edges, with nodes vstart and vexit representing the starting and

exiting points, respectively [50].

We utilize the Soot 1 framework to generate Control Flow Graphs (CFGs). These CFGs

are produced in Jimple, which is a typed 3-address intermediate representation of Java code,

where each CFG node corresponds to an atomic operation [51]. After generating the CFGs,

we label all nodes to indicate the specific operation performed at each one. Furthermore,

we annotated each method call node within the CFG with its corresponding return types.

1https://www.sable.mcgill.ca/soot/
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Figure 5 illustrates a function that calculates the scalar multiplication of a matrix alongside

its post-processed CFG representation.

Graph Kernel-Based Method

Given that the suggested approach utilizes kernel-based supervised machine learning

algorithms, this description includes explanations of the kernel method, graph kernel, and

various machine learning techniques.

Kernel Method: Kernel methods represent a category of machine learning algorithms

effective for pattern analysis, enabling tasks such as classification, clustering, and principal

component extraction. [52]. The raw data representation can be transformed into a high-

dimensional feature space using kernel methods. In this space, machine learning algorithms

can identify linear relationships. [52]. Kernel functions facilitate the computation of inner

products within this high-dimensional feature space directly from the raw data, eliminating

the need to first map the data into the new feature space and measure the coordinates.[52]

Graph Kernel: Kernel-based graph comparison and classification methods have gained

significant popularity in various fields, including biology [53], chemistry [54], and social

network analysis [55]. Graphs serve as a natural representation for modeling this type of

data, primarily focusing on structural characteristics. In 2003, Gartner et al. introduced

graph kernels [56], a set of functions designed to compute similarity scores between pairs

of graphs by comparing their structures. These precomputed similarity scores can then

be utilized by kernel-based machine learning algorithms for classification tasks. Two types

of graph kernels are employed in the graph kernel-based machine learning approach [38].

According to previous research by Kanewala et al. [38], a random walk kernel and a graphlet

kernel were used to predict MRs, with findings indicating that the random walk kernel is

more effective for MR prediction when utilizing CFG representation. This study evaluates
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Figure 5: Function that performs scalar multiplication and its post-processed control flow
graph (CFG) representation
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new function types using both graph kernels.

Random Walk Kernel: Once the function representation of the programs is established,

the next phase involves utilizing a graph kernel to determine the similarity between the

graphs. The random walk kernel operates on the principle of counting the matching walks

found in two graphs [38]. It calculates the similarity score by aggregating the scores of all

pairs of walks, achieved by multiplying the similarity scores of their respective step pairs

[38]. The similarity score for each pair of steps is initially determined by multiplying the

similarity scores of the node and edge pairs that comprise the step [38].

Node labels influence the similarity score for a node pair as follows: if both labels are

identical, the pair receives a score of one. If the labels differ, their operations determine

the assigned score. When two node labels represent operations with similar characteristics

(though not the same), they are given a similarity score of 0.75. For general tasks such

as variable assignments or function calls, the score is 0.5. A score of 0.6 applies when the

nodes indicate conditions, logic, or basic arithmetic operations. If a node signifies throw

statements, it is assigned a score of 0.3, while a score of 0.1 is designated for all other

scenarios.

Like node labels, edge labels determine the similarity score associated with a pair of

edges. In this study, we utilized a single type of edge that indicates the flow of control among

function operations. Therefore, the similarity score for any edge pair is consistently one for

this analysis. The random walk kernel definition referenced here comes from prior work by

Kanewala et al. [38].

Definition of the random walk kernel Consider the control flow graphs of two programs

represented by G1 = (V1, E1) and G2 = (V2, E2). Let’s define two walks, w al k1 and w al k2, for

G1 and G2 respectively. The walk for G1 can be expressed as w al k1 = (v11, v
2
1, . . . , v

n−1
1 , vn1 )

where each vi1 ∈ V1 and 1 ≤ i ≤ n. Similarly, the walk for G2 is defined as w al k2 =
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(v12, v
2
2, . . . , v

n−1
2 , vn2 ) with each vi2 ∈ V2 and 1 ≤ i ≤ n. The edges of the graphs are

represented as (vi1, v
i+1
1 ) ∈ E1 and (vi2, v

i+1
2 ) ∈ E2. Thus, we can now define the kernel

value for the two graphs as:

kr w(G1, G2) =
∑

w al k1∈G1

∑
w al k2∈G2

kw al k(w al k1, w al k2) (1)

Now the walk kernel kw al k can be defined as follows:

kw al k(w al k1, w al k2) =
n−1∏
i=1

kstep((v
i
1, v

i+1
1 ), (vi2, v

i+1
2 )) (2)

In each step, the kernel will be defined by utilizing the two node pairs and edge pair values

as follows:

kstep((v
i
1, v

i+1
1 ), (vi2, v

i+1
2 )) = knode(v

i
1, v

i
2) ∗ knode(vi+1

1 , vi+1
2 ) ∗ kedg e((vi1, vi+1

1 ), (vi2, v
i+1
2 )) (3)

Here, knode represents the node kernels that calculate the similarity score between pairs of

nodes. It evaluates the similarity of node labels. For assigning the similarity score, we

also take into account the grouping of nodes based on their operations. In this study, we

categorized the mathematical operations by several properties: commutative and associative

operations, labeled as g r oupcom,aso; conditional statements, referred to as g r oupcondition;
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variable assignments, labeled as g r oupassig n; and throw statements, denoted as g r oupthr ow.

knode(vi, vj) =



1, if l abel(vi) = l abel(vj)

0.75, if g r oupcom,aso(vi) = g r oupcom,aso(vj) and l abel(vi) ̸= l abel(vj)

0.6, if g r oupcondition(vi) = g r oupcondition(vj) and l abel(vi) ̸= l abel(vj)

0.5, if g r oupassig n(vi) = g r oupassig n(vj) and l abel(vi) ̸= l abel(vj)

0.3, if g r oupthr ow(vi) = g r oupthr ow(vj) and l abel(vi) ̸= l abel(vj)

0.1, if g r oup(vi) ̸= g r oup(vj) and l abel(vi) ̸= l abel(vj)
(4)

The edge kernel kedg eis defined as follow:

kedg e((vi1, v
i+1
1 ), (vi2, v

i+1
2 )) =


1, if l abel(vi1, v

i+1
1 ) = l abel(vi2, v

i+1
2 )

0, otherwise.

(5)

The direct product graph method, as outlined by Gärtner et al. [57], is employed here. A

modification introduced by Borgwardt et al. [58] is utilized for calculating all walks within

the two graphs. The direct product graph of G1 = (V1, E1) and G2 = (V2, E2) is defined as

G1 ×G2. The nodes and edges of the direct product graph are defined as follows:

VX(G1 ×G2) = {(v1, v2) ∈ V1 × V2} (6)

EX(G1 ×G2) =
{((

(v11, v
2
1), (v

1
2, v

2
2)
))

∈ V 2(G1 ×G2) :
(
v11, v

2
1

)
∈ E1

∧
(
v12, v

2
2

)
∈ E2 ∧ l abel

(
v11, v

2
1

)
= l abel

(
v12, v

2
2

)} (7)

Based on the above product graph, the random walk kernel is defined as follows:

kr w(G1, G2) =
VX∑

i,j=1

[
∞∑
n=0

λnAn
X

]
ij

(8)
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Figure 6: Random walk kernel computation for graph G1 and G2

In this context, AX represents the adjacency matrix of the direct product graph. Here,

1 > λ ≥ 0 serves as a weighting factor, while n denotes the path length. The AX matrix is

adjusted as described to incorporate kstep defined earlier:

[AX ]((vi,wi),(vj ,wj)) =


kstep((vi, wi), (vj, wj)), if (vi, wi), (vj, wj) ∈ EX

0, otherwise.

(9)

In Figure 6, G1 and G2 represent two functions in graph form, with the walk lengths

limited to two. For G1 , there are walks of lengths one and two:

Leng th 1 : A → B,B → C,A → C

Leng th 2 : A → B → C
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For G2 , with walks of length one and two are

Leng th 1 : P → Q,P → R,Q → S,R → S

Leng th 2 : P → Q → S,P → R → S

Then it computes the similarity score between the two walks of the graphs.

kwalk(A → B,P → Q) = kstep((A, B), (P , Q))

...

kwalk(A → B → C,P → R,→ S) = kstep((A, B), (P , R)) × kstep((B , C), (R , S))

Computation of the similarity between two steps are done as stated below-

kstep((A, B), (P , Q)) = knode(A, P )× knode(B , Q)× kedge((A, B), (P , Q))

kstep((A, B), (P , R)) = knode(A, P )× knode(B , R)× kedge((A, B), (P , R))

kstep((B , C), (R , S)) = knode(B , R)× knode(C , S)× kedge((B , C), (R , S))

Similarity score between two nodes and edges are calculated as follows-

knode(A, P ) = 0.6 (two node labels have same conditions)

knode(B , Q) = 1 (two node labels are identical)

knode(B , R) = 0.6 (two node labels have basic arithmetic operations)
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kedge((A, B), (P , Q)) = 1 (both edges have the same label)

kedge((A, B), (P , R)) = 1

This study employs the concept of the random walk graph kernel computation process.

Graphlet Kernel: In this study, we also utilize the Graphlet Kernel, a type of graph

kernel method. While a random walk kernel struggles to effectively capture significant

structures such as if conditions, graphlet kernels excel at this task by analyzing sub-graphs.

These sub-graphs, known as graphlets, allow us to calculate the similarity score between pairs

of graphs by comparing all graphlet pairs of a defined size [38]. To obtain the similarity score

for the two graphs, we sum the similarity scores of all corresponding graphlet pairs present

in each graph [38].

The similarity score for two graphlets is determined in the following manner: When

the graphlets are isomorphic, the score is computed by multiplying the similarity scores of

the corresponding node and edge pairs, similar to the random walk method. If they are not

isomorphic, a similarity score of 0.1 is assigned to the pair. This calculation occurs when

functions are represented as CFGs.

In this context, a single type of edge illustrates the flow of execution among function

operations. Consequently, the similarity score for any pair of edges remains consistently one.

The graphlet kernel defined for this study is explained in the earlier work of Kanewala et al.

[38].

Definition of the Graphlet Kernel A graph G = (V , E) consists of a set of vertices

V = {v1, v2, . . . , vn} and a set of edges E ⊆ V × V . A graph H = (VH , EH) is considered

a sub-graph of G if there exists an injective mapping α : VH → V such that for any two

vertices v and w in VH , the edge (v , w) is in EH if and only if the edge (α(v), α(w)) is in E.
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If H is a sub-graph of G, it is denoted as H ⊑ G.

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are considered isomorphic if there exists

a bijective mapping g : V1 → V2 such that for any vertices u and v in V1, the edge (u, v) is

in E1 if and only if the edge (g(u), g(v)) is in E2. If G1 and G2 are isomorphic, it is denoted

as G1 ≃ G2, and the function g is referred to as the isomorphism function.

Suppose Mk
1 and Mk

2 are the set of sub-graphs with size k for the graph representations

G1 and G2. If S1 = (Vs1 , Es1) ∈ Mk
1 and S2 = (Vs2 , Es2) ∈ M2, then the graphlet kernel,

kg r aphl et(G1, G2), can be calculated as

kg r aphl et(G1, G2) =
∑

S1∈Mk
1

∑
S2∈Mk

2

δ(S ≃ S2) (10)

, where

δ(S1 ≃ S2) =


1, if S1 ≃ S2

0, otherwise.

(11)

To consider the node labels and edge labels, we modified the graphlet kernel equation into

kg r aphl et(G1, G2) =
∑

S1∈Mk
1

∑
S2∈Mk

2

ksubg r aph(S1, S2) (12)

, where

ksubg r aph(S1, S2) =


∏
v∈Vs1

knode(v , g(v)) ∗
∏

(v1,vj)∈Es1

kedg e((vi, vj), (g(vi), g(vj))), if S1 ≃ S2

0, otherwise.

(13)

The graphlet kernel value for two programs, depicted in the graph-based representation

outlined in this section, was obtained from equation 12. Like the random walk kernel, knode

from equation 13 is derived as in equation 4, and kedg e is calculated using equation 5.
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Figure 7: Graphlet kernel computation for graph G3 and G4

For example, in Figure 7, the graphs G3 and G4 illustrate two different functions. If

we limit the graphlet size to 3, then the relevant subgraphs for G3 and G4 are S1
3 , S

2
3 , S

1
4 ,

S2
4 , and S3

4 .

Then, the similarity score between two graphs is computed using graphlets.

kgraphlet(G3, G4) = kgraphlet(S
1
3 , S

1
4) + kgraphlet(S

1
3 , S

2
4) + kgraphlet(S

1
3 , S

3
4)

+ .....+ kgraphlet(S
2
3 , S

2
4) + kgraphlet(S

2
3 , S

3
4)

The similarity between two graphlets is computed as follows-

kgraphlet(S
1
3 , S

1
4) = 0.1

kgraphlet(S
1
3 , S

2
4) = 0.1
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kgraphlet(S
1
3 , S

3
4) = knode(A, Q)× knode(B , R)× knode(C , S)

× kedge((A, B), (Q, R))× kedge((A, C), (Q, S))

...

kgraphlet(S
2
3 , S

2
4) = knode(A, P )× knode(B , Q)× knode(D , S)

× kedge((A, B), (P , Q))× kedge((B , D), (Q, S))

kgraphlet(S
2
3 , S

3
4) = 0.1

Computation of the similarity score between two nodes and edges are shown below -

knode(A, Q) = 1

knode(B , R) = 0.6

knode(C , S) = 0.6

...

knode(D , S) = 0.1

kedge((A, B), (Q, R)) = 1

...

kedge((B , D), (Q, S)) = 1

This concept of graphlet graph kernel computation is utilized in this thesis.
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Margin to 
maximize

Separating 
hyperplane

Figure 8: General classification hyperplane representation of SVM algorithm

Predictive Model

As previously mentioned, predicting MRs is formulated as a machine-learning problem.

Machine learning algorithms are a well-established method for identifying linear relation-

ships. This section focuses on supervised learning, which employs several commonly used

algorithms; this thesis utilizes kernel-based support vector machines.

Support Vector Machines: SVM algorithms are widely utilized in real-world scenarios

for classification or regression tasks. The fundamental idea of SVMs involves linear

classification by generating a hyperplane within a high dimensional space [29]. This

hyperplane can distinguish examples of different classes in the training sets based on the

information of their associated class labels [29]. Many accessible kernel functions, such

as the linear kernel, polynomial kernel, Gaussian kernel, and sigmoid kernel, can map the

original low-dimensional data sets into a higher-dimensional space [29]. As shown in Figure
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8, SVMs find a hyperplane amongst the data points that separate the classes of data. A

hyperplane maximizes the margin between itself and the support vectors, decreasing the

classification error [29]. SVMs are inductive models, as they predict the testing sets based

on mathematical models obtained from the training sets [29]. It creates a classification model

or a classifier using labeled data. The model is used to predict labels for previously unseen

data. It can also be used for binary classification [29].

This thesis focuses on graph kernel functions, detailed in this section. The calculated

graph kernel values are fed into SVMs, which receive a binary label indicating whether a

specific function meets the designated MR. The SVMs utilize this information to build a

model that predicts if a new function will satisfy the given MR. For this study, the SVM

implementation from the scikit-learn2 toolkit was employed. Figure 4 illustrates an overview

of how the predictive model is constructed.

Experimental setup

This section outlines the code corpus and the metamorphic relations employed in this

study, along with a description of the evaluation procedure.

Code corpus

A total of 93 functions handling matrix calculations are utilized to assess the efficacy

of the proposed method for predicting MRs. These functions are sourced from open-source

projects, including the Apache Commons Math Library3, la4j (Linear Algebra for Java)4, and

JAMA (Java Matrix package)5, They perform a variety of matrix operations such as addition,

subtraction, multiplication, and searching (for example, retrieving a column matrix or a row

2http://scikit-learn.org/stable/
3http://commons.apache.org/proper/commons-math/javadocs/api-3.6/
4http://la4j.org/apidocs/
5https://math.nist.gov/javanumerics/jama/doc/
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matrix). While many functions offer equivalent functionality, their implementations differ.

For instance, both the Array2DRowRealMatrix and OpenMapRealMatrix classes include

matrix multiplication functions, but they are coded differently. In such instances, both

implementations are incorporated into the code corpus.

The suggested strategy utilizes the graph kernel method to compute similarity scores

between graph pairs; as a result, control flow graphs (CFGs) for these functions are created

using the Soot framework. Each node within the generated CFG is designated with labels

to indicate its corresponding role operation.

Metamorphic Relations

In this study, ten MRs have been manually identified that are broadly relevant to matrix

calculations. These MRs serve as class labels for the classification model. Below is the list

of MRs selected for this research:

1. MR1 - ScalarAddition: When a positive constant is added to the positive source input

matrix, resulting in a follow-up input matrix, the total of the elements in the follow-up

output matrix will be greater than or equal to that of the source output matrix. For

example, A is an input matrix, and b is a positive constant. For MR1, the follow-up

input is A
′
, where ∀i, j , a′

i,j = ai,j + b; therefore, the expected relation among the

follow-up and the source output is
∑

i

∑
j o

′

(i,j) ≥
∑

i

∑
j o(i,j).

2. MR2 - AdditionWithIdentityMatrix: When an identity matrix matching the dimen-

sions of the positive source input matrix is added to create a subsequent input, the total

of the elements in the follow-up output matrix should be equal to or exceed the total

of the elements in the source output matrix. For example, A is an input matrix, and I

is an identity matrix. For MR2, the follow-up input is A′, where ∀i, j , a′
i,j = ii,j + ai,j;

therefore, the expected output relation is
∑

i

∑
j o

′

(i,j) ≥
∑

i

∑
j o(i,j).
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3. MR3 - ScalarMultiplication: When a positive constant is multiplied by the positive

source input matrix to form a follow-up input matrix, the total of the follow-up output

matrix elements must be greater than or equal to that of the source output matrix

elements. For example, A is an input matrix, and b is a positive constant. For MR3,

the follow-up input is A
′
, where ∀i, j , a′

i,j = b×ai,j; therefore, expected output relation

is
∑

i

∑
j o

′

(i,j) ≥
∑

i

∑
j o(i,j).

4. MR4 -MultiplicationWithIdentityMatrix: When an identity matrix matching the

dimensions of the positive source input matrix is multiplied element-wise to produce

a follow-up input, the sum of the elements in the follow-up output matrix must be

less than or equal to the sum of the elements in the source output matrix. For

example, A is an input matrix, and I is an identity matrix. For MR4, the follow-

up input is A′, where ∀i, j , a′
i,j = ii,j × ai,j; therefore, the expected output relation is∑

i

∑
j o

′

(i,j) ≤
∑

i

∑
j o(i,j).

5. MR5 - Transpose: When a follow-up input is created by transposing the positive source

input matrix, the total of the elements in the follow-up output matrix should match the

total of the elements in the source output matrix. For example, A is an input matrix.

For MR5, the follow-up input is A′, where ∀i, j , a′
i,j = aj,i; therefore, the expected

output relation is
∑

i

∑
j o

′

(i,j) =
∑

i

∑
j o(i,j).

6. MR6 - MatrixAddition: When the positive source input matrix is summed with itself

to create the follow-up input, the total of the elements in the follow-up output matrix

should be greater than or equal to that of the source output matrix. For example, A

is an input matrix. For MR6, the follow-up input is A′ = A + A; therefore, expected

output relation is
∑

i

∑
j o

′

(i,j) ≥
∑

i

∑
j o(i,j).

7. MR7 - MatrixMultiplication: When the positive source input matrix multiplies itself
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to produce the follow-up input, the sum of the elements in the follow-up output matrix

must be greater than or equal to the sum of the elements in the source output matrix.

For example, A is an input matrix. For MR7, the follow-up input is A′ = A × A;

therefore, the expected output relation is
∑

i

∑
j o

′

(i,j) ≥
∑

i

∑
j o(i,j).

8. MR8 - PermuteColumn: When the columns of the positive source input matrix are

rearranged to produce the follow-up input, the total of the elements in the follow-up

output matrix must equal the total of the elements in the source output matrix. For

example, A is a input matrix with j = 1, 2, 3, .., n columns. For MR8, the follow-up

test case is A′ after permuting the column positions; therefore, the expected output

relation is
∑

i

∑
j o

′

(i,j) =
∑

i

∑
j o(i,j).

9. MR9 - PermuteRow: When the rows of the positive source input matrix are rearranged

to form the follow-up input, the total of the elements in the follow-up output matrix

must match the total of the elements in the source output matrix. For example,

A is a input matrix with j = 1, 2, 3, .., n rows. For MR8, the follow-up test case

is A′ after permuting the row positions; therefore, the expected output relation is∑
i

∑
j o

′

(i,j) =
∑

i

∑
j o(i,j).

10. MR10 - PermuteElement: When the elements of the positive source input matrix are

rearranged to form the subsequent input, the total of the follow-up output matrix’s

elements must equal the total of the source output matrix’s elements. For example, A

is a input matrix with i = 1, 2, 3, .., n rows and j = 1, 2, 3, .., n columns. For MR10,

the follow-up test case is A′ after permuting elements. Therefore, the expected output

relation is
∑

i

∑
j o

′

(i,j) =
∑

i

∑
j o(i,j).

We manually assessed whether the programs in our code corpus meet these 10 MRs.

Moreover, a lab partner helped me verify the MRs by cross-checking them. Identifying the
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Table 2: Number of positive and negative instances for each metamorphic relation

Metamorphic Relation Positive instances Negative instances
MR1 77 16
MR2 25 68
MR3 77 16
MR4 39 54
MR5 36 57
MR6 12 81
MR7 20 73
MR8 55 38
MR9 55 38
MR10 55 38

MRs for this study’s code corpus was quite time-consuming. Table 2 displays the number

of positive and negative instances for each MR; positive indicates a function meets the MR,

while negative indicates that it does not.

Evaluation Procedure

Firstly, I standardize each kernel to ensure that every example has a unit norm through

the cosine normalization [59]. Below is the equation for the normalization applied in this

study.

k′
g r aph(G1, G2) =

kg r aph(G1, G2)√
kg r aph(G1, G1)kg r aph(G2, G2)

We implement a stratified train, validation, and test framework to assess the effectiveness

of MR predictions. As shown in Figure 9 illustrates the procedure involves splitting the

data into 10 folds, ensuring that each fold maintains a similar ratio of positive and negative

instances as in the original dataset. These folds are further categorized into three subsets:

Train data, Test data, and Validation data. The prediction model is developed using the

precomputed kernel values from the Train data. The validation dataset was utilized to

determine the parameters for the predictive model. The parameters included: (1) the

regularization parameter C for the support vector machines (SVMs), (2) the path weighting
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Figure 9: Representation of the stratified train, validation and test setup for SVMs model

factor λ in the random walk kernel, constrained by 0 ≤ λ < 1 (meaning each walk of length

n is weighted by λn, with n ranging from 1 to 10), and (3) the size of the sub-graphs (2,

3, or 4) used in the graphlet kernel. The parameter values chosen from the validation set

were then applied to build the binary predictive model for estimating the MRs in the test

data. This train-validation-test process was repeated ten times, allowing each fold to serve

as the validation and test set while the remaining folds were used for training the model,

thus minimizing biases in the fold divisions. Consequently, each iteration employed eight

folds for training, one for validation, and one for testing.

Area Under the Receiver Operating Characteristic Curve

For the evaluation of this study, we used Area Under the receiver operating characteristic

Curve (AUC) as our measurement metric. AUC indicates the likelihood that the predictive

model prioritizes a randomly selected positive example (such as a program with a specific
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Table 3: Best C and best λ parameter values for selecting predictive model for each
metamorphic relation on validation set

Metamorphic Relation Best C Best λ
MR1 0.1 0.5
MR2 10 0.9
MR3 1000 0.7, 0.6
MR4 100, 1000 0.7
MR5 10, 100, 1000 0.8, 0.9
MR6 1 0.8, 0.9
MR7 1000 0.5
MR8 1000 0.3
MR9 1000 0.9, 0.3
MR10 1000 0.7, 0.8

Table 4: Best C and best graphlet size parameter values for selecting a predictive model for
each metamorphic relation on validation set

Metamorphic Relation Best C Best graphlet size
MR1 100 3
MR2 1 3
MR3 0.1, 1, 10, 100 2
MR4 100, 1000 3
MR5 10 2
MR6 100 2
MR7 100 2
MR8 0.1 3
MR9 1000 2
MR10 100 2

MR label) over a randomly chosen negative example [60]. AUC ranges from 0 to 1, with

higher values signifying improved performance; a score of 0.5 indicates a random classifier.

AUC is the evaluation metric in this experiment since it is independent of the classifier’s

discrimination threshold. It is viewed as a more effective measure for assessing learning

algorithms than metrics like accuracy. [60].
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Results

The random walk kernel and graphlet kernel performance are evaluated with SVMs to

develop the predictive model.

Predictive Model Selection

The validation set helps determine the optimal parameter values for identifying the best

predictive model. Table 3 and Table 4 show the λ, graphlet size and C values for each MR

on the validation set associated with the highest AUC value. For the MRs in Table 10, the

chosen value for the parameter C does not significantly impact the prediction accuracy, as

most are set to 1000, except for MR1, MR2, and MR3. However, the best value for λ varies

among different MRs. Seven out of the ten MRs (i.e., MR2, MR3, MR4, MR5, MR6, MR9,

and MR10) have the best λ value greater than 0.5. A higher λ value means the random

walk kernel assigns more weight to longer paths, as defined by criterion [38]. Among the

MRs (specifically, MR1, MR7, MR8, and MR9), the best λ values range from 0.3 to 0.5.

This suggests that for these four MRs, longer paths in the CFGs play a more crucial role in

predicting MRs than other paths.

In the graphlet kernel, the chosen value for the parameter C varies across all MRs.

The optimal C value of 100 is identified for MR1, MR3, MR4, MR6, MR7, and MR10.

Conversely, MR2, MR5, MR8, and MR9 exhibit different optimal C values, suggesting that

this parameter C influences prediction accuracy. Additionally, the ideal graphlet size differs

among various MRs. Six out of the ten MRs (MR3, MR5, MR6, MR7, MR9, and MR10)

have the best graphlet size of 2, while four MRs (MR1, MR2, MR4, and MR8) show a value

of 3 for the best graphlet size.
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Figure 10: Prediction AUC score for Random walk graph kernel and Graphlet kernel on
test set using the predictive model with best parameters

Comparison Between the Graph Kernels

Two types of graph kernels, the random walk kernel and the graphlet kernel, are utilized

to train the predictive model. Figure 10 illustrates the AUC scores for the test dataset

using both kernels. Among the 10 MRs, 7 (specifically MR2, MR3, MR5, MR6, MR7,

MR8, and MR9) perform better with the random walk kernel, while MR1, MR4, and MR10

show improved results with the graphlet kernel. The highest AUC score of 0.97 is obtained

for MR5 when using the random walk kernel. Table 2 presents the ratio of positive and

negative instances for each MR, indicating that this ratio influences the prediction accuracy.

Notably, MR2, MR5, and MR7 exhibit a low number of positive instances and a high number

of negative instances, with their AUC scores exceeding 0.9 using the random walk kernel.

Other MRs also achieved AUC values above 0.73, suggesting that effective predictive models

have been created for all MRs. An MR represents a property that defines the relationship

between outputs generated by multiple executions of the function, which may correlate with

the MRs. This study concludes that the random walk kernel, which leverages execution

traces to compare two functions, outperforms the graphlet kernel.
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Conclusion & future work

The metamorphic testing method proves invaluable for evaluating programs lacking a

test oracle. Its success largely relies on the selection of the metamorphic relations (MRs) used

for testing. However, identifying these MRs is predominantly a manual process. This study

builds on prior research, utilizing the random walk kernel to forecast MRs for functions that

perform matrix calculations. Our findings indicate that the random walk kernel is effective

in predicting MRs for such functions.

Looking ahead, we aim to expand the variety of functions included in this study.

Additionally, we are open to introducing new types of MRs, particularly those designed

for matrix calculations. We also intend to broaden the scope of MR predictions beyond just

the function level.
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Abstract

Metamorphic relations (MRs) are an essential component of metamorphic testing (MT)

that highly affects its fault detection effectiveness. MRs are usually identified with the help

of a domain expert, which is a labor-intensive task. In this work, we explore the feasibility

of a text classification-based machine learning approach to predict MRs using their program

documentation as the sole input. We compare our method to our previously developed graph

kernel-based machine learning approach and demonstrate that textual features extracted

from program documentation are highly effective for predicting metamorphic relations for

matrix calculation programs.

Introduction

Since its first introduction in 1998, Metamorphic testing (MT) has evolved as an

effective testing technique for testing programs that face the oracle problem. Further, MT

has led to revealing previously unknown faults in diverse applications such as compilers [61],

search engines [62], and Google map navigation [63]. At the center of MT are metamorphic

relations (MRs), which are necessary properties of the program under test (PUT) and specify

relationships between multiple inputs and their corresponding outputs.

For example, consider a program that accepts a list of real numbers and sorts them in

ascending order. Imagine that this program is provided with a list of 50,000 numbers. How

do you determine the output produced by the sorting program is correct? Even though it is

hard to determine whether the produced output is correct in this instance, we can develop

relationships between the outputs of some related inputs. For example, from our knowledge

about sorting, we know that if we permute the original input and supply it to the sorting

program, it should produce the same ordering as before. This property of sorting can be

used as an MR to test the sorting program. In MT, the original list of inputs is known
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Figure 11: Overview of the approach.

as the source test case, and the list obtained by randomly permuting the original list is

known as the follow-up test case. After executing the source and follow-up test cases on the

sorting program, the produced outputs are checked against the MR; in this case, to verify

the produced outputs have the same ordering. If they are not, there is a fault in the sorting

program.

Often, MR identification is performed manually and requires interaction with domain

experts, especially when testing scientific programs. Therefore, this process can be a labor-

intensive task that is often error prone [38]. Thus, developing automated methods for

identifying MRs can improve the efficiency and effectiveness of MT. To this end, in this

paper, we investigate utilizing text mining to extract information from various documentation

sources associated with a program and use machine learning techniques to predict MRs for

unseen programs automatically.

Text mining techniques are often used to explore and analyze a vast amount of
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unstructured text data and identify patterns informative for a given task [64]. This study

presents the development of a method for automatically predicting MRs for a given program

function through categorizing text data associated with those programs (see Figure 11).

In particular, the text data used are collected from the Javadocs of the Java programs.

Javadoc contains the application programming interface documentation from the Java source

code [65]. We hypothesis that due to the close relationship of the Javadocs contents with

the program functionality, textual features extracted from the documentation is highly

informative for predicting MRs associated with those programs. Therefore, this study

aims to demonstrate the effectiveness of using text mined features generated from program

documentation to predict MRs.

This paper is organized as follows: Section 2 provides the background knowledge of the

methods and techniques used for the experiment. Section 3 explains the methodology of

the Text Mining based machine learning approach to identify MRs for a function. Section

4 discusses the results obtained by using the approach introduced in the study. Section 5

concludes the paper by pointing out future works.

Related Work

Several automated methods have been developed for MR prediction in previous work.

Kanewala et al. [38] introduced MRpred, a method that uses a graph kernel-based machine

learning approach to predict metamorphic relations for programs that perform numerical

calculations. The initial step of this approach is to transform a function into its graph

representation modeling the control flow and the data dependency information of the

program [38]. Then they use a graph kernel function to compute a similarity score between

two programs represented in the graph representation mentioned above. The computed

graph kernel values are then provided to a support vector machine (SVM) classification

algorithm to create the predictive model, which is used for binary classification [38].
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Figure 12: Raw data of a program which adds a value to the matrix elements.
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They used a code corpus containing 100 functions that take numerical inputs and

produce numerical outputs, to evaluate the effectiveness of their proposed methods [38].

Six MRs are identified; Permutative, Additive, Multiplicative, Invertive, Inclusive, and

Exclusive. Their results show that graph kernels improve the prediction accuracy of MRs

when compared with explicitly extracted features. Their results also show that control flow

information of a program is more effective than data dependency information for predicting

MRs, but sometimes, both of them can contribute to increasing the accuracy.

In one of our previous studies [12], we applied MRpred for predicting three high-

level categories of MRs (i.e., Permutative, Additive, and Multiplicative) for matrix-based

programs. Our results show that the random walk kernel can effectively predict these

MRs [12]. This study motivated us to use matrix-based programs as the subject programs

for the experiments described in this paper.

Further, in several past studies, researches have used different text analysis techniques.

They have investigated many ways to improve the software testing process using text analysis

techniques. In [66], the authors have conducted a mapping study where they listed the

activities of software testing, which are improved by using text analysis techniques. They

are static black-box test-case prioritization, robustness testing, test case generation, and test

case prioritization [66].

Our work described in this paper also focuses on the automated identification of MRs

for programs but using a different source of data, which is the various documentation sources

associated with the program. In particular, we use text mining techniques to classify the

Javadoc associated with a program and use machine learning to predict MRs for previously

unseen programs. To the best of our knowledge, this is the first such study.
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Table 5: The Metamorphic Relations used in the study

Metamorphic Relation Change made to the in-
put

Expected change in the
output

MR1: Permutation of row Change the row order of the
a matrix

Output size will remain
same

MR2: Permutation of col-
umn

Change the column order of
the matrix

Output size will remain
same

MR3: Permutation of ele-
ments

Change the element posi-
tion of the matrix

Output size will remain
same

MR4: Matrix addition Adding another matrix to
the input matrix

Elements value will increase
or remain same.

MR5: Scalar addition Adding a value to the ma-
trix

Element values will increase
or remain same

MR6: Addition with the
Identity matrix

Adding Identity matrix to
the input matrix

Only diagonal element value
will change or output will
increase

MR7: Matrix multiplica-
tion

Multiplying another matrix
to the input matrix

Elements value will in-
crease.

MR8: Scalar multiplication Multiplying a value to the
matrix

Elements value will increase
or remain same.

MR9: Element by ele-
ment multiplication with
the Identity matrix

Multiplying Identity matrix
element by element to the
input matrix

Diagonal element will be
same or output will remain
same

MR10: Transpose Transpose the input matrix Diagonal element will be
same or output will remain
same
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Figure 13: Text classification approach for predicting MRs for Java programs.

Figure 14: AUC scores of Naive Bayes and SVM models using text classification
(MRpredT-NB and MRpredT-SVM), and for the SVM model using Random Walk Graph
Kernel (MRpred). AUC: Area Under the Receiver Operating Characteristic Curve. MR:
Metamorphic Relations.
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Methodology

In this work, we model the task of predicting MRs for a given program as a supervised

classification problem. In particular, we treat each MR independently and apply a separate

binary classifier for each MR. Binary class labels correspond to the existence of a specific MR,

and the input feature representing each program is generated solely using its documentation.

The following subsections describe the text corpus and the MRs used in this study.

The overview of the text classification approach for predicting MRs of the dataset is also

discussed here. Moreover, the details of the experimental setup are mentioned, as well.

Data

Text Corpus A total of 93 program’s Javadocs, which handle matrix operations, are

used for this study. They are collected from Apache Commons Math Library31, la4j (Linear

Algebra for Java)2, and JAMA (Java Matrix package)3, which are open-source projects.

These programs perform a variety of operations on matrices such as addition, multiplication,

subtraction, and searching. Figure 12 shows the raw data example of the Javadocs of a

program.

Metamorphic Relations For this study, we identified ten MRs manually that are

generally applicable to matrix calculations. These MRs are shown in Table 5 with the

change made to the input and their expected output change. These MRs are used as class

labels for the supervised classification model.

1http://commons.apache.org/proper/commons-math/javadocs/api-3.6/
2http://la4j.org/apidocs/
3https://math.nist.gov/javanumerics/jama/doc/
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Models

Javadoc contains the information of a program’s operation, inputs (parameters) and

outputs (returns) that are directly related to the MRs satisfied by a given program. Our

method solely uses Javadoc information to predict MRs for Java programs. Figure 13 shows

an overview of our method. We implemented our models using the scikit-learn4 python

library.

The first step of this method is to extract the Javadoc documentation from the source

code using Java Parser5 and pre-processes them using the lemmatization [67] technique.

Then, text feature extraction methods are applied to those pre-processed Javadocs to obtain

the feature vectors. Bag of words (BoW) model [67], is used as the feature representation. To

make the text learnable by machines, they must be converted to numerical vectors, and the

BoW model is a standard technique to obtain such a structure [67]. In this representation,

the features (fi, see Figure 13) are the tokens extracted from the source and feature-values are

the frequency of their occurrence within each program documentation. These feature vectors

of the programs are then supplied into the machine learning classification algorithm with

their associated MR labels. Here, MR labels are identified manually for all the programs,

where the label is ’1’ if an MR is satisfied by the program, and ’0’ otherwise.

We used two popular machine learning algorithms, Naive Bayes [68] and Support Vector

Machines (SVMs) [69], as the underlying classification algorithms. In many other domains,

these two algorithms are historically found to be very effective for text classification tasks [70–

73]. We implement both using the default parameters available in scikit-learn. The trained

predictive model is then used to predict the labels (i.e. MR) for the unseen program by

supplying the corresponding feature vector generated solely from its Javadoc documentation

text, as shown in Figure 13.

4https://scikit-learn.org/stable/
5https://javaparser.org/

https://javaparser.org/
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Experimental Setup

In this experiment, 10-times stratified 10-fold cross-validation is used to evaluate the

effectiveness of the models. It is a cross-validation technique where each fold contains roughly

the same percentage of data belonging to each class compared to the full dataset [74]. Also,

in the case of prediction problems, the mean response value is maintained relatively equal

in all the folds [74]. This process is repeated ten times to negate any selection-bias. This

approach is not only useful for the fair assessment of the models but also helps to alleviate

over-fitting [74]. We compare our models to MRpred [38].

The evaluation measure used in this study is Area Under the receiver operating

characteristic Curve (AUC). AUC measures the probability that a randomly chosen positive

example (i.e. a program labeled with a certain MR) will be ranked higher by the predictive

model than a randomly chosen negative example [60]. AUC takes values ranged in [0, 1]

where higher values indicate better performance, but a value of 0.5 is equivalent to a random

classifier. AUC is used as the evaluation metric in this experiment as it does not depend on

the discrimination threshold of the classifier and is considered a better measure for analyzing

learning algorithms (compared to metrics such as accuracy) [60].

Results and Discussion

In Figure 14, the AUC scores of our metamorphic relation prediction models (MRpredT-

NB: Naive Bayes, and MRpredT-SVM: SVM classification model) are compared to MRpred

(i.e., classification model using random walk graph kernel with SVMs). For 4/10 MRs

(i.e., MR1, MR2, MR3, and MR10), MRpredT-NB outperforms its SVM counterpart (i.e.

MRpredT-SVM).

For 6/10 MRs, MRpredT-SVM model performs better than MRpredT-NB. Among the

above 6 MRs, the highest possible AUC score (1.0) could be observed when predicting the
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addition with Identity matrix (MR6) MR. The other MRs also reported AUC values higher

than 0.87, indicating that our text-based approach generated effective predictive models

when using SVM for all the MRs. However, the prediction scores achieved by the NB is also

promising. The highest score is 0.99 when predicting transpose (MR10) MR.

Furthermore, for 2/10 MRs (MR7 and MR9), one of the two MRpredT models

outperform MRpred providing ample evidence for the effectiveness of using text data for

MR prediction. Interestingly, for MR7 and MR9, both MRpredT models perform better

than MRpred, warranting further investigation. One the other hand, MRpred is still the

clear winner for MR1, MR3, MR5, and MR8.

Conclusion and Future work

The metamorphic testing technique is beneficial to test programs that do not have a test

oracle. The effectiveness of this technique highly depends on the set of MRs used for testing.

But the identification process of MRs is mostly performed manually. This study proposes to

use a text classification method to predict MRs for functions that perform matrix calculations

using their documentation. The results show that for these types of programs, the text

classification-based machine learning approach can be effective in predicting MRs, especially

when using the SVM model. However, there are many avenues for future investigation, as

described below.

First, we would like to investigate the effectiveness of heterogeneous features by

combining MRpredT’s text features with the program features used in MRpred. In addition,

text features extracted from the source code itself could be a fruitful Addition. Another

aspect worth investigating is exploring the text features (i.e., tokens) identified as the most

effective for each MR by our MRpredT models. This may provide valuable information for

going beyond the standard BoW model and developing domain-specif features.

With the recent popularity of deep learning, we intend to utilize recurrent neural
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networks as the underlying machine learning model, which will also negate the need for hand-

engineering features. This will also provide the opportunity for exploring the effectiveness of

more sophisticated features based on semantic similarity (i.e., word and BERT embeddings).

However, this will require obtaining much larger datasets as these models are known to

be data-hungry. Considering the highly resource-consuming nature of the manual labeling

process, a semi-supervised learning technique that allows the use of unlabeled data may be

a viable alternative.
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Abstract

For the last few decades, the number of security vulnerabilities has been increasing

with the development of web applications. The domain of Web Applications is evolving.

As a result, many empirical studies have been carried out to address different security

vulnerabilities. However, an analysis of existing studies is needed before developing

new security vulnerability testing techniques. We perform a systematic mapping study

documenting state-of-the-art empirical research in web application security vulnerability

detection. The aim is to describe a roadmap for synthesizing the documented empirical

research. Existing research and literature have been reviewed using a systematic mapping

study. Our study reports on work dating from 2001 to 2021. The initial search retrieved

150 papers from the IEEE Xplore and ACM Digital Libraries, of which 76 were added to

the study. A classification scheme is derived based on the primary studies. The study

demonstrates that vulnerability detection in web applications is an ongoing field of research

and that the number of publications is increasing. Our study helps illuminate research areas

that need more consideration.

Introduction

The Web substantially influences all aspects of our everyday social lives nowadays. Bil-

lions worldwide use different web applications to get information, play games, communicate,

execute financial transactions, and socialize. Thus, they allow people and organizations

to communicate utilizing different applications regardless of the potentially substantial

geographical distances. Though this technology has brought numerous advantages to our

lives, they also come with various challenges. The most significant challenge is the security

of web applications [75]. Security in web applications refers to threats because of the

unstructured designs of the software, inadequate testing, and poor coding.
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Vulnerabilities are manifestations of weaknesses in a system. They can occur

accidentally because of the carelessness of the system designer and can cause failures in

the security of the system [76]. Over the past few years, vulnerabilities in applications

have been continuously increasing, and most of the common vulnerabilities found include

SQL injection, cross-site scripting, broken authentication, command-line injection, and

identification and authentication failures [76]. Many researchers nowadays investigate these

vulnerabilities and develop different automated techniques and tools to overcome these

vulnerabilities [77]. Researchers have suggested numerous methods for detecting security

vulnerabilities of web applications for the past decade, and paper numbers in this area

are increasing. Systematically identifying, interpreting, and classifying the publications is

essential to present a summary of the specific domain’s trends. Therefore, a systematic

mapping study is needed.

Petersen et al. [78] stated that a systematic mapping study is used to examine,

categorize and structure articles of particular research areas in software engineering. The

objective of the mapping study is to acquire knowledge of a research area through

classification. We follow the recommended five steps, which include defining research

questions, searching for suitable papers, stating selection criteria, extracting data, and

mapping. The main contributions of this paper include i) a classification scheme for

categorizing the articles, and ii) a systematic mapping study that consists of related research

over the past 20 years (2001-2021) by analyzing 76 articles.

Background and Related work

Verification techniques in current web development practices are either incomplete or

erroneous, which introduces vulnerabilities to web applications. In turn, vulnerabilities allow

a malicious user to introduce harmful artifacts (e.g., via script injections, data flow attacks,

and input validation attacks) into web content [76]. These harmful artifacts include cross-site
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scripting, directory traversal, SQL injection, response splitting, and filename inclusion.

Prior studies have attempted to synthesize web application vulnerability detection.

Specifically, Alalfi et al.[79] present a survey that uses 24 different modeling techniques

in web verification, validation, and testing. The survey classifies, contrasts, and examines

the modeling techniques. Marin et al. [80] provide a brief overview of current testing

techniques for web applications. They discuss the limitations of these techniques for testing

web applications. Garousi et al. [81] developed a method for classifying papers in the testing

of web applications. Their paper is the first systematic mapping study in web application

testing. A systematic mapping study of functional testing is conducted, which analyses 79

papers. Rafique et al. [75] synthesize empirical studies in web application vulnerability

detection approaches. Their findings correspond with the software development steps, and

the vulnerabilities correspond to OWASP’s Top 10 security vulnerabilities. Li et al. [82]

include static, dynamic, and hybrid analyses in their study. Deepa et al. [83] concentrate

on detecting and preventing attacks targeting injection and logic vulnerabilities. Chang

et al. [84] describe two web-based malware detection methods, i.e., virtual machine-based

and signature-based detection. A comprehensive survey by Gupta et al. [85] describes

emerging web application weaknesses, avoidance mechanisms, detection, and attack patterns

for all critical web threats in OWASP 2013. A survey by Seng et al. [86] describes web

application security scanners and their qualities. Finally, Atashzar et al. [20] survey the web

application security features, where features include critical vulnerabilities, hacking tools,

and approaches at a high level.

The studies mentioned above have various weaknesses which restrict replication,

generalization, and usability. Some studies are conducted without any systematic approach

for reviewing the papers. Further, the selection criteria of some studies are not explicitly

described, making it impossible to reproduce results. In our mapping study, we mitigate

these shortcomings.
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Method

This study is conducted following the guidelines for systematic mapping suggested by

Petersen et al. [78].

Goal and Research Questions

The study identifies, examines, and synthesizes the research articles published in the

last twenty years in web application vulnerability detection. This mapping study addresses

the following research questions:

RQ 1– How many papers introduce methods/techniques, tools, models, frameworks,

comparison analysis, or processes? The first question identifies the type of contribution

made [87].

RQ 2– What are the research methods used in the papers? Petersen et al. propose the

following research methods in their systematic mapping guideline- (1) solution proposal, (2)

experience papers, (3) evaluation research, (4) validation research, and (5) opinion papers.

RQ 3- What are the testing techniques presented in the papers? The testing techniques

include generating test cases, using scanners, injecting faults, etc.

RQ 4– How many approaches are manual versus automated that detect vulnerabilities

of web applications?

RQ 5– How many approaches are evaluated on dynamic versus static web applications?

RQ 6– How many papers propose a working detection tool? What are the names, and

how many are freely available for use?

RQ 7- What are the common security vulnerabilities in web applications found on those

papers?

RQ 8– What is the annual number of publications or the publication rate in this field?

RQ 9– What are the citation rates of the papers in this area?
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Figure 15: Formulated search query for the selection of the relevant articles

Table 6: Classification scheme

Attributes Research question
Contribution type of the paper RQ 1
Research type of the paper RQ 2

Type of testing activity/technique RQ 3
Manual versus automated approach RQ 4

Static web application versus dynamic web application RQ 5
Presented tools in the papers RQ 6
Vulnerability type addressed RQ 7

Publication year RQ 8
Number of citations RQ 9

Paper selection strategy

We mined IEEE Xplore1 and the ACM Digital Library2. Papers published between

2001 and 2021 are included in the pool of papers. Search keywords have been identified

using the PICO (Population, Intervention, Comparison, and Outcomes) technique, which

is suggested by Kitchenham and Charters [88] to formulate search strings from research

questions. The identified keywords are web application, vulnerability, and detecting/testing,

which are grouped into sets. We formulate the search string along with their synonyms as

shown in Figure 15.

1http://ieeexplore.ieee.org
2http://dl.acm.org



75

Figure 16: Types of contribution

Exclusion and inclusion criteria

Articles are selected based on the titles and abstracts, keywords, and reading of the

evaluation section as suggested in [87]. Both authors reviewed each article to increase

reliability. Full-text reading of the paper is taken into account only when in doubt. The

inclusion criteria applied to the collection of titles and abstracts required that i) research

articles were based on empirical evidence related to vulnerability detection methods of web

applications, ii) that if multiple studies were reported by the same author with the same

result, only the latest study was considered, and iii) that studies were published from 2001

to 2021. Summaries, editorials, non-peered reviewed studies, studies in other languages, and

books and magazines were excluded.

After applying the selection criteria to 150 papers, the collection size decreased to 76.

The list of 76 papers can be found in the online repository [89].
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Figure 17: Types of research paper

Classification Scheme and Data Extraction

A classification scheme is also known as a systematic map [78], and Table 6 shows how

each attribute maps to a research question. The classification scheme is created iteratively

while collecting the data. After developing the classification scheme, the papers are then

classified using the scheme. The online repository records the publications numbers in each

classification [89].

Results of the Mapping

Herein, we address each research question. RQ 1– Figure 16 shows the distribution

of the papers by the type of contributions for the 76 papers in the study. Some papers are

classified under more than one type based on their contributions. For example, paper number
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Figure 18: Types of testing techniques

10 [89] made two contributions: (1) a test method (Metamorphic testing based approach),

and (2) a test tool called SLMR.

RQ 2-Figure 17 illustrates papers by research facet. The research in web application

vulnerability detection is dominated by solution proposals (29 papers: 38.2%) and validation

studies (22 papers: 28.9%).

RQ 3- Figure 18 displays the distribution of various testing techniques used in the

papers. The ratio of this category is comparatively spread out among the types of techniques.

RQ 4- Testing automation is a known research concern [79]. Forty-one papers describe

full automation, while eleven papers are fully manual. The remaining papers use both.

RQ 5- Sixty-seven papers analyze dynamic web applications, and nine analyze static

websites. The testing of dynamic web applications is more widespread.

RQ 6- Eighteen papers describe tools. Some tools include SMLR (paper no. 10), Escrow
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Figure 19: Detection of security vulnerabilities from OWASP top 10

Figure 20: Publication trend per year & citation count vs. publication year.
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(paper no. 24), DEKANT (paper no. 60), and MoScan (paper no.74) [89].

RQ 7- We categorized vulnerabilities based on the OWASP Top 103 shown in Figure

19. Our results suggest that SQL Injection vulnerability and Cross-site scripting are the

most common, with 51 and 45 counts respectively. Besides this, Broken Access Control can

be found in 38 papers, and Identification and Authentication Failures can be found in 23

papers. Other vulnerabilities from the OWASP Top 10 can be found in some papers. Others

vulnerabilities that are not included in the top 10 list can be found in 29 papers.

RQ 8- Figure 20 shows the publication trend of the studies. We observe that the number

of papers is higher in 2010, 2015, and 2016. However, in the years between, paper counts

were somewhat lower. A decreasing trend in publications is observed science 2016.

RQ 9- Citation data is extracted from Google Scholar (August 2021). Figure 20

visualizes the counts. We observe that the papers from 2006 to 2016 have more citations

than the earlier and later papers. This trend is very common as the papers from 2020-2021

are comparatively newer. This result also helps to reveal the top-cited papers. Paper 46 [89]

is the top cited paper with 111 citations.

Discussion, Conclusion and Future Work

Most papers propose new vulnerability detection techniques or improve existing

vulnerability detection techniques implemented for web applications. Our study indicates

that the most common vulnerabilities in web applications can be found on the OWASP top

ten vulnerability list, consistent with expectations. There is an enormous scope for future

research in this area, which suggests that the number of papers in this domain will likely

increase. Also, although many papers suggest different techniques, only a few tools can be

downloaded. This is a scary reality that the research community must address if they want

3https://owasp.org/www-project-top-ten/
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to influence industry practitioners.

Some testing techniques depend on an implicit test oracle. An implicit oracle depends

on implicit knowledge, differentiating between the right and wrong behavior of the system

[90]. Despite there being many proposed security testing approaches, the oracle problem is

still not appropriately addressed. This opens up various avenues for future studies.

Potential threats to the validity of this study were studied according to Wohlin et al.

[91]. The search string poses an internal validity threat; however, this was mitigated by

using a known construction technique. Other threats include selection criteria and author

judgments which were mitigated by agreements. Conclusions are directly traceable to the

data sets associated with each research question.

In conclusion, the web applications vulnerability detection domain has a long history

of development and research. This paper delivers a systematic mapping study that shows

current trends. Also, it presents potential gaps and suggestions for prospective studies to

help bridge this gap. The study focuses on the last 20 years. It analyzes 76 relevant selections

while providing a classification scheme by examining the primary studies.
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Abstract

Software systems used for banking are crucial for daily operations and are considered

to be part of critical infrastructure; however, testing the functions of these highly reusable

systems can be difficult due to the project’s complexity and the absence of a reliable

oracle. In software testing, the Oracle problem directs to the difficulty of deciding whether

the software’s observed behavior is correct. To address this issue, we suggest utilizing

metamorphic testing (MT), which tests the banking system’s functionalities based on their

properties. Metamorphic testing is a software testing technique where multiple inputs are

generated for a program, then those inputs are transformed based on a pre-defined set of rules.

The resulting outputs are then compared to the original outputs to verify that the program

works correctly. Metamorphic relations (MRs) are a fundamental concept in metamorphic

testing. They define the relationships between the input and output of a system under test

and specify how they should change in response to input transformations. Through a case

study, we introduce new metamorphic relations to test banking functions and demonstrate

the effectiveness of using these MRs. The study results indicate that this is a feasible and

efficient approach using an alternative to a test oracle when testing complex E-type (i.e.,

real-world) software.

Introduction

Advances in science and technology have led to significant evolution in the software

industry in recent years [7]. With the increasing demand for E-type software in modern

society, most applications involve complicated scientific calculations and data processing,

necessitating software engineers to ensure that they meet all the requirements for reliability

[92]. E-type systems refer to real-world systems [92]. One of Lehman’s [92] Laws states

that E-type systems are constantly evolving, and their complexity is continuously increasing
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unless something is purposely done to minimize it. Banking systems are highly reusable

E-type systems and their functionality directly affects the growth of the commercial banking

industry. Therefore, developing and testing banking software are crucial phases in the

software lifecycle for the growth of the industry, and efficient validation and verification

techniques are necessary for maintaining the reusability of these banking applications.

Consumer demands for banking software have risen, leading to more complex projects and

further research into various aspects of banking software [7]. Software testing is a continuous

process throughout the banking system project lifecycle and is essential for its progress. The

testing of banking systems requires high complexity, security, and accuracy, and customers

expect tools for easy transactions and access to financial organizations’ services [93]. Banking

software has complex designs and multi-layered workflows and offers various features and

functions, handling sensitive data like customers’ financial and personal information [94].

Therefore, software testing for banking applications must be precise, as any lack of test

coverage can lead to data breaches, loss of funds, banking fraud, and other criminal activities

[93].

Testing is a crucial aspect of the development process of banking software to ensure that

the system behaves correctly. Testing bears more than 50% of the total software development

costs, as it is an expensive, time-consuming, and complex activity [95]. The process of testing

is often prone to human error. Creating dependable software systems remains an ongoing

challenge, and researchers and practitioners continuously explore more efficient methods to

test software [7]. Test cases are performed on the system under test during the testing

process. A test oracle, either automated or manual, is then used to determine whether it

acted as anticipated [7]. In either case, the actual output is compared with the expected

outcome.

The challenge of Test Oracle arises when testing complex software. It occurs when it is

difficult to determine whether the program outputs on test cases are correct [96]. Banking



85

software often has intricate functionality, which can exacerbate the Oracle problem in their

system. For instance, with an electronic payment service, there may be situations where the

consumer needs clarification on how much should be charged for a given input. The challenge

becomes even more pronounced when the payment concerns transfer charges among different

bank accounts or currency exchange applications.

Metamorphic Testing (MT) is a technique that has proven helpful in certain cir-

cumstances to address the challenge of the oracle problem [18]. The principle behind

Metamorphic Testing (MT) [8] is that it might be easier to analyze the relations between the

results of multiple test executions, which are referred to as metamorphic relations (MRs),

rather than specifying the input-output behavior of a system [8]. MT employs MRs to

determine system properties, which automatically alter the initial test input into follow-up

test input [8]. If the system fails to meet the MRs when tested with the initial and follow-up

input, it is inferred that it is defective [97].

A significant amount of study has focused on creating Metamorphic Testing (MT)

methods for specific areas such as computer graphics, web services, and embedded systems

[98]. Our research aims to apply MT to tackle the test oracle problem in banking software.

We aim to systematically define metamorphic relations that capture banking function

properties (i.e., characteristics that are compromised when the system is at risk) and

automate testing using these metamorphic relations.

We examine how MT applies to banking software testing and convey a case study. This

paper delivers the following contributions:

• An approach to investigate and uncover the essential points when utilizing MT to test

banking software.

• A list of new MRs for banking functions.

• To show the applicability of the proposed MRs, we conduct a case study on bank
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software functionalities. The study indicates the relevance of using MT to test banking

functions. We also employed mutation analysis to assess the efficiency of the MT

approach.

The rest of the paper is organized as follows. Section 7 introduces underlying concepts

related to MT and mutation analysis. Section 7 presents a framework of MT for banking

software and reports on a case study where MT tests major banking functions. Section 7

discusses the results of the case study. The next Section 7 discusses the threats to validity

of the experiment. Section 7 discusses the related works done in this area. Lastly, Section 7

concludes the paper by pointing out potential future work.

Background

This section introduces relevant literature and concepts related to Banking application

testing, MT, and mutation analysis.

Testing Bank Application

The banking industry has changed remarkably due to rapidly growing and innovative

technology. Due to the complicated features integrated into banking software, it is regarded

as one of the most sophisticated and complex enterprise solutions [93]. The daily transactions

carried out through the banking system require accurate data, high scalability, and reliability.

Therefore, testing this software under various conditions ensures its efficiency. Moreover,

the banking sector requires robust reporting mechanisms to record and instantly monitor

transactions and user interactions [94]. Testing is essential to ensure that banking software

functions well and effectively. Functional testing of banking software is distinct from standard

software testing as these applications handle customers’ financial data and money, making it

necessary to conduct thorough testing [93]. No critical business scenario should be overlooked

during testing.
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Metamorphic Testing

Metamorphic testing is a technique that can help solve the well-known test oracle

problem. It is developed by Chen et al. [8] to check if a program satisfies a set of previously

defined properties known as Metamorphic Relations. It determines how input changes should

affect a program’s output. If the program fails to meet these expected relations, it could

indicate the presence of faults. To use metamorphic testing, a suitable set of MRs should

be identified, and a set of initial test cases created. Input changes defined by the MRs are

then applied to develop follow-up test cases. The initial and follow-up test cases are then

executed, and a fault may exist if the output does not behave according to the predicted

MR. Metamorphic testing helps identify defects in programs without test oracles because

it examines the input and output relationship between multiple program executions, even

when the correct result of each execution is unknown [98]. For example, the SINE function

y = sin(x) can be tested using MT by using the property that adding 2π to the input angle

does not change the output (i.e., sin(x) = sin(x + 2π)). If this property is violated, it

indicates a failure in the function’s implementation.

Mutation Testing

Mutation testing is a typically used practice for evaluating the efficacy of testing

strategies and adequacy of test suites [25]. This approach involves applying mutation

operators to the tested program, which introduces various faults and generates a set of

mutant variants. A test case is considered to ”kill” a mutant if it causes the mutant to

exhibit behavior different from the original program [25]. The number of killed mutants is

used to calculate the mutation score (MS), which measures the thoroughness of a test suite

in killing mutants [25]. The MS is calculated using the following formula:

M S =
Mk

Mt −Me
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Figure 21: A diagram that portraits the framework of MT to test a system under test (i.e.
Banking Software). This framework uses MRs to generate follow-up test cases. MT process
is used as the test evaluators to check the output. Here, the arrows represent the flows of
information.

where the number of killed mutants is denoted asMk, the total number of mutants is denoted

as Mt, and the number of equivalent mutants is denoted as Me (i.e., mutants that always

behave the same way). Automatically generated mutants are thought to be more similar to

real-life faults than manually seeded ones. Therefore, the mutation score effectively indicates

the testing technique’s effectiveness. In this study, the mutation analysis technique is used

to assess the efficacy of our testing method.

Table 7: Metamorphic Relations (MRs) for Banking functions and their associated
descriptions

Metamorphic

Relations (MRs)

Description
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Deposit (Input is the amount to deposit, and the output is the total

balance in the account.)

MR1- Addition This MR says that for the follow-up input (If ), if we add a credit (C,

where C > 0) to the initial input (Ii), i.e., If = Ii + C, the follow-up

output (Of ) will increase accordingly from the initial output (Oi), i.e.,

Of > Oi.

MR2- Subtrac-

tion

This MR says that for the follow-up input (If ), if we subtract a credit

(C, where 0 <= C <= Ii) from the initial input (Ii), i.e., If = Ii − C,

the follow-up output (Of ) will increase or remain the same accordingly

from the initial output (Oi), i.e., Of > Oi or Of = Oi.

MR3- Multipli-

cation

This MR says that for the follow-up input (If ), if we multiply a credit

(C, where C > 0) with the initial input (Ii), i.e., If = Ii ∗ C, the follow-

up output (Of ) will increase or remain same accordingly from the initial

output (Oi), i.e., Of > Oi or Of = Oi.

MR4- Division This MR says that for the follow-up input (If ), if we divide a credit (C,

where C > 0) by the initial input (Ii), i.e., If = Ii/C, the follow-up

output (Of ) will increase or remain same accordingly from the initial

output (Oi), i.e., Of > Oi or Of = Oi.

MR5- Negative This MR says that for the follow-up input (If ), if we convert the credit

to a negative value (C, where C < 0) from the initial input (Ii), i.e.,

If = −(Ii), the follow-up output (Of ) will remain the same as the initial

output and an error message will be displayed (Oi), i.e., Of = Oi.
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Metamorphic Testing for Banking applications

Approach

In developing software systems for business purposes, the end-users must be confident

that the application is performing as expected. However, testing every possible usage scenario

can be challenging for developers. As a result, it is necessary to employ a testing technique

that allows for the revision of executed tests. MT offers an appropriate solution for testing

applications without requiring oracles.

Figure 21 illustrates the MT framework for testing banking application functions.

Metamorphic relationships (MRs) are a critical component of the framework since they

determine the generation of test cases and the evaluation of results. When used to

test banking applications, we first extract metamorphic property specifications from the

function’s description and identify the MRs. We then use the identified MRs to generate

the follow-up test cases from the initial test cases. A test executor executes the follow-up

test cases on the system under test. The outputs produced by the program being tested is

compared with the follow-up test cases using a test evaluator to establish whether the MR

has been satisfied or violated. If any MR is violated, we can say it has detected a fault in

the system.

This section outlines the approach employed that can validate the MT framework’s

effectiveness in testing banking functions. The study focuses on key banking functionalities

and identifies corresponding MRs. The effectiveness of MT is assessed through mutation

analysis. The findings indicate that MT is capable of detecting approximately 75% of

mutants (i.e., faulty programs), thereby demonstrating its efficacy as a testing technique.
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Subject Program

This study focuses on testing the functionality of banking software by examining three

commonly used features: Deposit, Withdrawal, and Transfer. The Deposit function is

relatively simple and involves adding money to an existing account. On the other hand,

the Withdrawal function is more complex and consists in withdrawing cash from an existing

account. It only performs the withdraw function if the account has enough balance. Lastly,

the Transfer function transfers money from the current account to other accounts with a

commission fee associated with the transfer type. These functions are generated using the

guidelines for general banking software [99] and they are all implemented in Java.

Table 8: Metamorphic Relations (MRs) for Banking functions and their associated
descriptions

Metamorphic

Relations (MRs)

Description

Withdrawal & Transfer (Input is the amount to withdraw or transfer,

and the output is the total balance in the account.)

MR1- Addition This MR says that for the follow-up input (If ), if we add a credit (C,

where 0 < C < (total bal ance − Ii)) to the initial input (Ii), i.e., If =

Ii+C, the follow-up output (Of ) will decrease accordingly from the initial

output (Oi), i.e., Of < Oi.

MR2- Subtrac-

tion

This MR says that for the follow-up input (If ), if we subtract a credit

(C, where 0 <= C <= (total bal ance − Ii)) from the initial input (Ii),

i.e., If = Ii −C, the follow-up output (Of ) will decrease or remain same

with error message accordingly from the initial output (Oi), i.e., Of < Oi

or Of = Oi.
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MR3- Multipli-

cation

This MR says that for the follow-up input (If ), if we multiply a credit

(C, where C > 0) with the initial input (Ii), i.e., If = Ii ∗ C, the

follow-up output (Of ) will decrease or remain same with an error message

accordingly from the initial output (Oi), i.e., Of < Oi or Of = Oi.

MR4- Division This MR says that for the follow-up input (If ), if we divide a credit (C,

where C > 0) by the initial input (Ii), i.e., If = Ii/C, the follow-up

output (Of ) will decrease or remain same accordingly from the initial

output (Oi), i.e., Of < Oi or Of = Oi.

MR5- Negative This MR says that for the follow-up input (If ), if we convert the credit to

a negative value (C, where C < 0) to the initial input (Ii), i.e., If = −(Ii),

the follow-up output (Of ) will remain same to the initial output and an

error message will be displayed (Oi), i.e., Of = Oi.

MR6- Add insuf-

ficient fund

This MR says that for the follow-up input (If ), if we add a balance

greater than the total balance (total bal ance+C, where C >= 0) to the

initial input (Ii), i.e., If = Ii + total bal ance + C, the follow-up output

(Of ) will remain same to the initial output and an error message will be

displayed (Oi), i.e., Of = Oi.

Metamorphic Relations

Choosing appropriate MRs is crucial when testing an application using MT. There are

some guidelines that are available for determining MRs based on the program’s specifications.

Chen et al. [8] suggested that the MRs affecting the significant functionalities’ performance

are more effective. They also recommended using MRs that can produce diverse program

executions. Based on these guidelines, we identified a set of MRs for each function, which

are listed in Table 7 and Table 8. Each function has some MRs derived from the function’s
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Table 9: Active mutators used for mutation analysis

Active Mutators
BOOLEAN FALSE RETURN
BOOLEAN TRUE RETURN
CONDITIONALS BOUNDARY MUTATOR
EMPTY RETURN VALUES
INCREMENTS MUTATOR
INVERT NEGS MUTATOR
MATH MUTATOR
NEGATE CONDITIONALS MUTATOR
NULL RETURN VALUES
PRIMITIVE RETURN VALS MUTATOR
VOID METHOD CALL MUTATOR

specification. Tables contain the MR names and the relationship between initial and follow-

up test inputs. Here, the initial input is (Ii) and output is (Oi). The follow-up input is (If )

and output is (Of ). In Table 7, MR1 Addition tests the Deposit function. This MR says

that for the follow-up input, if we add a credit C, where the credit is greater than 0 to the

initial input, i.e., If = Ii +C, the follow-up output will increase accordingly from the initial

output, i.e., Of > Oi.

Test Case Generation

To carry out MT, test cases are created based on the MRs. Several methods can be used

to generate the initial test cases, such as generating specific test values, random test values,

or iterative test values. Among these methods, random test value generation is preferred

for MT as it is cost-efficient and unbiased [100]. Hence, this study used random test value

generation to produce the source test cases. Follow-up test cases are then developed using

the MRs described in Table 7.
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Table 10: Results of mutation analysis based on mutation score and test strength

MRs Line Cov-

erage (%)

Mutation

Coverage (Killed

mutant/Used

mutant)

Mutation

Score (MS)

(%)

Test Strength

(Killed

mutant/Used

mutant)

Test

Strength

(%)

Deposit

MR1 93% 3/6 50% 3/6 50%

MR2 93% 3/6 50% 3/6 50%

MR3 93% 3/6 50% 3/6 50%

MR4 93% 3/6 50% 3/6 50%

MR5 64% 2/6 33% 2/5 40%

All 100% 4/6 67% 4/6 67%

Withdrawal

MR1 82% 4/9 44% 4/9 44%

MR2 82% 4/9 44% 4/9 44%

MR3 82% 4/9 44% 4/9 44%

MR4 82% 4/9 44% 4/9 44%

MR5 53% 2/9 22% 2/5 40%

MR6 71% 3/9 33% 3/8 38%

All 100% 6/9 67% 6/9 67%

Transfer

MR1 82% 4/9 44% 4/9 50%

MR2 82% 4/9 44% 4/9 50%

MR3 82% 4/9 44% 4/9 50%

MR4 82% 4/9 44% 4/9 50%
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Table 10 – continued from previous page

MR5 53% 2/9 22% 2/5 40%

MR6 71% 3/9 33% 3/8 38%

All 100% 6/9 67% 6/9 67%

Total 100% 12/16 75% 12/16 75%

Evaluation

In order to assess the efficacy of MT, we utilize mutation analysis. We create Junit test

cases for the functions based on the MRs. Then, we use mutation operators to introduce

faults into the implementation of the functions automatically using the PIT mutation testing

tool [101]. This resulted in 16 mutants. Usually, equivalent mutants are excluded from

experiments. However, this mutation testing tool does not create equivalent mutants. Test

suites are generated using the MRs outlined in Table 7, which is then used to test the subject

programs. We use the mutation score (M S) metric to measure the effectiveness of MT. When

a mutant is killed, it is considered a detected fault.

Results

In this section, we present the results of our experiment, where we utilized mutation

analysis to assess the efficacy of our MT framework. We used the PIT mutation tool to

generate the mutators listed in Table 9. In Table 10, we summarize the test efficiency of MT

mainly by measuring its Mutation Score (MS) and Test Strength. The following describes

the information listed in Table 10.

• Line coverage shows the percentage of lines covered by the tests.

• Mutation coverage shows how many mutants are killed from the total mutants.
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• The MS measures the percentage of mutants killed out of all mutants (i.e., excluding

the equivalent mutants) created without test coverage [101].

• Test Strength measures the ratio of mutants killed out of all mutants with test coverage

[101]. The Test Strength metric does not include mutants that survive due to a lack

of coverage [101]. This metric is considered a better metric than MS when validating

builds. It is also shown as a percentage.

For each function, the overall performance of MT is shown. Moreover, the last row of the

table presents the overall performance of MT when we consider the testing results of all

functions and all MRs together.

The effectiveness of each MR can be compared using their MS and test strength for

each function. Among all the MRs, for the deposit function, MR1, MR2, MR3, and MR4

are more effective than MR5. For example, MR1, MR2, MR3, and MR4 have an MS of 50%

with 93% line coverage, while MR5 has an MS of 33% with 64% line coverage. When all 5

MRs are combined, the MS increases to 67% with 100% line coverage. However, when test

strength is used, the effectiveness of MR5 increases to 40%, as mutants that survive due to

lack of coverage are not counted.

With the withdrawal function and considering all MRs, MR1, MR2, MR3, and MR4

are more effective, while MR5 and MR6 are less effective. This can be seen in the mutation

score (MS) of each MR, where MR1, MR2, MR3, and MR4 have an MS of 44% with 82%

line coverage, while MR5 has an MS of 22% with 53% line coverage, and MR6 has an MS

of 33% with 71% line coverage. When all six MRs are considered, the MS increases to 67%

with 100% line coverage. However, when using the test strength metric, it can be seen that

MR5 becomes more effective with a score of 40% and MR6 with a score of 38% since the

mutants that survive due to lack of coverage are not counted.

Regarding the transfer function and all the generated MRs, MR1, MR2, MR3, and
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MR4 are more effective than MR5 and MR6. Specifically, MR1, MR2, MR3, and MR4 have

a higher MS of 44% with 82% line coverage compared to MR5’s MS of 22% with 53% line

coverage. When all 6 MRs are taken into account, the MS increases to 67% with 100% line

coverage. However, by using test strength, it becomes apparent that the effectiveness of MR5

increases to 40% and MR6 to 38% since the mutants that survive due to lack of coverage

are not taken into consideration.

Finally, if all 17 MRs are utilized collectively, they can eliminate up to 75% of all

mutants, and the combined value of both MS and test strength is greater than that of any

individual MR. This implies that, as long as there are no concerns about testing expenses,

many MRs as possible should be employed to create test suites.

Threats to validity

Possible risks exist when validating the examined MT framework in this study. Two

types of threats are discussed: external and internal threats [102]. One of the significant

external threats to validation is the ability to generalize the study results to other cases.

The study utilized a demo banking application with mathematical functions that perform

standard calculations and a relatively small data set. Therefore, the results may not explicitly

confirm that this approach will work for industrial-sized software.

The PIT mutation testing tool is used to produce mutation analysis for the experiments.

The method utilizes a third-party tool, which may contain potential faults which could

threaten the proposed method. This type of threat could occur concerning internal validity.

Related Work

When an oracle is absent, the effectiveness of testing techniques is limited. The use of

metamorphic testing (MT) in this paper is effective in conducting testing without requiring
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an oracle. MT has been utilized to address the Oracle problem in fault-based testing and

symbolic execution. Several studies have examined the oracle problem in various fields.

However, there needs to be research on the functional testing of banking software using MT.

In one case study, Chen et al. [103] injected a seeded fault into a program that implemented

partial differential equations. They compared the efficacy of special test cases versus MT in

catching defects. While special test cases missed seeing the fault, MT could identify it by

employing only one metamorphic relation. Aruna and Prasad [104] suggested multiple MRs

for multi-precision arithmetic software, which is evaluated with four mathematical projects

and mutation testing. The banking functions share similarities with these mathematical

processes. Therefore, we attempted to assess these functions using MT.

Conclusion and Future Work

This study confirms that the MT framework is suitable for evaluating banking functions

and that MT is an efficient and effective testing technique even without an oracle. MT can

test a banking application’s deposit, withdrawal, and transfer functions without needing

oracles, which is a significant advantage for testing complex banking functions. The

experimental results demonstrate that MT can detect up to 75% of mutants, indicating

its high fault detection capability.

For future work, we plan to extend the testing of the banking software beyond the

function level and assess the security aspects of the banking application using MT. We also

aim to improve the automation capability of MT by predicting MRs based on program

execution flow. This will help the developers so they don’t have to define the MRs manually.

Additionally, we intend to conduct further empirical studies to evaluate the effectiveness of

MT for banking software with more complicated functions and deploy the framework to test

various financial and payment applications.
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Abstract

Software is the backbone of modern systems and daily life, and the reliability of its

testing is paramount. A key challenge in software testing is the Oracle problem, which

determines whether software behavior is correct. In modern web systems, such as online

banking applications, this often involves verifying outputs generated from a large set of

inputs, which is both complex and costly. Full automation is necessary to reduce costs and

improve the efficiency of these application development processes. However, achieving such

automation requires strategies for automatically generating test inputs and addressing the

Oracle problem, including distinguishing between correct and incorrect system behavior.

Metamorphic Testing (MT) effectively addresses the Oracle Problem by evaluating software

through its core characteristics. This method produces various inputs for a program, applies

specific transformations, and compares the outputs to the originals to ensure accuracy.

Metamorphic Relations (MRs) are central to MT, which define how outputs should change

in response to input modifications. While effective, identifying MRs has traditionally been

a manual and time-consuming endeavor that depends on specialized knowledge, leading

to potential errors. Automating the MR identification process may enhance the efficiency

and reliability of MT. This paper introduces an automated MT approach for programs

with vulnerabilities in online banking applications. We identified MRs to test for these

vulnerabilities among the OWASP’s top 10. We used graph representations of the programs

to develop a prediction model to automate MR detection for vulnerable programs. We

provide a catalog of 8 system-agnostic MRs to enhance security testing automation. The

results show that most MRs have prediction scores of more than 80%. Our results

demonstrate that this approach is not just theoretical but practical. It scales effectively,

enabling overnight automated security testing and making MT a valuable and powerful tool

for improving the security of any online banking application.
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Introduction

Recent advances in science and technology have significantly transformed the software

industry [92]. As the demand for software increases—especially for complex calculations,

data processing, and online functionality—software engineers must ensure these systems are

reliable [92]. Everyday software systems, including web applications, are highly reusable

E-type systems crucial for economic growth [105]. E-type systems are real-world systems

[92]. According to Lehman’s Law [92], E-type systems continuously evolve and become more

complex. The development and testing of software, especially web applications, constitute

vital stages in the software development lifecycle (SDLC) [6]. These stages require effective

validation and verification techniques to maintain the system’s reliability, security, and

reusability. The growing demand for web applications and everyday software has led to more

complex projects and an increase in research across various areas of software [6]. Testing

software, particularly web applications, is challenging due to high complexity, strict security,

and accuracy requirements [6]. Modern software and web applications often involve intricate

designs, multi-layered workflows, and various features while processing sensitive data like

personal and financial information [6]. As a result, precise testing is crucial because any

gaps in test coverage can lead to data breaches, vulnerabilities, fraud, and other serious

issues [6, 106]. Additionally, the automation of testing techniques is essential to improve the

efficiency and reliability of software and web application development processes.

Web systems are software applications that deliver services via web pages. They are

commonly employed for online activities like e-commerce and banking. Since these systems

handle critical operations, including credit card processing and protecting sensitive customer

information, their security is essential. Security testing aims to discover vulnerabilities

and weaknesses that hinder these systems from fulfilling their security requirements [107].

Despite advancements in software development technologies and programming languages,
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testing remains an integral fragment of the Software Development Life Cycle (SDLC) [6].

It often accounts for more than 50% of total software development expenditures due to its

costly, time-intensive, and complex nature [6]. Creating dependable systems continues to be

challenging, and researchers and practitioners actively seek more efficient testing methods

[6]. The testing process is often prone to human error. Test cases are executed on the system

during testing, and a Test Oracle is used—whether automated or manual—to determine if

the system behaves as expected [108]. The actual output is compared to the expected result.

The Test Oracle problem occurs in complex systems when assessing whether the program’s

output for a given test case is correct becomes challenging [7]. This issue is complicated in

systems with intricate functionality, such as banking software. For instance, in electronic

payment systems, it may be unclear how much should be charged for a given input. The

problem becomes even more complicated when dealing with transfer charges between bank

accounts or currency exchange applications. Finding vulnerabilities in web systems during

testing is further complicated by multiple input interfaces, such as web pages accessed via

URL requests. Each interface can handle a wide variety of inputs, such as web forms, cookies,

and URL parameters, which may vary depending on the user’s role [48]. Vulnerabilities

can emerge from specific combinations of user roles, URL requests, and input parameters.

Therefore, testing must cover various inputs, including those intentionally crafted to exploit

the system. Automated strategies for generating security tests are necessary to address this

challenge [48].

Metamorphic Testing (MT) is a technique that has proven useful in certain situations

to tackle the challenge of the oracle problem [18]. The principle behind MT [8] is that it may

be easier to analyze the relationships between the results of multiple test executions, referred

to as Metamorphic Relations (MRs), rather than specifying the input-output behavior of a

system [8]. MT utilizes MRs to determine system properties by automatically transforming

the initial test input into a subsequent test input [8]. If the system fails to comply with the
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MRs when tested with both the initial and subsequent inputs, it is inferred that it is defective

[8]. A considerable amount of research has focused on developing MT methods for specific

domains such as computer graphics, web services, and embedded systems [9–11, 15], and the

corresponding MRs are essential for enhancing the efficiency of fault detection in testing.

Traditionally, pinpointing these relations involves a labor-intensive, error-prone manual

process, often requiring input from domain experts, mainly when dealing with intricate

programs. Hence, developing automated techniques to identify MRs is a promising avenue.

Such automation has the potential to significantly improve the efficiency and effectiveness

of MT, rendering it a more feasible and dependable method for guaranteeing the reliability

of any system.

Our research goal is described as follows:

• RG: To apply MT to tackle the Test Oracle problem in security vulnerability testing of

online banking applications.

We systematically define MRs that capture properties (i.e., characteristics that are

compromised when the system is at risk) among the top 10 OWASP vulnerabilities found

in online banking applications and automate testing using these MRs for such vulnerable-

prone programs. These MRs serve as guidelines or rules governing how the program should

change in response to different inputs or variations. They are crafted to capture specific

program characteristics that are particularly vulnerable or compromised when the system is

at risk. An example of an MR to identify bypass authorization schema vulnerabilities is a

web system that should return different responses for two users when the first user requests a

URL provided by the GUI (e.g., in HTML links). In other words, a user should not be able

to access URLs that are not provided by the GUI directly. We have developed a technique

to automate the testing process by predicting these MRs. Automating the testing process

reduces the manual effort and potential errors associated with traditional testing methods.
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Here, we present an automated metamorphic testing approach that helps test engineers

specify metamorphic relations to capture security requirements of Web systems (i.e., online

banking) and automatically detect vulnerabilities (i.e., violations of security requirements)

by predicting metamorphic relations. Our approach is constructed on the following novel

contributions:

• A catalog of 8 MRs targeting the well-known top 10 OWASP’s security vulnerabilities

commonly found in online baking applications, and

• A framework that automatically predicts MRs for unseen programs, that are prone to

vulnerabilities, using a Graph-based Convolutional Neural Network (GCNN) model.

We applied our approach to 679 vulnerable-prone programs from different sources. The

approach automatically detected MRs with prediction scores greater than 80% for most MRs.

Considering these results and assessing the effort involved, our approach is practical and

effective in addressing the Oracle issue of automatically testing online banking applications.

This paper is organized in the following manner. Section II offers background

information on MT and details the testing process for baking applications. In Section III,

we outline our approach. Section IV explains the fundamental experimental setup. Section

V shares the paper’s findings. Finally, Section VI addresses the threats to validity, leading

to the conclusion in Section VII.

Background

This section introduces MT and its operation according to the corresponding MRs. It

also illustrates the challenges of testing vulnerabilities for banking applications and how MT

can alleviate the issue.
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Figure 22: Overview of the Metamorphic Testing (MT) Process

Metamorphic Testing

Metamorphic Testing (MT) is a technique designed to address the well-known Test

Oracle problem [18]. This problem arises when it is difficult or impossible to determine the

correctness of individual program output. MT, developed by Chen et al. [8], provides a

solution by checking if a program satisfies specific predefined properties called Metamorphic

Relations (MRs). These MRs describe how changes to a program’s input should affect its

output [8]. If the output does not behave as expected according to these MRs, it may

indicate a fault in the program [8]. MT is particularly valuable for identifying defects in

programs where traditional Test Oracles are unavailable or impractical [18]. By examining

the relationships between inputs and outputs across multiple executions, MT can detect

faults even when the correct result of each execution is unknown [16].

The general steps for implementing MT are as follows (Figure 22) [8]:

• Identify MRs: Define a set of MRs that the program under test should satisfy.
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• Create Initial Test Cases: Develop a set of test cases to serve as the source inputs.

• Generate Follow-Up Test Cases: Apply input transformations specified by the

MRs to create follow-up test cases from the initial ones.

• Execute and Compare Outputs: Run both the initial and follow-up test cases and

check if the output changes align with the expected behavior described by the MRs.

If a runtime violation of an MR occurs, it indicates a fault in the program.

A simple and widely used example of MT is testing the SINE function y = sin(x).

According to its property, for any input angle x, adding 2π to the input should not change

the output. This means y = sin(x) = sin(x+2π), making it a valid MR. Using this property,

the function can be tested as follows:

• Create a source test case with input x and output sin(x).

• Generate a follow-up test case by applying the transformation x′ = x+2π and calculate

y = sin(x′) = sin(x+ 2π).

• Compare the outputs. If sin(x′) ̸= sin(x), the MR is violated, indicating a fault in the

sine function’s implementation.

By systematically applying these steps, MT provides an effective and efficient alterna-

tive to detect faults in the absence of traditional Test Oracles [18].

Testing Banking Applications

Banking applications handle sensitive financial and personal data, making their

security critical. Vulnerabilities, such as weak authentication, injection flaws, insecure

communication, and business logic errors, can lead to severe consequences, including financial

fraud and reputational damage [48]. These vulnerabilities often arise from the complexity
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of banking systems, which include intricate workflows, multiple user roles, and diverse input

interfaces such as web pages, forms, and cookies [48]. Common vulnerabilities in banking

applications include authentication and authorization issues, injection attacks, cross-site

scripting (XSS), business logic flaws, insecure communication, and third-party dependencies

[48]. Several testing techniques are commonly employed to detect vulnerabilities in banking

applications, including the use of static application security testing (SAST) [46], dynamic

application security testing (DAST) [47], penetration testing, fuzz testing, risk-based testing

[48], and manual code reviews [48]. These methods often face challenges, such as restricted

test coverage, proneness to human error, and difficulties in addressing dynamic behaviors,

commonly called the Oracle Problem [14]. Frequent configuration changes and diverse input

parameters in banking applications further complicate the testing process.

MT addresses these gaps by leveraging MRs. Unlike traditional methods, MT does

not require precise expected results, making it particularly useful in scenarios where Test

Oracles are unavailable or impractical [18]. MT resolves the Oracle Problem by focusing on

input-output relationships. Additionally, it automates test case generation and validation,

reducing human error and systematically covering complex input combinations to improve

test coverage [18]. For instance, SQL injection is a common vulnerability in banking

applications. Attackers can manipulate input fields, such as login forms or search bars,

to execute unauthorized SQL queries. If user inputs are not properly validated, an attacker

could bypass authentication by submitting crafted inputs and gaining unauthorized access

to sensitive user data. This vulnerability allows attackers to manipulate or delete records,

steal financial information, and perform fraudulent transactions. MT can verify the system’s

behavior by testing transformed inputs to ensure proper handling and validation, mitigating

such risks. As banking systems grow in complexity, MT offers a scalable and practical

approach to ensure their security and reliability. By addressing the limitations of traditional

testing methods, MT enhances the efficiency and effectiveness of vulnerability detection in
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Figure 23: Overview of the proposed approach for automating metamorphic testing (MT)
to predict MRs for vulnerabilities in banking applications. The method consists of three
main steps: (1) identifying metamorphic relations (MRs) for vulnerabilities from OWASP’s
Top 10 list related to banking applications, (2) generating control flow graphs (CFGs) from
Java source code to capture execution behavior, and (3) applying a graph convolutional
neural network (GCNN) to analyze the CFGs for MR prediction.

banking applications.

Approach

In this section, we introduce a new approach to automating the MT technique. We

predict MRs for vulnerable-prone programs commonly found in banking applications, which

fall under OWASP’s Top 10 vulnerabilities. The proposed method, illustrated in Figure 23,

consists of three key steps:

1. identifying MRs for vulnerabilities related to banking applications among OWASP’s

Top 10 vulnerabilities, making our method directly applicable to real-world scenarios,
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2. generating control flow graphs that capture the execution behavior of vulnerable-prone

Java programs, and

3. applying a graph-based model to analyze CFG datasets for MR prediction, ensuring a

comprehensive and accurate assessment.

In the first step, we define MRs based on the characteristics and behaviors of

vulnerabilities that can be tested using MT in Java-based banking applications. In the

second step, we construct CFG representations from Java source code to model program

execution flows. The generated CFGs provide a structured, graphical representation of

program behavior, essential for further analysis. In the final step, we employ graph-based

classification models to analyze the CFGs. Specifically, we introduce a graph convolutional

neural network to automatically learn predictive patterns from CFG data, enabling efficient

and accurate vulnerability testing in banking applications by predicting MRs.

Metamorphic Relations (step 1 )

The first task is to identify MRs. We developed 8 MRs from the OWASP’s Top 10

(2021) list. To identify the MRs, we focused on properties related to vulnerabilities found in

online banking web applications. We named the MRs by numbering them from 1 to 8 (e.g.,

MR1, MR2, etc.), and we retained the numbering (e.g., A01, A02, etc.) from the original

list in case of vulnerabilities. The descriptions for each MR are as follows:

• MR 1 (A01: Broken Access Control: Authorization-Based Access Control):

Let Ua represent an authorized user and Uu represent an unauthorized user. Let

R denote a restricted resource. If f(Ua, R) −→ access g r anted, then f(Uu, R) −→

access denied.

• MR 2 (A02: Cryptographic Failures: HTTPS vs. HTTP Transmission):

Let P represent plaintext data (e.g., credentials or transaction details) and T denote
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the transmission protocol. If T (H T T P S , P ) −→ encr y pted, then T (H T T P , P ) ̸=

encr y pted.

• MR 3 (A03: SQL Injection: Authentication Bypass): Let Iv represent a

valid login input and Im denote a malicious SQL payload. If D B q uer y(Iv) −→

v al id r esponse, then D B q uer y(Im) ̸= v al id r esponse.

• MR 4 (A04: Insecure Design: Password Reset Token Exposure): Let

Ts represent a securely generated token, and Tu represent an unsecured token. If

V al idate(Ts) −→ v al id r eset, then V al idate(Tu) ̸= v al id r eset.

• MR 5 (A05: Security Misconfiguration: Default Credentials Exposure):

Let Cu represent a user-defined credential and Cd denote a default credential. If

Auth(Cu) −→ secur e l og in, then Auth(Cd) ̸= secur e l og in.

• MR 6 (A07: Authentication Failures: Session Expire): Let Sv represent a

session within its valid time frame, and Se denote an expired session. If Auth(Sv) −→

access g r anted, then Auth(Se) −→ access denied.

• MR 7 (A08: Software and Data Integrity Failures: Checked vs. Unchecked

Transactions): Let Tc denote a transaction that includes checksum validation,

while Tu represents a transaction that does not include checksum validation. If

P r ocess(Tc) −→ v al id tr ansaction, then P r ocess(Tu) ̸= v al id tr ansaction.

• MR 8 (A10: Server-Side Request Forgery (SSRF): Allowlisted vs. Denylisted

URLs): Let Ua represent an allowlisted URL and Ud represent a denylisted URL. If

R eq uest(Ua) −→ al l ow ed, then R eq uest(Ud) −→ bl ock ed.
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Function Representation using Control Flow Graphs (CFG) (step 2)

The next step in this approach involves converting a function into its Control

Flow Graph (CFG). This representation is chosen because it facilitates the extraction of

information regarding the sequence of operations within a control flow path, which directly

corresponds to the MRs satisfied by a given function [50].

A CFG is a directed graph, Gf = (V , E), representing a function f. Each node vx ∈ V

corresponds to a statement x in f, with the operation performed in x labeled as label(vx). If

x and y are statements in f, and y executes immediately after x, an edge e = (vx, vy) ∈ E is

established. The control flow of f is defined by all edges in the graph, while the entry and

exit points are represented by nodes vstart and vexit, respectively [50].

To construct the CFGs, we utilize the Soot1 framework. This tool generates CFGs in

Jimple, a typed three-address intermediate representation of Java code, where each CFG

node represents an atomic operation [51]. After generating the CFGs, we refine them by

labeling each node according to the operation it performs. Additionally, we annotate all

method call nodes with their return types.

This study aims to develop a technique for identifying MRs from vulnerable character-

istics in Java source code. In this context, CFGs produced as intermediate representations of

compiled source code serve as inputs for prediction models to detect MRs to test vulnerable

programs. Prior research has demonstrated the successful application of CFGs in various

fields, including malware analysis [109, 110] and software plagiarism detection [111, 112].

Since semantic errors often become apparent only at runtime, analyzing execution flows can

be valuable in distinguishing faulty patterns from correct ones.

1https://www.sable.mcgill.ca/soot/

https://www.sable.mcgill.ca/soot/
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Prediction Model (step 3)

We used a graph model to predict MRs for vulnerable-prone programs. The Graph

Convolutional Network (GCN) is a dynamic graphical model that processes large-scale graphs

with intricate structural relationships [31]. Unlike simple node-based representations, a

vertex in the GCNN framework is not merely a token but it encapsulates a rich set of

features derived from its connectivity within the graph [31]. For instance, in a CFG context,

each vertex signifies an operation that may consist of multiple attributes, including the

instruction type and operands. In the GCNN model, the first layer is called the embedding

layer [31], where each vertex is mapped to a real-valued vector corresponding to its feature

representation. Next, we apply two graph convolutional layers [31] that iteratively update

the node embeddings by aggregating information from neighboring nodes. These layers

capture local graph structures and enhance feature representations at multiple levels. The

network has batch normalization layers to stabilize training and improve convergence. A

ReLU activation function [31] is applied after each convolutional operation to introduce

non-linearity. After the convolutional layers, a global mean pooling layer is used to extract

a unified feature representation of the entire graph. Unlike standard CNNs with fixed input

dimensions, graphs feature varying sizes, resulting in inconsistencies in feature extraction

[31]. Pooling addresses this by consolidating the learned node features into a single vector

representation. Ultimately, the feature vector is processed through a fully connected layer

and an output layer, where categorical distributions for classification tasks are generated.

In this manner, a graph-based model automates vulnerability testing in Java programs by

predicting MRs and capturing execution flow characteristics.
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Experiments

We experimented with a dataset of programs prone to vulnerabilities commonly found

in banking applications. Our aim was to generate a graph-based model to predict MRs for

those programs. This section provides a detailed description of the dataset, the experimental

setup, and the evaluation metrics used.

Dataset

We constructed a dataset of 679 Java programs prone to vulnerabilities in online banking

applications. This dataset is curated based on the OWASP Top 10 vulnerabilities, which

represent the most critical security issues for web applications. We built the dataset by

collecting Java programs from the following sources:

• AI-generated vulnerable programs: Similar code samples were generated using

ChatGPT (265) and Meta AI LLaMA (265), focusing on the OWASP Top 10

vulnerabilities.

• Open-source repositories: Vulnerable Java applications sourced from open-source

projects on GitHub (98).

• Manually curated examples: Additional vulnerable samples are chosen to ensure

diversity (51).

Each program contains security flaws such as SQL injection, broken access control,

authentication failures, and other OWASP vulnerabilities. Figure 24 is an example of a

vulnerable-prone Java program generated from ChatGPT. Once the Java programs are

collected, they are converted into CFGs representing the program’s execution flow. The

CFGs are generated using static analysis tools called Soot (a Java optimization framework).

It extracts control flow structures from Java bytecode. The generated CFGs represent nodes
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as instructions or basic blocks, while edges indicate execution flow between these instructions.

Each CFG is stored in DOT file format [113], which provides a graphical representation of

program execution.

Experimental Setup

The experiment aimed to analyze and predict MRs for vulnerable-prone Java programs

by leveraging CFGs and prediction models. Each node in the CFG is assigned a label based

on its operation (e.g., ASSIGNMENT, IF CONDITIONS). These labels were converted

into unique 16-dimensional binary vectors, which serve as node features in the graph

representation. For example, all the nodes with the same type of operations have the same

16-dimensional binary vectors. Graph nodes were assigned unique features based on their

operations, and edges were structured as adjacency matrices. The dataset was split into

training and test sets to evaluate the model’s performance. These splits were done based on

three categories. They were:

1. train with ChatGPT, Open-source repositories, and manually crafted data. Test with

Meta AILLaMa data,

2. train with Meta AILLaMa, Open-source repositories, and manually crafted data. Test

with ChatGPT data, and

3. train with Meta AILLaMa and ChatGPT data. Test with Open-source repositories

and manually crafted data.

Also, binary class labels were supplied to train the models for each MR.

To ensure a comprehensive evaluation, we compare the effectiveness of Graph Neural

Networks (GNNs) against traditional prediction models. A two-layer GCNN model followed

by a fully connected layer is used to predict vulnerability classes. We used Support Vector

Machine (SVM) approaches with two feature extraction types developed in previous studies
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Figure 24: Simplified Access Control Method Implementing Basic Role-Based
Authorization. This method checks if a user with a specific role is allowed to access a
restricted resource. Only users with the ”ADMIN” role are granted access to restricted
resources, while others are denied. The output clearly indicates whether access is granted
or denied based on the user’s role. Metamorphic Relation 1 (MR1) for Authorization-Based
Access Control (RBAC) Violation can be used to test this method, ensuring that privileged
users are granted access while non-privileged users are correctly denied.

[12, 13]. One is random kernel-based SVM [12] and SVM with Bag-of-Words (BoW) [13]. We

also used the multi-layer perceptron (MLP), which is a fully connected feedforward neural

network trained on the same dataset [30]. The results show the average prediction scores for

all the categories of train tests split together.

Evaluation Measures

The approaches are evaluated using two widely recognized performance metrics: the

area under the receiver operating characteristic (ROC) curve (AUC) and accuracy.

The AUC (Area Under the Curve) provides a more comprehensive evaluation of the

model’s performance [114]. It assesses the classifier’s ability to distinguish between two

classes by quantifying the area under the ROC curve, which plots the true positive rate

(TPR) against the false positive rate (FPR) at different classification thresholds [114]. The
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Figure 25: AUC Score Distribution for Metamorphic Relations (MR1–MR8) Using
SVM-Random Walk, SVM-BoW, MLP, and GCNN Models.

comprehensive nature of AUC evaluation provides reassurance and confidence in the model’s

performance, especially when class distributions are imbalanced [114]. A classifier with an

AUC of 1.0 perfectly distinguishes between the two classes, while an AUC of 0.5 indicates

no better performance than random guessing [114].

Accuracy measures the proportion of correctly classified instances among all predictions

and is a fundamental metric for evaluating classification models [115]. Accuracy, while

a fundamental metric for evaluating classification models, can be misleading when class

imbalances exist. In such cases, where one class has significantly fewer samples than the

other, a model biased toward the majority class may achieve high accuracy but perform

poorly in detecting minority-class instances. [115].
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Results And Discussion

The performance of four classification models—Support Vector Machine (SVM) with

Random Walk kernel, SVM with Bag of Words (BoW), Multilayer Perceptron (MLP), and

Graph Convolutional Neural Network (GCNN) was assessed using two key performance

metrics, the Area Under the Receiver Operating Characteristic Curve (AUC) and accuracy.

This evaluation was conducted to determine the effectiveness of the models in predicting

MRs for vulnerable-prone Java programs in banking applications.

The GCNN consistently outperformed the other models, achieving the highest AUC

scores across most MRs. Figure 25 shows GCNN achieved AUC scores of 0.95 (MR1),

0.92 (MR3), 0.92 (MR5), and 0.94 (MR7). It indicates its capability to capture complex

structural patterns from the CFGs of the programs. The SVM with Random Walk kernel also

demonstrated strong performance, particularly for MR2 (0.83) and MR3 (0.85). In contrast,

the MLP model showed relatively lower AUC scores. Here, the performance declined notably

for MR5 (0.6) and MR3 (0.66). It illustrates its limitations in addressing structural graph

data compared to GCNN. SVM-BoW showed average performance, with scores ranging from

0.7 to 0.81. It reflects its dependency on text-based feature representation, which may not

fully capture the complex program behaviors.

The accuracy results further confirm the AUC findings, emphasizing the robustness

of GCNN in predictive performance. Figure 26 shows that GCNN achieved the highest

accuracy for MR6 (0.91), MR3 (0.89), and MR8 (0.87), demonstrating its robustness in

accurately classifying MRs. SVM with Random Walk kernel upheld competitive accuracy,

particularly in MR4 (0.89) and MR5 (0.83). However, its performance slightly varied across

different MRs. The MLP model lagged, with the lowest MR2 (0.62) and MR6 (0.63)

accuracy, reflecting its struggles with feature extraction from complex graph data. SVM-

BoW performed relatively well. It achieved accuracy scores of 0.81 (MR7) and 0.8 (MR8)
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Figure 26: Accuracy Score Distribution for Metamorphic Relations (MR1–MR8) Using
SVM-Random Walk, SVM-BoW, MLP, and GCNN Models.

but did not match the consistency observed with GCNN.

The results emphasize the advantage of leveraging graph-based models, particularly

GCNN, in analyzing control flow graphs for MR prediction. The AUC and accuracy

scores of GCNN can be attributed to its ability to learn hierarchical feature representations

from graph-structured data, which traditional models like SVM and MLP cannot fully

manage. The relatively strong performance of SVM with Random Walk kernel suggests

that kernel-based approaches still hold value, especially when dealing with graph structure

data. However, the lower performance of MLP highlights the challenges neural networks face,

such as the lack of specialized architectures for graph data. Overall, the findings validate

the advantage of leveraging graph-based models for MR prediction for vulnerable-prone Java

programs, particularly in domains where program structure plays a crucial role.
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Threats to validity

External validity [116] is concerned with the generalizability of the findings beyond the

specific dataset and experimental setup used in this study. The study was conducted on a

dataset that does not represent all real-world applications. The results may not generalize to

datasets with different characteristics, such as varying feature distributions, noise levels, or

larger sample sizes. While the models perform well on the given dataset, their scalability to

large-scale real-world applications remains uncertain. The effectiveness of GCNNs depends

on the graph structure of the data. If the dataset does not naturally fit into a graph

representation, the performance of GCNNs might be inferior to traditional models like SVM

or MLP. This limits the generalization of GCNNs to various classification tasks.

Internal validity [116], which refers to potential biases, errors, or confounding factors

affecting the experimental results, is critical. The study relies on widely used frameworks such

as Soot, Scikit-learn, TensorFlow, and Graph Neural Network (GNN) libraries like PyTorch-

Geometric. However, while popular, these frameworks may still contain undocumented bugs

or implementation inconsistencies that could impact the experimental outcomes. Therefore,

further validation on more extensive and diverse datasets is necessary to confirm the

robustness of the findings and to ensure the ongoing relevance of this research.

Conclusion

Our research goal was To apply MT to tackle the Test Oracle problem in security

vulnerability testing of online banking applications.

We evaluate the effectiveness of automatically predicting MRs using graph models for

vulnerable-prone Java programs commonly found in banking applications. MT is a testing

technique for programs lacking a suitable Test Oracle. Manually identifying such MRs

for various applications poses challenges for testers. In prior work, we developed a graph
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kernel-based machine learning approach for predicting MRs using supervised learning and

control flow graph features tailored for complex scientific programs. Results indicate that

utilizing control flow graph features to compute the graph kernel of a testing program for

training a machine learning model enhances MR prediction. This research evaluates the

effectiveness of using graph representations directly to train graph models of vulnerable-

prone Java programs. Graph Convolutional Neural Networks (GCNNs) are evaluated using

a control flow graph of vulnerable-prone programs in online banking applications. Eight types

of metamorphic relations are manually identified for predicting MRs that cover the properties

of vulnerabilities among the top 10 OWASP vulnerabilities. These MRs are predicted on

Graph Convolutional Neural Networks (GCNNs), MLP, random kernel-based SVM, and

SVM with bag-of-words. The result shows the advantage of leveraging graph-based models,

particularly GCNN, in analyzing control flow graphs for MR prediction. GCNN consistently

shows the highest AUC scores across most MRs, with values ranging from 0.76 to 0.95,

indicating its ability to discriminate between classes.

The proposed method has several potential extensions. Firstly, to enhance external

validity, utilizing a larger dataset with various functions can improve accuracy. Currently, the

method focuses on predicting a single metamorphic relation, relying on a binary classification

system to train predictive models. However, it can be adapted to predict metamorphic

relations using multi-class models. Additionally, this approach could be expanded to include

datasets from other programming languages, such as Python, C, and Fortran, which would

be advantageous for the scientific community.
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CONCLUSIONS & FUTURE WORK

Conclusions

This thesis assesses the effectiveness of classification techniques in automatically

predicting MRs. This chapter summarizes the overall conclusions of the thesis and suggests

potential future research in this area.

The primary goal of this thesis is to automate the MT process by predicting MRs for

scientific and vulnerable applications to reduce the manual labor of identifying MRs. MT

represents a valuable approach, especially for programs lacking a suitable test oracle. It

involves systematically examining a set of properties known as MRs, which describe the

relationships between program inputs and their corresponding outputs. The presence of an

error in the testing program becomes evident when an MR is violated. One of the challenges

faced by testers in the field is the manual identification of MRs for diverse applications. This

process can be complex and time-consuming. In response to this challenge, the research

presented in this thesis describes the automation of the MT process by leveraging machine

learning to predict MRs. By doing so, I streamline and expedite the testing procedure,

making it more efficient and less reliant on human-intensive efforts. It is worth noting that

prior studies in this area have yielded promising outcomes, demonstrating the feasibility of

adopting this automated approach for predicting MRs. In previous work by Kanewala et al.

[38], an automated approach is utilized to predict MRs by employing supervised learning for

more straightforward programs. Their findings indicate that their approach can effectively

train a machine-learning model for predicting MRs. This thesis assesses the effectiveness

of explicit graph representation, text-based features, and advanced classification learning

algorithms. It evaluates classification methods for programs involved in matrix calculations,

banking application functionalities, and those prone to vulnerabilities.

In Chapter 4, ten MRs are manually identified to predict MRs for matrix programs,
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and these answer RQ 1.1. These MRs are predicted using a supervised model built using

SVMs. The results indicate that the random walk kernel outperformed the graphlet kernel

in 7 out of 10 MRs, while the AUC values for the remaining MRs were ≥ 0.74. Generally, an

AUC ≥ 0.7 suggests the strong performance of the trained model. The findings indicate that

MR2, MR5, and MR7 effectively utilize the graph kernel-based supervised machine learning

approach. Each has achieved an AUC score of 0.9 or higher with the random walk kernel.

This implies that graph kernels based on walks within the graphs are highly effective for

predicting MRs. This answers RQ 1.2 by stating the significance of the execution flow as a

feature for building the predictive model. Thus, RG 1 is fulfilled with the conclusion that

by utilizing a supervised model, the proposed method represents an effective approach for

predicting MRs in programs that execute matrix calculations with minimal human labor.

In Chapter 5, I introduce a method for text classification for predicting MRs for

matrix calculation functions based on their documentation. In the results, AUC scores

of the MR prediction models—MRpredT-NB (Naive Bayes) and MRpredT-SVM —are

compared against MRpred, a random walk graph kernel classification model utilizing SVMs.

MRpredT-NB surpasses MRpredT-SVM in 4 out of 10 MRs (MR1, MR2, MR3, MR10),

while MRpredT-SVM shows superior performance for 6 out of 10 MRs. Importantly, for 2

out of 10 MRs (MR7 and MR9), one model from MRpredT exceeds MRpred, highlighting

the potential of text data for MR prediction, suggesting a need for further exploration. In

contrast, MRpred dominates MR1, MR3, MR5, and MR8. These results answer RQ 2.2 by

accurately predicting MRs for the text classification model. Answering RQ2.1, the findings

suggest that a machine-learning approach based on text classification can effectively predict

MRs, especially when using an SVM model, which can reduce human error and, therefore,

fulfill RG 2.

In Chapter 6, I present a mapping study on empirical research of web application

security vulnerability detection from 2001 to 2021. It examines a total of 150 papers from
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IEEE Xplore and ACM Digital Libraries, and of them, 76 are included in the analysis. This

number of studies showcasing effective security testing methods presents the answer to RQ

3.1. The classification scheme developed in this mapping study indicates that the most

prevalent vulnerabilities correspond with the OWASP top ten list. Additionally, while many

techniques have been suggested, there are only a few available tools to download, posing

a challenge for the research community in influencing industry practices. Despite various

approaches to security testing, the oracle problem is still not sufficiently addressed, indicating

opportunities for further investigation and, in turn, answering RQ 3.2. Overall, this meets

RG 3 by offering an overview of existing research on security testing in web applications,

serving as a foundation for developing automated testing techniques.

In Chapter 7, I examine the use of MT in banking software testing and include a case

study. This case study analyzes the use of MT for banking software, focusing on Deposits,

Withdrawals, and Transfers functions. It introduces six suitable MRs for Withdrawals and

Transfers functions and five for Deposits functions, responding to RQ 4.2. MR1 to MR4

outperforms MR5 for the Deposits function, achieving an MS of 50% with 93% line coverage.

For the Withdrawal function, MR1 to MR4 also exhibits higher effectiveness, with an MS of

44% and 82% line coverage compared to MR5 and MR6. In the Transfers function, MR1 to

MR4 similarly exceeds MR5 and MR6 with an MS of 44% and 82% line coverage. Considering

all MRs together for each function increases the MS to 67 and 100% line coverage. Using

all 17 MRs can remove as many as 75% of mutants, showcasing the ability of MT to test

the functions of banking applications and answering RQ 4.1. RG 4 is thus fulfilled with the

significant testing benefit of using MT, which subdues the need for an oracle.

In Chapter 8, I assess the effectiveness of automatically predicting MRs using graph

models for Java programs prone to vulnerabilities commonly found in banking applications.

This study explores how effectively graph representations can be used to train models for

vulnerable Java programs. The study evaluates GCNNs using a CFG of these vulnerable
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programs in online banking applications. It manually identifies eight types of MRs based

on the traits of vulnerabilities found in the top 10 OWASP vulnerabilities. This culminates

in the answer to RQ 5.2 and RQ 5.1, respectively. The study uses GCNNs, MLP, random

kernel-based SVM, and SVM with bag-of-words to build the prediction model. The findings

highlight the benefits of using graph-based models, especially GCNNs, for analyzing CFGs

in MR prediction, answering RQ 5.3 of identifying the best feature extraction approach.

GCNN consistently achieves the highest AUC scores across most MRs, with values ranging

from 0.76 to 0.95, indicating its effectiveness in distinguishing between classes. The overall

result fulfills RG 5 by enhancing MT integration in evaluating vulnerable programs and

automating the process by predicting new MRs, minimizing the reliance on manual MR

identification.

This thesis provides comprehensive research on automating MT by predicting MRs for

the system under test, which will effectively improve the existing software testing techniques

by alleviating the oracle problem.

Threats to Validity

Two types of validity threats are discussed here for each study from Chapters 4 to

Chapters 8. One of them is External Validity [102], which focuses on how findings generalize

beyond the specific dataset and experimental setup. Another is Internal Validity [102], which

addresses biases or confounding factors that impact results.

In Chapter 4 and Chapter 5, the main threat to validity is generalizing study results.

These studies use 93 mathematical functions for matrix calculations, a small data set, limiting

the ability to confirm scalability to industrial-sized software. The method depends on third-

party tools, which may introduce faults, posing risks to internal validity. The study leveraged

scikit-learn and Soot, both widely used in the computer science community due to their

reliability and few faults.
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In Chapter 6, my investigation reveals that the use of search string threatens internal

validity, but a known construction technique helps to mitigate this. Other threats, like

selection criteria and author judgments, are also addressed through agreements. Conclusions

are directly linked to the data sets for each research question.

In Chapter 7, a major external threat to validity is generalizing study results to other

cases. The study uses a demo banking application with basic calculations and a small data

set, limiting confidence in its applicability to larger software. The PIT mutation testing tool

produces mutation analysis, but reliance on a third-party tool introduces potential faults

that could undermine the method, affecting internal validity.

In Chapter 8, the effectiveness of GCNNs varies with the structure of the graph data. If

the dataset does not align with a graph representation, GCNNs may underperform compared

to traditional models like SVM or MLP, limiting their application in various classification

tasks. The study uses frameworks like Soot, Scikit-learn, TensorFlow, and GNN libraries

such as PyTorch-Geometric, which may have undocumented bugs that could affect outcomes.

Future Work

The proposed approaches mentioned in this thesis can be expanded in various ways.

One significant area for improvement involves applying this theory to real-world industrial

software systems. By using a larger dataset that includes a broader range of functions,

future researchers can identify more MRs, which can be utilized to develop better prediction

models. The prediction models can be effectively generalized across different software

applications, potentially leading to improved accuracy in predicting MRs. Consequently,

a dataset comprising diverse functionalities would enable prediction models to learn various

types of behavior associated with specific MRs, enhancing their robustness in predicting

them.

Another area for improvement is implementing the classification model as a multi-label
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approach. This approach emphasized predicting a single MR using a binary classification

approach for training predictive models. However, most programs demonstrate multiple MRs

in this research, increasing the complexity of the classification process. This challenge can

be tackled by converting the method into a multi-class classification problem, enabling the

model to simultaneously predict multiple MRs for a given function. Therefore, a multi-class

approach may improve efficiency and more accurately reflect real-world situations, where

functions often exhibit multiple metamorphic properties.

This thesis focuses on the programs that are written in Java programming language.

Although Java is a popular programming language for software systems, many other

languages are also widely utilized nowadays. By expanding, it can be used to support

multiple languages, such as Python, C, and Fortran; this method can be utilized across a

broader array of software systems, providing advantages to developers and researchers in

various fields. This expansion would enable comparisons across languages regarding MRs,

providing more significant insights into software behavior and aiding in the development of

more reliable and robust applications.

Moreover, empirical research could evaluate the effectiveness of metamorphic testing

in real-world software systems, particularly in banking applications that involve complex

financial calculations and security-sensitive transactions. By applying the framework to

more challenging functions, researchers can examine its scalability and dependability in

managing high-stakes software environments. Additionally, implementing this approach

in testing various financial and payment applications could enhance software verification

processes, ensuring improved accuracy, security, and fault detection in financial systems.
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[57] T. Gärtner, P. Flach, and S. Wrobel, “On graph kernels: Hardness results and efficient
alternatives,” vol. 129-143, pp. 129–143, 01 2003.

[58] K. Borgwardt, underlineCS, S. Schönauer, S. Vishwanathan, A. Smola, and H. Kriegel,
“Protein function prediction via graph kernels,” Bioinformatics, vol. 21 Suppl 1,
pp. i47–56, 01 2005.

[59] G. Wiederschain, “Data mining techniques for the life sciences (olivero carugo and
frank eisenhaber (eds.), in series “springer protocols. methods in molecular biology”,
vol. 609, humana press, 2010, 407 p., 110),” Biochemistry (Moscow), vol. 76, 04 2011.

[60] D. J. Hand and C. Anagnostopoulos, “When is the area under the receiver operating
characteristic curve an appropriate measure of classifier performance?,” Pattern
Recognition Letters, vol. 34, no. 5, pp. 492–495, 2013.

[61] Q. Tao, W. Wu, C. Zhao, and W. Shen, “An automatic testing approach for compiler
based on metamorphic testing technique,” in 2010 Asia Pacific Software Engineering
Conference, pp. 270–279, IEEE, 2010.

[62] Z. Q. Zhou, S. Xiang, and T. Y. Chen, “Metamorphic testing for software quality
assessment: A study of search engines,” IEEE Transactions on Software Engineering,
vol. 42, no. 3, pp. 264–284, 2015.



134

[63] Z. Q. Zhou, L. Sun, T. Y. Chen, and D. Towey, “Metamorphic relations for enhancing
system understanding and use,” IEEE Transactions on Software Engineering, 2018.

[64] M. W. Berry, Survey of Text Mining. Berlin, Heidelberg: Springer-Verlag, 2003.

[65] Wikipedia contributors, “Javadoc — Wikipedia, the free encyclopedia,” 2019. [Online;
accessed 10-September-2019].

[66] F. A. Shah and D. Pfahl, “Evaluating and improving software quality using text
analysis techniques - a mapping study,” 2016.

[67] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to information retrieval.
Cambridge university press, 2008.

[68] P. Kaviani and S. Dhotre, “Short survey on naive bayes algorithm,” International
Journal of Advance Research in Computer Science and Management, vol. 04, 11 2017.

[69] T. Evgeniou and M. Pontil, “Support vector machines: Theory and applications,”
vol. 2049, pp. 249–257, 01 2001.

[70] M. Rogati and Y. Yang, “High-performing feature selection for text classification,” in
Proceedings of the Eleventh International Conference on Information and Knowledge
Management, CIKM ’02, (New York, NY, USA), p. 659–661, Association for Comput-
ing Machinery, 2002.

[71] S. Hassan, M. Rafi, and M. S. Shaikh, “Comparing svm and näıve bayes classifiers
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