

THE IDENTIFICATION, CATEGORIZATION, AND EVALUATION OF

MODEL-BASED BEHAVIORAL DECAY IN DESIGN PATTERNS

by

Derek Kristaps Reimanis

A dissertation submitted in partial fulfillment

of the requirements for the degree

of

Doctor of Philosophy

in

Computer Science

MONTANA STATE UNIVERSITY

Bozeman, Montana

August 2019

©COPYRIGHT

by

Derek Kristaps Reimanis

2019

All Rights Reserved

ii

ACKNOWLEDGEMENTS

The finalization of this PhD represents the accomplishment of a major goal in my

life. When I started, I was headstrong and overly confident to a fault. Yet as the years

progressed, I grew humbler as I began to see the beauty in knowledge – I firmly believe

that as one learns more about the universe, one begins to realize how much they truly do

not know. To this end, a PhD is a project that no one can complete alone. I would like to

acknowledge and thank the people and entities that were instrumental along the way.

I would like to acknowledge my family for instilling me with a strong work ethic,

as well as the advice they provided at critical points in the process. Thank you.

This dissertation would be nothing with the help, advice, and mentorship of my

advisor, Clem. I greatly appreciate your patience with me as I grew through this chapter

in my life. Thank you.

I would like to thank Zoot Enterprises for their support of me through the majority

of my PhD. In addition to financial support, Zoot provided me with a practical

perspective that increased the value of my research. Thank you.

iii

DEDICATIONS

I dedicate this dissertation to my lovely wife, Rachael. She has been a true wonder

and inspiration through the process of completing this PhD. She has never complained at

the long hours I spent in the lab even though it meant I sacrificed time at home. She has

always been willing to listen and provide valuable input to the problems encountered

along the process. Thank you, Rachael.

iv

TABLE OF CONTENTS

1. INTRODUCTION ...1

 1.0 Foreword ..1

 1.1 Problem Statement ...1

 1.2 Solution Design ..3

 1.3 Chapter Overviews...6

2. A REPLICATION CASE STUDY TO MEASURE THE ARCHITECTURAL

QUALITY OF A COMMERCIAL SYSTEM ..10

 2.0 Abstract ..10

 2.1 Introduction ..11

 2.2 Background and Related Work ..12

2.2.1 Modularity Violations ...12

2.2.1 CLIO ...13

 2.3 Replication in Software Engineering ...15

2.3.1 Importance of Replicating Case Studies ...15

2.3.2 Categories of Replication ..15

2.3.3 Replication Baseline ...17

2.3.4 Major Findings of the Baseline ...19

 2.4 Procedure ...19

 2.5 Case Study ...20

2.5.1 Setting ...20

2.5.2 Motivation ...21

2.5.3 Data Collection ...21

2.5.4 Structure and History Metrics ...22

2.5.5 Validation ..23

2.5.6 Prediction ..28

2.5.7 Uncovering and Visualizing Architecture Problems31

2.5.8 Presenting Results to Developers..33

 2.6 Discussion ..34

 2.7 Threats to Validity ...35

 2.8 Conclusion ...37

 2.9 Challenges ..38

3. THE CORRESPONDENCE BETWEEN SOFTWARE QUALITY MODELS

AND TECHNICAL DEBT ESTIMATION APPROACHES40

 3.0 Abstract ..40

 3.1 Introduction ..41

 3.2 Background and Related Work ..42

v

TABLE OF CONTENTS CONTINUED

3.2.1 TD Estimation Techniques ...42

3.2.2 Quality Estimation ..46

 3.3 Summary of Results ...48

 3.4 Conclusions ..52

4. INTERLUDE ...53

5. A RESEARCH PLAN TO CHARACTERIZE, EVALUATE, AND PREDICT

THE IMPACTS OF BEHAVIORAL DECAY IN DESIGN PATTERNS56

 5.0 Abstract ..56

 5.1 Introduction ..56

 5.2 Background and Related Work ..58

5.2.1 Technical Debt ..58

5.2.2 Software Quality ...59

5.2.3 Software Behavior ..59

5.2.4 Software Decay ...60

5.2.4.1 Design Pattern Specifications ..61

 5.3 Current Research Challenges ...61

5.3.1 Research Gaps ...61

5.3.2 Operational Gaps ..63

5.3.3 Proposed Contributions ...64

5.3.4 IDoESE Feedback Sought...64

 5.4 Objectives ..65

5.4.1 Research Objectives ..65

5.4.2 Research Metrics ...69

5.4.3 Working Hypotheses ...70

 5.5 Approach ..71

5.5.1 Data Collection ...71

5.5.2 Research Approach ...72

 5.6 Threats to Validity ...73

 5.7 Conclusions ..74

6. EVALUATIONS OF BEHAVIORAL TECHNICAL DEBT IN DESIGN

PATTERNS: A MULTIPLE LONGITUDINAL CASE STUDY75

Contribution of Authors and Co-Authors ..75

Manuscript Information Page ..76

 6.0 Abstract ..77

 6.1 Introduction ..78

6.1.1 Research Problem ...80

6.1.2 Research Objective ...80

vi

TABLE OF CONTENTS CONTINUED

6.1.3 Contributions...81

 6.2 Background and Related Work ..81

6.2.1 Software Quality ...82

6.2.2 Technical Debt ..83

6.2.3 Design Pattern Formalization ...84

6.2.4 Design Pattern Decay ..87

6.2.5 Literature Review..88

 6.3 Research Approach ..91

6.3.1 GQM ...91

6.3.2 Study Design ...95

 6.4 Results ..101

6.4.0 Preliminary Work..101

6.4.0.1 Excessive Action(s) ...102

6.4.0.2 Improper Order of Sequences ..104

6.4.1 RQ1 ...106

6.4.2 RQ2 ...110

6.4.3 RQ3 ...113

6.4.4 RQ4 ...116

6.4.5 RQ5 ...118

6.4.6 RQ6 ...124

6.4.7 RQ7 ...128

6.4.8 RQ8 ...147

6.4.9 RQ9 ...149

6.4.10 RQ10 ...154

6.4.10.1 Ranking Quality Entities ..154

6.4.10.2 Model Calibration ..156

 6.5 Discussion ..163

6.5.1 Structure vs Behavior ..164

6.5.2 Behavior and Quality ..165

 6.6 Threats to Validity ...167

 6.7 Conclusion ...170

7. CONCLUSIONS..171

 7.0 Foreword ..171

 7.1 Problem Statement ...171

 7.2 Summary of Work..173

 7.3 Contributions..174

 7.4 Future Work ...175

 7.5 Conclusion ...176

REFERENCES CITED ..178

vii

TABLE OF CONTENTS CONTINUED

APPENDICES ...187

APPENDIX A: Supplementary Material for Chapter Six187

viii

LIST OF TABLES

Table Page

2.1. Summary of Treatments ..17

2.2. Tau-b values ..28

3.1 Default TD Costs ...44

3.2 Proposed TDE Values ..45

3.3 QMOOD Metric Implementations ...47

3.4 QMOOD Attribute Equations ..48

3.5 TD Estimate and Quality Attribute Correlations ...50

3.6 TD Estimate and Quality Relationships ...51

5.1 Grime Quadrant ...67

6.1 Systematic Mapping Study Results ...90

6.2 Summary of Metrics ..94

6.3 Chapter 6 Experimental Units ..98

6.4 Pattern Instance Evolution Counts ...100

6.5 Behavioral Grime Counts ..111

6.6 Conformance Counts ...117

6.7 Structural vs Behavioral Grime Correlation Coefficients121

6.8 Pattern Size vs Behavioral Grime Correlation Coefficients127

6.9 Behavioral Grime ANOVAs ..131

6.10 PEAO Grime Linear Regression ..136

ix

LIST OF TABLES CONTINUED

Table Page

6.11 TEAO Grime Linear Regression ...138

6.12 PEAR Grime Linear Regression ..139

6.13 PEER Grime Linear Regression ..140

6.14 PIR Grime Linear Regression ..142

6.15 TEAR Grime Linear Regression ..143

6.16 TEER Grime Linear Regression ..144

6.17 TIR Grime Linear Regression ..146

6.18 Quality Analysis Tool Capabilities ..148

6.19 QATCH Extension Metrics ..153

x

LIST OF FIGURES

Figure Page

1.1 Framework for Design Science ..4

1.2 Problem Decomposition Overview ..6

2.1 Histogram of Change Frequency from SVS7 ..25

2.2 Scatter-plot of SVS7 Releases 7 and 7.5 Change Frequency26

2.3 SVS7 Alberg Diagram ...30

2.4 SVS7 Dependency Graph ..32

3.1 Scatter-plot and Correlation Matrix for TD Estimates and Quality49

6.1 ISO 25010 Software Product Quality Model [36] ...82

6.2 Observer Pattern Conformance Example...86

6.3 Chapter 6 Study Design ...96

6.4 RBML Sequence Diagram for the Observer Pattern102

6.5 Excessive Behavior Grime Example ...104

6.6 Improper Order of Sequences Grime Example ..106

6.7 Behavioral Grime Taxonomy ..108

6.8 Grime Quadrant Revisited ...116

6.9 Structure vs Behavioral Grime Scatter-plots ...119

6.10 Size vs Behavioral Grime Scatter-plots ...125

6.11 Repetition Grime over Pattern Age, across Pattern Type and Project134

6.12 Visual model of the QATCH Architecture ..151

xi

LIST OF FIGURES CONTINUED

Figure Page

6.13 Quality Scores for Each Project Under Analysis ...158

6.14 Scatter-plot of Quality Scores vs Pattern Behavioral Aberrations160

6.15 Scatter-plot of Maintainability vs Pattern Behavioral Aberrations..............163

xii

ABSTRACT

Software quality assurance (QA) techniques seek to provide software developers

and managers with the methods and tools necessary to monitor their software product to

encourage fast, on-time, and bug-free releases for their clients. Ideally, QA methods and

tools provide significant value and highly-specialized results to product stakeholders,

while being fully incorporated into an organization’s process and with actionable and

easy-to-interpret outcomes. However, modern QA techniques fall short on these goals

because they only feature structural analysis techniques, which do not fully illuminate all

intricacies of a software product. Additionally, many modern QA methods are not

capable of capturing domain-specific concerns, which suggests their results are not

fulfilling their potential.

To assist in the remediation of these issues, we have performed a comprehensive

study to explore an unexplored phenomenon in the field of QA, namely model-based

behavioral analysis. In this sense, behavioral analysis refers to the mechanisms that occur

in a software product as the product is executing its code, at system run-time. We

approach this problem from a model-based perspective because models are not tied to

program-specific behaviors, so findings are more generalizable. Our procedure follows an

intuitive process, involving first the identification of model-based behavioral issues, then

the classification and categorization of these behavioral issues into a taxonomy, and

finally the evaluation of them in terms of their effect on software quality.

Our results include a taxonomy that captures and provides classifications for

known model-based behavioral issues. We identified relationships between behavioral

issues and existing structural issues to illustrate that the inclusion of behavioral analysis

provides a new perspective into the inner mechanisms of software systems. We extended

an existing state-of-the-art operational software quality measurement technique to

incorporate these newfound behavioral issues. Finally, we used this quality extension to

evaluate the effects of behavioral issues on system quality, and found that software

quality has a strong inverse relationship with behavioral issues.

1

CHAPTER ONE

INTRODUCTION

1.0 Foreword

This chapter introduces several foundational concepts and provides motivation for

the greater work in this dissertation. In section 1.1 we state the problem statement,

followed by the general process employed to complete the body of work in section 1.2.

We conclude Chapter 1 with an overview of each following chapter in section 1.3.

1.1 Problem Statement

 Software quality assurance techniques provide software developers and managers

with the methods and tools necessary to monitor their software product(s) to encourage

fast, on-time, and bug-free releases for their clients. Ideal circumstances hold that the

methods and tools of software quality assurance provide significant value and highly-

specialized results to product stakeholders. Additionally, and with recent pushes towards

process automation, ideally these methods and tools would be fully incorporated into an

organization’s continuous integration and continuous delivery process and with

actionable and easy-to-interpret results. However, modern approaches fall short on these

goals, and while many QA techniques exist that provide results to stakeholders, many

times these results do not provide their stated value or are simply ignored. We claim this

is due to two primary influences. First, current software QA approaches do not fully

reveal all aspects of a software product in part because of their focus on static, or

2

structural analysis. By itself, static analysis is not an impairment, yet it fails to provide

sufficient insight into a product’s inner-workings to allow for a thorough analysis.

Second, many QA techniques provide general packaged solutions, which fail to capture

domain-specific concerns. Different software stakeholders have different expectations of

quality, both from an end-user perspective and from an internal code quality perspective.

Modern packaged solutions do not provide maximum value because they either do not

allow for the ability to configure the solution to cater to specific needs, or the

customizations they provide are difficult to implement because of the arbitrary process in

which such a solution is calibrated. This logic forms the basis for our research, and a

formal problem statement is presented:

Under ideal circumstances, software quality assurance efforts

provide significant, highly-specialized, and immediate value to

software product stakeholders. However, many modern

approaches fall short of their goals, due to lack of models that fully

capture the entities of a system, as well as models that fail to

capture domain specific concerns.

To assist in the remediation of these issues, we have committed to the exploration

of model-based behavioral analysis techniques, which consider the mechanisms that

occur as a product is executing its code at runtime from a modeling perspective.

Specifically, we focus on design pattern evolution because of the known quality

properties of design patterns, yet our methods are generalizable in context where product

behavior from a modeling perspective is explicitly defined. The exploration of behavioral

3

analysis techniques complements existing structural analysis techniques, expanding upon

the capabilities of state-of-the-art QA techniques. Furthermore, the manner in which we

developed and evaluated these newfound capabilities, via extending an existing quality

model that is highly-customizable yet easy-to-use and interpret, encourages a

straightforward and non-arbitrary customization that fits all domains.

1.2 Solution Design

‘Design Science’ is a term that refers to the design and investigation of artifacts in

a context to solve a problem [84]. Specifically, design science is concerned with solving

problems by understanding the interactions between artifacts and contexts; artifacts and

contexts exist as such, but to understand them fully researchers must understand the

nature of the relationship between them, such as how the design of an artifact improves a

context or how the context instigates the development of new artifacts. To this end,

design science contains two kinds of research problems, design problems and knowledge

questions [84]. Design problems are concerned with the design of a change in the real

world, many times via an artifact, to solve a problem. Alternatively, knowledge questions

are concerned with questioning the world as it is, many times via a propositional

statement, such as ‘Is x good enough?’. The interactions between design problems and

knowledge questions forms a cycle; new design problems are created to solve knowledge

questions, and knowledge questions provide inspiration for new design problems.

Depending on the direction of the interaction, the cycle of knowledge acquisition is

referred to as a design cycle or an empirical cycle. A design cycle captures the design

4

problem to knowledge question direction, and an empirical cycle captures to knowledge

question to design problem direction. This greater process is generalized into a

framework, which is presented in figure 1.1 [84].

Figure 1.1 incorporates contexts into the interactions of design problems and

knowledge questions [84]. The social context element at the top of figure 1.1 refers to the

stakeholders of a particular project, many times being the fiscal beneficiaries of the

development of a project. The knowledge context element at the bottom of figure 1.1.

refers to the existing theories and what many times is considered the academic

perspective of knowledge acquisition. We use this design science framework to help

shape and direct the research presented herein.

Figure 1.1: Framework for design science, image from Wieringa [84].

5

Figure 1.2, inspired by [85], shows the problem decomposition overview of this

research project, to address our problem statement. The orange box near the top of the

figure presents the problem statement. The blue boxes on the left-hand side of the figure

showcase the knowledge questions that we encountered, following the format of the

design science framework [84]. The green boxes on the right-hand side of the figure are

the empirical studies that were carried out to complete the empirical cycle, from a

particular knowledge question. The chapter references for each empirical cycle are

presented next to the green boxes. The figure is divided horizontally into three separate

stages of research, part 1 pertaining to problem space identification, part 2 corresponding

to a proposal of a solution that satisfies the problem, and part 3 corresponding to the

studies that fulfilled the proposal. The remainder of this document follows the flow

presented in this figure.

6

1.3 Chapter Overviews

Chapter 2 presents a replication case study performed in a commercial

environment wherein a structural analysis technique, namely modularity violation

detection, was applied to several versions of the software product. Modularity violations

represent relationships between two or more files or classes in different modules that

should not share a relationship. By themselves, relationships across modules are

expected; such provide functionality to a project. However, when the relationship is not

Figure 1.2: Problem decomposition overview, inspired by [85].

7

expected, (i.e. a forgotten dependency), quality is sacrificed. In this study, we found that

a select-few files contributed to the majority of modularity violations in the project.

These files were also strongly correlated with modifications linked to bug-related fixes in

future releases of the product. This suggests such files should be refactored to encourage

less defects, good quality, subsequent quick releases of the product. However, the

developers working on this product already knew about these files from their experience

of the product, and had already begun efforts to improve the select few-files via

refactorings. The research complemented developer intuition, suggesting that QA

methods are capable of identifying issues that developers notice as well. Additionally,

these results provided validity for developers, re-enforcing that their decision to refactor

was a good decision.

Chapter 3 presents a case study that investigates the commonalities between five

methods of estimating technical debt principal, compared to an external quality model.

Both a correlation analysis and a regression analysis were performed to evaluate whether

the technical debt estimation approaches can be related to the attributes of the QMOOD

[7] quality model. Initially, the correlation analysis identified strong correlations between

three of the estimate methods and system reusability and understandability. Though the

further regression analysis yielded that with the exception of one technical debt

estimation method (for flexibility and effectiveness) there was no observable relationship

between the quality attributes and the technical debt estimates. This result suggests that

state-of-the-art methods and tools for measuring software quality disagree on what they

8

consider to be quality factors, indicating that out-of-the-box implementations of quality

models do not provide accurate estimates of quality.

Chapter 4 provides a brief interlude that synthesizes the results from Chapters 2

and 3 to identify a research gap. Chapter 2 illustrates the value that structural QA

techniques provide to software stakeholders, and Chapter 3 suggests that out-of-the-box

implementations of quality and TD analysis tools did not produce results that aligned

with one another. This reveals a gap pertaining to behavioral analysis capabilities, which

can complement existing structural approaches. Additionally, the introduction of domain-

specific parameters into behavioral techniques will provide configurable tools that better

estimate quality and TD.

Chapter 5 illustrates the results from a presentation [63] to the greater empirical

software engineering community at the International Doctoral Symposium on Empirical

Software Engineering (IDoESE’15), of a proposed plan of action to address this clear gap

in the research. The paper describes a plan that explores behavioral deviations in the

context of design pattern evolution, to ultimately supply practitioners and managers with

more advanced and useful techniques to monitor and act on software QA. The feedback

we received indicated that our four goals were ambitious, and it was suggested we reduce

the scope of our work. We elected to remove requirements to predict behavioral

deviations.

Chapter 6 describes a publication from the International Conference on Software

Reuse (ICSR’19) conference [83], and a work-in-progress submission to the IEEE

Transactions on Software Engineering. The paper presents the results from the remaining

9

two research goals. These goals are paraphrased as: (1) “investigation of design pattern

instances for the purpose of identifying and characterizing behavioral grime,” and (2)

“quantify the impact of behavioral grime on quality and TD.” To address the first goal,

we constructed a taxonomy of design pattern behavioral grime that includes all known

forms of behavioral grime, and is used as a complementary device to existing structural

taxonomies. The taxonomy is published as part of a greater body of work [86]. We then

evaluated the relationship between behavioral grime and structural grime, to illustrate

how the two forms of analysis can complement one another. We found that strong

relationships exists between five pairs of structural and behavioral grime, specifically

TEER/PEE, PEER/TEE, PEAO/PI, PEAO/TEA, and PEAO/TI. To address the second

goal, we extended an existing state-of-the-art operational quality model, QATCH [70], to

incorporate model-based behavioral issues, and we used the extended model to evaluate

the relationship between behavioral grime, quality and TD. We found that the presence of

behavioral grime has a strong negative correlation with system quality, and a strong

negative correlation with Maintainability, which serves as a surrogate measurement to

TD.

10

CHAPTER TWO

A REPLICATION CASE STUDY TO MEASURE THE ARCHITECTURAL QUALITY

OF A COMMERCIAL SYSTEM1

2.0 Abstract

 Context: Long-term software management decisions are directly impacted

by the quality of the software’s architecture. Goal: Herein, we present a

replication case study where structural information about a commercial software

system is used in conjunction with bug-related change frequencies to measure and

predict architecture quality. Method: Metrics describing history and structure

were gathered and then correlated with future bug- related issues; the worst of

which were visualized and presented to developers. Results: We identified

dependencies between components that change together even though they belong

to different architectural modules, and as a consequence are more prone to bugs.

We validated these dependencies by presenting our results back to the developers.

The developers did not identify any of these dependencies as unexpected, but

rather architectural necessities. Conclusions: This replication study adds to the

knowledge base of CLIO (a tool that detects architectural degradations) by

incorporating a new programming language (C++) and by externally replicating a

1 Based on:

Reimanis D., Izurieta C., Luhr R., Xiao L., Cai Y., Rudy G., "A Replication Case Study to

Measure the Architectural Quality of a Commercial System," 8th ACM-IEEE International

Symposium on Empirical Software Engineering and Measurement, ESEM 2014, Torino, Italy,

September 2014.

http://www.cs.montana.edu/izurieta/pubs/reimanis_esem_2014.pdf
http://www.cs.montana.edu/izurieta/pubs/reimanis_esem_2014.pdf

11

previous case study on a separate commercial code base. Additionally, we provide

lessons learned and suggestions for future applications of CLIO.

2.1 Introduction

 Building confidence in previous results helps to increase the strength and the

importance of findings. It is especially important to strive for external validation of

results by independent researchers, as has been done by the replication study presented

herein. To date, the field of Empirical Software Engineering lacks in the number of

replication studies. Additionally, most of the existing guidelines found in the literature

focus on formal experiments [8] [12] [40] [69]. In this paper, we present the findings of

an external replication case-study. We present our results by borrowing from the existing

experimentation terminology and we have structured our findings consistent with

expected sections as delineated by Wohlin et al. [78].

The motivation behind this study stems from a desire to see if the techniques used

by Schwanke et al. [68] to uncover architecture- related risks in a Java agile development

environment (using architecture and history measures) can also be applied to a

commercial C++ development environment. This is important because we wanted to

evaluate the deployment of this technology in an industrial setting of a successful

company with strict quality controls. We were also interested to see if the observations

we make can be used to build consensus in explaining a form of architectural decay,

where decay is defined as the structural breakdown of agreed upon solutions [39].

12

We applied CLIO [79], a tool designed to uncover modularity violations, to a commercial

software system developed by a local bioinformatics company –Golden Helix2. The latter

allowed us access to their software code base to investigate potential architectural

disharmonies.

This chapter is organized as follows: Section 2.2 discusses background and

related work; Section 2.3 explains the importance of replication in empirical software

engineering and our approach to classifying this study; Section 2.4 discusses the method

followed by our replication; Section 2.5 explores how the method was carried out,

including deviations and challenges encountered from the baseline method, results and

developer feedback; Section 2.6 discusses the relation of our results to the baseline study.

Section 2.7 discusses the threats to validity in our study; and Section 2.8 concludes this

chapter with lessons learned from this study and suggestions of future work.

2.2 Background and Related Work

2.2.1 Modularity Violations

 Baldwin and Clark [6] define a module as “a unit whose structural elements are

powerfully connected among themselves and relatively weakly connected to elements in

other units.” Identifying violations in modules (hereafter referred to as modularity

violations) is important because it allows developers to find code that exhibits bad

structural design. Identifying such violations early in the lifecycle leads to proactive

module refactoring. However, early detection of modularity violations is difficult because

2 Golden Helix Inc.; http://www.goldenhelix.com

http://www.goldenhelix.com/

13

they do not always exhibit negative influences on the functionality of the software system.

It is entirely possible for a system to function as intended, yet still contain modularity

violations. If these violations are left uncorrected, they can lead to architectural decay,

which would slowly cripple production.

Zazworka et al. [82] used the modularity violations findings from a CLIO case

study and compared them to three other technical debt identification approaches. They

found that modularity violations contribute to technical debt in the Hadoop open source

software system. Technical debt [19] is a well-known metaphor that describes the tradeoffs

between making short term decisions (i.e., time to market) at the expense of long term but

high software quality (i.e., low coupling). The debt incurred during the lifetime of a

software system can be measured as a function of cost (monetary or effort) with added

interest. Often, debt happens because of quick and dirty implementation decisions –usually

occurring when a development team is trying to meet a deadline. Technical debt is

dangerous if not managed because it can result in a costly refactoring process. Techniques

to slow down the accumulation of technical debt can benefit from early detection of

modularity violations.

2.2.2 CLIO

 CLIO was developed by Wong et al. [79] as a means to identify modularity

violations in code. Wong et al. evaluated CLIO by running it on two different open source

Java projects, Eclipse JDT3 and Hadoop Common4. The results showed that hundreds of

3 The Eclipse Project; http://www.eclipse.org
4 Apache Hadoop Common; http://hadoop.apache.org

http://www.eclipse.org/
http://hadoop.apache.org/

14

violations identified by CLIO were fixed in later versions of the software. CLIO finds

violations within modules by looking not only at the source code of a project, but also at

its version history. It helps developers identify unknown modular level violations in

software. Although developers will identify some violations, specifically if the violations

prove to be bothersome, the difficulty of finding all modularity violations is quite great.

CLIO validates that its reports are useful by confirming that previously detected violations

are indeed fixed in later versions of the software. The results that Wong et al. [79] obtained

showed that CLIO could detect these modularity violations much earlier than developers

who were manually checking for them. This means that CLIO can be used in software

systems to identify modularity violations early in the development process to save time and

money by not having to check for them manually.

Schwanke et al. [68] expanded upon this work by using CLIO on an agile industrial

software development project. They looked specifically at the architectural quality of the

software. They used a clustering algorithm to observe how files changed together without

developer knowledge, and the impact that change had on the quality of the architecture, as

measured by source code changes because of bugs. They reported several modularity

violations to developers. The developers issued a refactoring because the modularity

violations were (1) unexpected and (2) possibly harmful to their system. CLIO allowed

them to see the exact number of files that were dependent on one another, and how those

changes were affecting the structure of their project.

15

2.3 Replication in Software Engineering

 Literature in the field concerning guidelines of replication studies only addresses

experimental replication, not case study replication [12] [69]. Therefore, we have

borrowed terminology from this literature to inform our work.

2.3.1 Importance of Replicating Case Studies

Experiment replication plays a key role in empirical software engineering [12]

[69]. While many other domains construct hypotheses in vitro, software engineers are

generally not granted that luxury. Empirical software engineering frequently involves

humans, directly or indirectly, as experimental subjects, and human behavior is

unpredictable and not repeatable in a laboratory setting. Coupled with the prohibitive

costs of formal experimentation, software engineering empiricists must look for

alternatives. Instead, we must rely on repeated case studies in various contexts to

construct a knowledge base suitable for a scientific hypothesis. This process, while

requiring exhaustive work, allows for consensus building that can provide the necessary

support to generate scientific claims.

2.3.2 Categories of Replication

Shull et al. [69] discuss two primary types of replications; exact replications and

conceptual replications. Exact replications are concerned with repeating the procedure of

a baseline experiment as closely as possible. Conceptual replications, alternatively,

attempt to use a different experimental procedure to answer the same questions as the

16

baseline experiment. The study presented in this paper utilizes an exact replication

method.

Shull et al. [69] divide exact replications into two categories: dependent

replications and independent replications. In dependent replications, researchers keep all

elements of the baseline study the same. In independent replications, researchers may

alter elements of the original study. An independent replication follows the same

procedure as the original study, but tweaks experimental treatments to come to the same

or a different result. If treatments are changed and the same result is found, researchers

can conclude that the treatment in question probably has little or no effect on the

outcome. However, if changing a treatment leads to different results, that treatment needs

to be explored further.

Using Shull’s terminology, we categorized this study as an independent

replication, with five major treatment differences from what would be considered a

dependent replication. These differences are illustrated in table 2.1. First, the baseline

study used a software project written in Java as their only treatment to the programming

language factor. In our case, the treatment is the C++ programming language. In other

words, our study lies in the context of a C++ programming language, which may provide

different results from the baseline. Second, the comparative sizes of the development

groups differed. The baseline study featured a development group of up to 20 developers

working on the project at any given point in time [68]. The C++ system analyzed in this

paper has had a total of eleven contributing developers in its four year lifetime. Third, the

software project in the baseline study had been in development for two years, while the

17

project covered in our study has been in development for four years. Finally, the project

in the baseline study features 300 kilo-source lines of code (KSLOC) in 900 Java files.

The project in our study has 1300 KSLOC across 3903 source files, of which 1836 have a

.cpp/.c extension, and 2067 are header files. Surprisingly, both projects have a similar

ratio of LOC per source file (333 LOC per source file).

2.3.3 Replication Baseline

In the selected baseline study, Schwanke et al. [68] reported on a case study that

measured architecture quality and discovered architecture issues by combining the

analysis of software structure and change history. They studied three structured measures

(file size, fan-in, and fan-out) and four history measures (file change frequency, file ticket

frequency, file bug frequency, and pair of file change frequency). Their study included

two parts: 1) Exploring different software measures; and 2) Uncovering architecture

issues using those measures.

Table 2.1: Summary of different treatments between case studies

Factor Baseline

Project

Our Project

Programming

Language

Java C++

of

Developers

Up to 20 Up to 11

Project

Lifetime

2 years 4 years

Source

Files

900 3903 (1569

C++, 267 C,

2067 h)

KSLOC 300 1300

18

1) Exploring different software measures: First, they explored the relationship between each

pair of measures (structure and history) using Kendall’s tau-b rank correlation [41], which

showed the extent to which any two measures rank the same data in the same order. This

study provided an initial insight on whether those measures were indicative of software

quality, which was approximated by the surrogate file bug frequency. Then they studied

how predictive those measures were of software faults. The data they used spanned two

development cycles of the subject system, release 1 (R1) and release 2 (R2). They

illustrated how predictive the calculated measures from R1 were for faults that appeared

in R2 using Alberg diagrams [56].

2) Uncovering architecture issues: After validating the measures, they were used to discover

architecture issues using three separate approaches. First, Schwanke et al. [68] ranked all

files by different measures –worst first. They found that the top ranked files (outliers)

were quite consistent for different measures. They showed those outliers to the developers

to obtain feedback about potential architecture issues; however, the developers gave little

response because they could not visualize these issues. To generate responses from

developers, they used a static analysis tool named Understand™5 to visualize the position

of those outliers in the architecture. Using this method, they were able to discuss many of

the outlier files with the developers. In some cases, the developers pointed out how severe

the problems were. Finally, they used CLIO to investigate the structure and history of

pairs of files and grouped structurally distant yet historical coupled files into clusters. For

each cluster, its structure was visualized using Understand™ in a structure diagram,

5 Understand; http://www.scitools.com

http://www.scitools.com/

19

which illustrated how clusters which cross-cut different architecture layers could be

severe, and gave hints about why they were coupled in history.

2.3.4 Major Findings of the Baseline

Schwanke et al. [68] found that by using CLIO they could identify, predict, and

communicate certain architectural issues in the system. They found that a few key

interface files contributed to the majority of faults in the software. Additionally, they

discovered that the file size and fan-out metrics are good predictors of future fault-

proneness. In the absence of historical artifacts, files that contain high measures of these

metrics typically have a higher number of architectural violations. Finally, unknown to

the developers, some of these files violated modularity in the system by creating

unwanted connections between layers. These violations were visualized and presented to

the developers who issued a refactoring thereafter.

2.4 Procedure

 Following the procedure outlined in [68], our case study consisted of the

following steps:

1) Data collection: The source code, version control history, and ticket tracking history

of the software system in question were gathered.

2) Structure and history measurements: Measurements for common metrics were

computed/collected across all versions of the software.

3) Validation: Measurements from the second-most recent release are correlated with

fault measurements from the most recent release.

20

4) Prediction: Measurements from the most recent release are used to predict faults in

upcoming future releases of the project.

5) Uncovering architecture problems: Measurements were sorted according to future

fault impact and visualized. Outlier measurements present the most concern to system

architecture quality, and were selected for further exploration.

6) Present findings to developers: Visualizations of the architecture of outlier modules

were presented to developers with the intent of helping to realize the architectural

quality of the system.

2.5 Case Study

2.5.1 Setting

The project analyzed in this case study is named SNP & Variation Suite (SVS), and

is the primary product of the bioinformatics company Golden Helix. We analyzed seven

major releases of SVS.

SVS features 1.3 million lines of C++ source code spread out across 3903 source

files. The project’s structure is spread out across a total of 22 directories. In this study, we

have chosen to define module as a directory, based on Parnas el al.’s definition [60]. We

use the term directory and module interchangeably.

Eleven developers have contributed to this project over its four- year lifetime. The

organization of the development group has an interesting hierarchy. The lead developer is

also the Vice President of Product Development at Golden Helix. He plays a major role in

not only developing SVS, but also in managing product development from a financial

perspective. This means he has comprehensive knowledge of the software system when he

21

makes management-related decisions, and therefore, is more aware of the technical debt

present in the software than business- oriented managers.

2.5.2 Motivation

This project was chosen for three reasons. First, Golden Helix is a local software

company with its developing team in close proximity to the authors, and is well known for

their generous contributions to the community. The process presented in this study is a

great opportunity to inform Golden Helix of the architectural quality of their flagship

software. Second, applying the CLIO tool in different commercial settings will help future

applications of CLIO. By clearly outlining the strengths, weaknesses, and lessons learned

at the end of the study, we hope to improve future applications of CLIO. Finally, no

previous study that follows this methodology to detect modularity violations has

considered a C++ project. Previous studies such as [79] [82] only looked at non-

commercial Java projects. Using the C++ programming language as a treatment in this

sense builds on the knowledge base of CLIO, extending what we know about this method.

2.5.3 Data Collection

Golden Helix strongly encourages developers to commit often, and keep commits

localized to their section of change. These commits are stored in a Mercurial6 repository,

and the FogBugz7 tool is used to track issues. Golden Helix switched repositories, from

Apache Subversion (SVN)8 to Mercurial, and ticket tracking tools, from Trac9 to

6 Mercurial SCM; http://mercurial.selenic.com/
7 FogBugz Bug Tracking; https://www.fogcreek.com/fogbugz/
8 Apache Subversion; http://subversion.apache.org/
9 Trac; http://trac.edgewall.org/

http://mercurial.selenic.com/
https://www.fogcreek.com/fogbugz/
http://subversion.apache.org/
http://trac.edgewall.org/

22

FogBugz, during the lifetime of SVS. Because this study focuses on the entirety of the

project’s lifetime, both the SVN repository and Trac ticket logs have been recovered and

treated in the same manner as the current system. Each developer is expected to include

references to ticket cases in their commits.

Similar to [68], the repository logs and issue tracking logs were extracted into a

PostgreSQL10 database. This allowed us to search for historical data using simple SQL

queries. We have grouped C/C++ source files and header source files together in this

study. That is, for each C/C++ source file and its corresponding header file(s), the files

are considered one and the same. For the remainder of this case study, we refer to the

C/C++ source and corresponding header file pairs as a file pair. Measurements made in

both files are aggregated together. There is a reason for doing this. Developers of SVS

demand that source files and their corresponding header files be kept together in the same

directory. When either a source file or a header file changes, the developers are expected

to update the signatures in the corresponding file. This implies that any changes made to

the latter are expected and hence do not constitute modularity violations. Our study is

concerned with locating unexpected changes in modules of code. Therefore, including

any information about header/source pairs changing together will lead to useless

information.

2.5.4 Structure and History Metrics

Following the work of Schwanke et al. [68], the following metrics were gathered

for all file pairs (u) across all seven versions of the software:

10 PostgreSQL; http://www.postgresql.org/

http://www.postgresql.org/

23

1. File size: The aggregated file size on disk of both elements in u, measured in

bytes.

2. Fan-in: Within a project, fan-in of u is the sum of the number of references from

any v (where v is defined identically similarly to u) pointing to u.

3. Fan-out: Within a project, fan-out of u is the sum of the number of references

from u that point to any v (where v is defined identically similarly to u).

4. Change frequency: The number of times that any element in u is changed,

according to the commit log. Commits where both elements of u are changed are

only counted once.

5. Ticket frequency: The number of different FogBugz or Trac issue tickets

referenced for which either element in u is modified. If both elements in u are

modified with a reference to the same issue ticket, it is only counted once.

6. Bug change frequency: The number of different FogBugz or Trac bug issue

tickets referenced for which either element in u is modified. If both elements in u

are modified with a reference to the same bug issue ticket, it is only counted once.

7. Pair change frequency: For each file pair, v, in the project, the number of times in

which u and v are modified in the same commit.

2.5.5 Validation

In an effort to validate the significance of our metric choices, several exploratory

data analysis techniques were utilized. These include histogram inspection, scatter plot

analysis, and correlation analysis. Although the system in question has gone through

seven releases, in this paper we only present the results from the most recent release

24

(release 7.5) and the release immediately preceding the most recent release (release 7).

Hereafter, we refer to release 7.5 as the present state of the software, and release 7 as the

past.

Similar to the baseline study, we found that data analysis across all other releases

showed very similar results. The baseline study chose to focus their work on the most

recent releases, because it is more representative of the system in the present time, and

may provide better predictive power. We have followed suit because of the same reasons.

1) Histogram analysis

Histograms were generated for each metric in question. We focused on

identifying distributions of each metric across releases. From the distributions, we

identified outlier file pairs which Schwanke et al. [68] states are more prone to

unexpected changes. For example, figure 2.1 illustrates the change frequency metric

across all releases of the software. The y-axis is shown as a logarithmic scale in base 4 to

preserve column space. There is a typical exponential decay curve, suggesting that the

majority of file pairs experienced few changes. However, there exist outliers with more

than 180 changes per file (not shown, but aggregated to form the bin at x=180). This

suggests that a surprising number of pairs (about 60) experience more than 180 changes.

http://mercurial.selenic.com/
http://mercurial.selenic.com/
http://mercurial.selenic.com/
http://trac.edgewall.org/
http://trac.edgewall.org/
http://trac.edgewall.org/
http://trac.edgewall.org/
http://trac.edgewall.org/
http://trac.edgewall.org/

25

This is congruent with findings from [68] and their histogram analysis.

2) Scatter Plot Analysis

Scatter plots were constructed for each metric gathered. When constructing scatter

plots, we plotted the measure in release 7.5 on the y-axis and the measure of other metrics

from release 7 on the x-axis. This gave us the opportunity to identify a possible

relationship between past and present measurements. Figure 2.2 shows a scatter plot of

change frequency in release 7.5 versus fan-out in release 7. There appears to be a slight

linear correlation between the two, suggesting that change frequency in future releases

can be predicted from fan-out in current or past releases.

This graph suggests that the fan-out of current or past file pairs may be used to

predict the change frequency of the pair in the future. Our scatter plot analysis provided

Figure 2.1: Histogram of change frequency across all releases. The x-axis shows

change frequency. The y-axis shows a count of the number of pairs. Any pair with 180

or more changes was considered to be an outlier, and likely to contribute to many

unexpected dependencies

1
2
4
8

16
32
64

128
256
512

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

c/
c+

+
an

d
 h

e
ad

e
r

p
ai

rs

Changes per File

SVS7 Distribution of Change Frequency (R1 + R2 + ... + R7.5)

26

similar results as the baseline study by Schwanke et al [68].

3) Correlation Analysis

Rank-based correlation analysis was performed on the data to identify possible

relationships between measurements in one release and fault measurements in a future

release. Per the baseline study, we used the Kendall’s tau-b rank correlation measure

[41]. This non-parametric test was chosen instead of a Spearman or the parametric

Pearson test because many of the values fall near zero. The Ordinary Least Squares

(OLS) method of Spearman or Pearson performs poorly when many values fall near zero.

Figure 2.2: Scatter plot of release 7.5 change frequency and release 7 fan-out. Each

data points represents a C/C++ and header pair. The x-axis plots the fan-out of pairs in

release 7. The y-axis plots the change frequency of each pair in release 7.5. There

appears to be a linear correlation between the two, suggesting that change frequency in

future releases can be predicted from fan-out in current or past releases.

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140 160

R
7

.5
 C

h
an

ge
 F

re
q

u
e

n
cy

R7 Fan-out

R7.5 Change Frequency vs. R7 Fan-out

27

Kendall’s tau-b value is found in a two-step process. First, the measurements

taken from two metrics are ordered according to their values. Second, a calculation is

performed which counts the number of values which appear in the same order. The

calculation is shown below:

𝜏𝐵(𝐹, 𝐺) =
𝑐𝑜𝑛𝑐𝑜𝑟𝑑(𝐹, 𝐺) − 𝑑𝑖𝑠𝑐𝑜𝑟𝑑(𝐹, 𝐺)

𝑐𝑜𝑛𝑐𝑜𝑟𝑑(𝐹, 𝐺) + 𝑑𝑖𝑠𝑐𝑜𝑟𝑑(𝐹, 𝐺)

Where F and G are two orderings of values taken from a file pair. concord(F,G) is

a count of the number of times values appear in the same order. Alternatively,

discord(F,G) is a count of the number of times values appear in different order. For this

test, values of 0 in either F or G are ignored; that is, they are not counted by either

concord or discord. The value produced falls in range [-1, 1], corresponding to the

correlation between the orderings. A value of 1 indicates a perfect linear correlation. For

the purpose of this study, and in agreement with [68], we consider values at 0.6 or greater

to be strong. Because this is a non-parametric statistical test, we cannot assume a normal

distribution fits the data. Therefore, we cannot find an associated p-value for each tau-b

value.

Table 2.2 shows the tau-b value calculated for each metric pair in release 7 and

release 7.5. Each cell corresponds to the tau-b value as found by the previously described

equation. The table is symmetric because the comparison of two ranked metric values is a

symmetric property. Highlighted cells indicate a strong correlation.

28

The highlighted values in the bottom right quadrant of the table are expected

correlations. The values report that, for example, as ticket frequency increases, bug

change frequency increases as well. This is logically consistent because as developers

add more tickets to their commits, more of these tickets will contain bug references.

However, the correlation value for bugs vs. fan-out is an unexpected result. This number

tells us that as the fan-out of a file pair increases, the number of bugs associated with that

pair increases as well. Similar results were found by [68], adding more power to

hypothesis that fan-out and number of bugs increase together.

Using these three methods of exploratory data analysis, we identified likely

correlations between metrics. In the validation step we analyze these correlations to see if

they are indicative of bug-related changes in the future.

2.5.6 Prediction

Ostrand and Weyuker [58] introduced accuracy, precision, and recall measures

from the information retrieval domain. We use various recall metrics to validate our

prediction of future bugs. Recall is defined as the percentage of faulty files that are

Table 2.2: Tau-b values for metric pairs

Tau-b table of metrics for svs7 + svs7.5

r7+r7.5 fan-in fan-out file size changes tickets bugs

Fan-in 1 0.257 0.301 0.331 0.328 0.464

Fan-out 0.257 1 0.441 0.417 0.416 0.637

size 0.301 0.441 1 0.293 0.273 0.510

changes 0.331 0.417 0.293 1 0.972 0.858

tickets 0.328 0.416 0.273 0.972 1 0.857

bugs 0.463 0.637 0.510 0.858 0.857 1

29

correctly identified as faulty files. As in the baseline case study, we calculate recall in

three different ways. For every file pair u,

Faulty file recall: An instance occurs when either element in u is changed at least

once in the release representing the future due to any bug ticket.

Fault recall: An instance is a tuple defined as <u, bug ticket reference>, where u

is changed at least once due to the same bug ticket.

Fault impact recall: An instance is a triple defined as <u, commit number in the

source control logs where u is changed, bug ticket reference> where the bug ticket is

referenced in the same commit where u is changed in.

These three recall measures apply different emphasis to future fault prediction.

Faulty file recall emphasizes future fault prediction least, because it treats all future bug-

related changes to u, regardless of the number of instances, as one. This fails to capture

instances where u is associated with more than one bug ticket. However, Fault recall

does take this into account, because it considers multiple bug ticket references in an

instance. Furthermore, Fault impact recall provides the highest granularity to allow for

future fault prediction because it takes into account all changes u goes through. All three

recall measures form an implied subsumption hierarchy.

Using these recall measures, we use Alberg diagrams [56] to plot release 7

measurements vs. release 7.5 faults. Alberg diagrams are based on the pareto principle,

that roughly 20% of the files in a system are responsible for 80% of the faults. In this

context, we use this same principle to estimate the accuracy of prediction models [56].

30

Figure 2.3 illustrates one Alberg diagram for this system. The x-axis shows 60

C/C++ source and header pairs, u, ordered in descending order according to their metric

values from release 7. These 60 file pairs are selected based on their contribution to bug-

related changes in release 7.5. The bug change frequency for u in release 7.5 is plotted on

the y-axis. Any given point on the curve represents a C/C++ source and header pair. The

oracle curve is a perfect predictor of release 7.5 bug change frequency for all u. As other

curves get nearer to the oracle curve, their accuracy for predicting release 7.5 bug change

frequency increases.

Figure 2.3: Alberg diagram of release 7.5 Fault Impact Recall. Each data point is a

C/C++ source and header pair. The x-axis represents the rank of a data point in release

7, sorted according to its type. The y-axis represents the percentage of bugs in release

7.5.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

R
7

.5
 F

au
lt

 I
m

p
ac

t
R

e
ca

ll
(P

e
rc

e
n

t)

First 60 Project Files

Alberg diagram for release 7.5 Fault Impact Recall

Oracle (R7.5 bug-related changes R7 Changes

R7 Fan-out R7 File size

R7 Bug-related Changes

31

The oracle curve from this Alberg diagram states that roughly 20% (actually

23.3%) of C/C++ source and header pairs contribute to 80% of bug change frequency in

release 7.5. The values of fan-out and change frequency in release 7 for these pairs

contributed from 40% to 50% of bug changes in release 7.5. These findings are slightly

less than Schwanke et al.’s findings [68], yet are still noteworthy. This validates that

selected metrics from earlier releases can be used to predict bug change frequency in

future releases.

2.5.7 Uncovering and Visualizing Architecture Problems

Once these measures have been validated as capable of predicting future faults,

the problem of identifying file pairs which are more prone to unexpected changes arises.

Next, we study the extent to which these pair affect other quality measures.

We utilized the static code analysis tool Understand™ to visualize graphs of

interdependent components. Understand™ is a commercial product developed by

Scientific Tools, Inc.7 Understand™ can find many structural features of code, including

dependency listings of how pairs of C++ files depend on one another. Through

visualization, we can analyze the extent to which these dependencies affect other pairs in

the software system.

These graphs help differentiate expected and unexpected dependencies. If

dependencies occur between two pairs that are in the same module, we treat them as

expected dependencies, consistent with the baseline study. This is based on the

assumption that developers group files or classes together based on similar functionality.

Unexpected dependencies are treated as dependencies that occur across different

32

modules, also consistent with our baseline study. Our definitions of expected and

unexpected dependencies were validated by the developers at Golden Helix.

Because we are concerned with how these dependencies are changing together,

we define a “distant” and “local” change pair. Using Schwanke et al.’s [68] definitions, a

pair of file pairs that change together, change pair, <u,v> is local if (1) u directly depends

on v, (2) v directly depends on u, or (3) u and v belong to the same module. Any change

pair which does not fit under this definition is a distant change pair.

Figure 2.4 illustrates a high level view of the dependencies between modules in

SVS. Nodes in the graph represent modules, and edges represent dependencies between

modules. The number on the edge refers to the exact number of dependencies. The

modules shown contain the ten most frequent distant change pairs. This graph is nearly a

complete graph, suggesting that modules have high coupling when distant change pair

frequency is high.

 Once change pairs have been classified as either local or distant, CLIO is used to

Figure 2.4: High level view of the dependencies between modules containing the ten

most frequent distant change pairs. The numbers on the edges represent the number

of times all file pairs in a module depend on another module.

33

(1) identify change pairs which historically have changed together frequently, and (2)

cluster these pairs according to the scope of their change pair (local or distant). To

identify frequent historic change pairs, we mine the PostgreSQL database built in the

procedure described by section 5.1. To cluster the pairs, a “single link” clustering

algorithm is used [68].

The clustering algorithm groups distant change pairs as follows: For each

frequent, distant change pair <u, v>, cluster u and v together. Then, add all the local

dependencies which contain either u or v to the cluster. We generated visualizations of

these clusters that illustrate the number of dependencies across distant change pairs and

presented these visualizations to developers.

2.5.8 Presenting Results to developers

Visualizing architectural dependencies with graphs provided us with a convenient

and intuitive medium that could be validated with developers. We presented all our data

to the lead developer at Golden Helix. In summary, the lead developer at Golden Helix

was not surprised by our findings. He indicated that several outlier file pairs were

contributing to the majority of modularity violations in the code base. It was these pairs

that also contributed to a large number of bugs in the most current releases. The lead

developer was well aware of this, and more or less the extent to which this affected other

files.

The majority of modularity violations and bugs occurred in packages representing

highly customizable components of the SVS executable. These packages include the UI

component, the core component, and a component that is concerned with reading in a

34

large variety of complex file formats. We noticed that file pairs in these packages both

heavily depend on and were depended upon by many others (i.e., they have high efferent

and afferent coupling). However, the structure observed was the choice of the developers.

The developers utilized these pairs as access points, or common files to reference when

one component needed to be used. When these access point pairs were changed, they

incurred a slew of changes in other modules in the system because of numerous,

propagating dependencies. The developers saw this method as a necessary step in their

development lifecycle.

2.6 Discussion

The process of using CLIO to detect and measure architectural quality of software

needs to be matured further. Developers were not surprised by the findings of CLIO,

primarily because the findings pointed out known problems. Many of these problems are

due to the many connections that exist between modules. From an academic sense this is

a problem, because it is preferable to have few connection points between modules

(coupling). Lower coupling between modules is indicative of better design, and helps

localize possible future changes as well as allows for increased quality attributes (such as

understandability) [7]. However, from the developers’ perspective, familiarity with the

code base was more important than traditional good design. The developers are content

leaving the coupling between modules as is, because it makes the most sense for the SVS

system. This finding is very interesting because it gives the impression that the results

from tools such as CLIO should be system dependent. That is, although the results may

35

appear useful, nothing can be learned unless an in-depth assessment of the software

system in question has been made. These conclusions cannot be reached without

evaluating and deploying laboratory tools in commercial grade environments.

We did find very similar results to the baseline, which is promising in helping

extend power of the hypothesis that certain metrics can be used as better predictors of

software quality. We found that a select few files contributed to many modularity

violations, and greatly influenced the number of bugs. While in our case the developers

were not surprised by the results, the results are promising in that they clearly identify

problem files in code. The baseline found that developers were not always aware of these

modularity violations. In cases where developers may not be fully familiar with the

structural connections across modules in their code base, this procedure provided

significant insights.

We also identified and validated cases where structural metrics can be used as

quality predictors for future releases. Both this study and Schwanke et al. [68] concur that

the fan-out metric is a good predictor of future faults, as verified by correlation analysis

and Alberg diagrams.

2.7 Threats to Validity

There are several threats that threaten the validity of this study. One developer

brought up the argument that, “If a developer prefers to commit files more frequently

than other developers, it would show up in the commit logs as having few change pairs.

This would give misleading results because it would provide cases where too few files

36

are being committed to account for changes across modules, or too many files are being

committed which would make it appear that more dependencies exist.” This is a direct

threat to the construct validity of our study. Although the developer’s observation is

correct, it did not have a large impact on our results. We identify files showing up in the

commit logs together with a high frequency, and ignore cases where paired changes

happen infrequently. This reinforces that such cases as described by the developer are

unlikely to occur often. Regardless, the observation does shed light into a situation that

will be mitigated in future studies.

A second threat to the construct validity is the fact that we grouped C/C++ source

file and corresponding header files together. These file pairs consist of the aggregated

information from their combined elements. Although a threat, it is mitigated by the

following reason. The developers brought to our attention that both elements in the file

pair are expected to belong to the same package, and are expected to change together.

That is, if a C++ source file is updated, the developers expect to make changes to the

signature of the header source file as well. Because both of these cases are expected

changes, including both files separately in the study would be spurious information.

Thus, we chose to group every C++ source and corresponding header file together.

A third threat to the construct validity of this study is the assumption that

developers tag bugs correctly in the commit messages. As an external observer, the only

method we have of identifying past-bugs in the software project is through analyzing

historical artifacts. Therefore, we need to rely on the discipline of developers to (1) tag

37

the bugs they focused on in a commit and (2) tag the bugs correctly. We have no way of

knowing if either of these two conditions is not met.

External validity represents the ability to generalize from the results of a study. In

this instance, we cannot generalize the results we found to other contexts. In other words,

the results found in this study and the baseline only hold true for our specific contexts,

however they helped in building consensus around our findings across different

programming languages in commercial agile development environments. More

replication studies are necessary to increase the power of these results.

2.8 Conclusion

This replication case study was performed to help us analyze how structural file

metrics could be correlated with system quality, and to help us comprehend if similar

observations performed in a Java commercial product could also be observed in its C++

counterpart. We have gathered structural metrics and identified correlations between

them and future bug problems. We identified a select few outlier files which contribute to

the majority of future bug problems. From these, we collected dependencies and

visualized how extensively problems may propagate. We showed this information to the

developers of Golden Helix and they were not surprised by the results. Rather than

attempt to entirely eliminate distant-modules with frequently-changing dependencies, the

developers preferred to keep a select-few files as connection points. When asked why, the

lead developer explained that these connection points offer a single point of entry into a

module. Any changes between modules would be reflected in the connection points only.

38

The developers would rather be aware of a few files that are frequently problematic than

issue a refactoring.

2.9 Challenges

Herein we describe some of the challenges we encountered while trying to

perform this study.

1) Specific Tools: The baseline study featured the use of the commercial tool Understand™

for static analysis of code to gather metrics as well as to visualize results. Although the

static analysis and visualizations provided high quality analysis, it is nearly impossible to

replicate this case study without the use of this specific tool. Alternatives were considered,

but the mechanistic formula used for analyzing files needed to be used as is, as other

approaches would have constituted (in the opinion of the authors) a significantly large

deviation from the baseline method that we would not have been able to call this a

replication study.

2) Understanding the System: While we hope that manually performing the CLIO process

eventually leads to an automated approach, this study suggests that such a hope may be

far-fetched. Ultimately, a complete understanding of the system in question is necessary

before any significant value can be taken from this tool. Our results mean very little unless

the developers actually make use of them.

3) Literature Coverage: The majority (entirety) of literature covering replications in

Empirical Software Engineering refers to formal experiments, not case studies. We have

borrowed the terminology from such literature in this study. This situation is not ideal

39

because case studies have less power than formal experiments and therefore should be

approached differently. Peer reviewed literature needs to be published which outlines case

study replication guidelines.

40

CHAPTER THREE

THE CORRESPONDENCE BETWEEN SOFTWARE QUALITY MODELS AND

TECHNICAL DEBT ESTIMATION APPROACHES11

3.0 Abstract

This Chapter summarizes a report that identified a gap in the capabilities of

modern QA research tools. In this motivational research, we performed a case study that

analyzed the similarities between results of state-of-the-art operational quality and TD

measurement tools. We estimated quality and TD across 10 releases of 10 open source

systems and found that only one TD estimation technique had a strong correlation to the

quality attributes of reusability and understandability. In a multiple linear regression

analysis, we also found that a single different TD estimation technique had a significant

relationship to the quality attributes of effectiveness and functionality. These results

indicate that a gap exists within the state-of-the-art; specifically that the results of

operational quality and TD estimation tools disagree.

11 Based on:

Griffith I., Reimanis D., Izurieta C., Codabux Z., Deo A., Williams B., "The Correspondence between

Software Quality Models and Technical Debt Estimation Approaches," IEEE ACM MTD 2014 6th

International Workshop on Managing Technical Debt. In association with the 30th International

Conference on Software Maintenance and Evolution, ICSME, Victoria, British Columbia, Canada,

September 30, 2014.

41

3.1 Introduction

The desire to measure the quality of a software product has existed nearly as long

as software engineering itself [27]. Because of this, several operational models that

estimate software quality have surfaced in industry. Largely, these models perform static

analysis of a code-base to identify the degree to which code aligns to quality goals, such

as ‘Security’ or ‘Maintainability’. Complementary to software quality is Technical Debt

(TD), which is a metaphor established by Ward Cunningham to describe the gap between

the current state of a software system and the ideal state [20]. In essence, TD captures the

effects of decisions that sacrifice good design principles for on-time delivery of software.

Many times these decisions take the form of shortcuts or workarounds in code that

complete the task at hand, but at the expense of decreased quality. TD is analogous to

financial debt in that some debt is beneficial, because it facilitates growth, but too much

debt becomes a burden because of the need to repay it at the expense of valuable

resources. Drawing parallels from financial debt, principal and interest are two attributes

of TD. Given a task to implement, principal refers to the cost in effort to complete the

task. Interest refers to the gap between maintenance costs under ideal conditions versus

conditions where maintenance is higher due to accrued debt from tasks where TD is not

repaid. Effectively managing TD is multifaceted problem, because the need the need to

implement new features must be leveraged with the need to refactor to cleanse the code-

base.

This motivational research poses the following question: What does the estimate

of technical debt provided by approach X mean in the context of quality model Y? In

42

other words, how can we evaluate the accuracy of technical debt estimation approaches in

the context of an external quality model? Capturing the relationship between TD

estimation methods and software quality will reveal the accuracy of the various TD

estimation approaches.

To perform this study, we considered three TD estimation approaches. These

approaches are the SonarQubeTM1 TD-Plugin [32], CAST’s method of technical debt

estimation identified by Curtis, Sappidi, and Szynkarski [20][21], and Marinescu’s

method of technical debt estimation using design disharmonies [49]. We used three

versions of the CAST TD estimation method, each version capturing different high-level

goals from an organization’s perspective. In total, we evaluated five TD estimation

approaches against the QMOOD quality model [7].

3.2 Background and Related Work

3.2.1 TD Estimation Techniques

The first TD estimation method we implemented was the SonarQube™ TD-

Plugin [32]. This method uses the following formula to calculate the technical debt value

[32]:

Debt = duplication + violations + comments + coverage +

 complexity + design (1)

duplication = cost_to_fix_one_block * duplicated_blocks (2)

violations = cost_to_fix_one_violation * mandatory_violations (3)

comments = cost to comment on API * public_undocumented_API (4)

43

coverage = cost_to_cover_one_of_complexity

* uncovered_complexity_by_tests (5)

design = cost_to_cut_an_edge_between_two_files

* package_edges_weight (6)

complexity = cost_to_split_a_method

* (function_complexity_distribution ≥ 8)

+ cost_to_split_a_class

* (class_complexity_distribution ≥ 60) (7)

Where duplication, violations, comments, coverage, complexity and cycles

secondary formulas are each measured in man-days. Each of the costs used in the

secondary formulas can be set as parameters. We used the default values as described by

table 3.1. Duplication refers to the estimated effort associated with the removal of

duplicated code in the system. Violations is the estimated effort associated with the

removal of violations in the system. Coverages represents the estimated effort required to

bring test coverage up to 80%. Complexity is the total estimated effort required to split

every method and every class (of those requiring such a split). Comments refers to the

estimated effort associated with documenting the undocumented portions of the API.

Design refers to the estimated effort associated with cutting all existing edges between

files. Each of the cost (estimated effort) (table 3.1) are defined in man-hours, in order to

convert this to man-days for the debt calculation, the default value of 8 hours per day is

used. A final calculation is then performed to evaluate the cost per man-day of technical

debt using a default value of $500.

44

The second TD estimation method we chose was developed by Curtis, Sappidi,

and Szynkarski [20][21], which estimates technical debt principal using a cost model

based on detected violations. This method uses estimates of time to fix and cost to fix in

order to connect these identified violations to a monetary value. The following equation

is proposed as a means to measure the technical debt principal:

TDE = (ΣHS * %HS * 𝐻𝑆𝑓
̅̅ ̅̅ ̅* HScost)

+ (ΣMS * %MS * 𝑀𝑆𝑓
̅̅ ̅̅ ̅̅ * MScost) (8)

 + (ΣLS * %LS * 𝐿𝑆𝑓
̅̅ ̅̅̅* LScost)

Where ΣHS, ΣMS, and ΣLS are the count of high severity, medium severity, and

low severity violations respectively. The values for %HS, %MS, and %LS represent the

percentages of high, medium, and low severity violations intended to be fixed. The values

of 𝐻𝑆𝑓
̅̅ ̅̅ ̅, 𝑀𝑆𝑓

̅̅ ̅̅ ̅̅ , and 𝐿𝑆𝑓
̅̅ ̅̅̅ represent the average time (in hours) required to fix per instance of

each severity level. Finally, the values of HScost, MScost, and LScost represent the cost in

monetary value per hour to perform the work. Curtis, Sappidi, and Szynkarski, provide

three estimates for technical debt (see table 3.2).

Table 3.1 Default cost values used in the calculation of Technical Debt in the

SonarQube TD-Plugin [4]

45

The final TD estimation method we chose was developed by Marinescu [49]. This

method utilizes design disharmonies in the software to derive an index of the underlying

issues in quality. Marinescu proposes that we measure the impact of these design

disharmonies based on how they influence the underlying design, the level of granularity

at which they manifest themselves (class or method) and the underlying severity of the

disharmony based on the amount of code it impacts. Here the influence, Idisharmony, is one

of the following values: high=2.0, medium = 1.0, and low = 0.5. The granularity,

Gdisharmony, is either of the following values: method=1.0 or class=3.0. Finally, the

severity, Sinstance, is based on how much a disharmony violates a given metrics threshold.

The impact score of a given instance of a disharmony is calculated using the following

formula [49]:

ISinstance = Idisharmony* Gdisharmony* Sinstance (9)

Once the impact score is computed the overall debt symptoms index (DSI) can be

evaluated using the following equation [49]:

𝐷𝑆𝐼 =
∑ 𝐼𝑆𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑎𝑙𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝐾𝐿𝑂𝐶

Table 3.2 Values for estimates of TDE as proposed by Curtis, Sappidi, and

Szynkarski [21].

46

Where KLOC is the number of thousands of lines of code for the software system

under consideration. Marinescu indicates that this index value acts as a surrogate measure

for the technical debt level of a software system.

3.2.2 Quality Estimation

We used the QMOOD [7] quality model to evaluate the quality of each project.

The QMOOD quality model is based on the ISO 9126 specification [35] and uses of a

combination of design metrics to indicate changes in system quality. Each of the

QMOOD quality aspects is measured using a combination of metrics as identified in [7]

(see table 3.3). The model is composed of the following six quality attributes: reusability,

understandability, flexibility, effectiveness, functionality, and extendibility. The

calculation of each of the quality attributes from the metrics listed in table 3.3 is provided

in table 3.4. In order to measure these metrics, we used the tool Understand™. The

QMOOD quality aspects and their relationships are provided in table 3.4.

47

Table 3.3 QMOOD [7] metric measurements using

Understand.

48

3.3 Summary of Results

In terms of presentation of the results, the label ‘TDE1’ refers to the SonarQube

TD-plugin estimation technique, ‘TDE2a’ refers to the first estimation configuration

described in table 3.2, ‘TDE2b’ refers to the second one, and ‘TDE2c’ refers to the third

one. Finally, ‘TDE3’ refers to Marinescu’s method of TD estimation.

We calculated Kendall’s Tau correlation coefficient between each TD estimation

technique and each quality attribute value. These are shown in table 3.5 and figure 3.1.

We tested for correlation between each paired sample using p < 0.05 as a significance

level, and significant correlations are shown in bold in table 3.5. The associated

scatterplots for the correlations are displayed in figure 3.1. Figure 3.1 can be read by

finding the pair of variables along the diagonal finding either the scatterplot (below the

Table 3.4 QMOOD quality attribute equations [49].

49

diagonal) or correlation value (above the diagonal) where the rows and columns of the

variables intersect.

As can be seen in table 3.5, in all cases TDE3 shows weak correlation (< 0.45) (or

no significant correlation) to each of the quality attributes. For reusability,

understandability, and functionality there is moderate to strong correlation to TDE1,

TDE2a, TDE2b, and TDE2c as shown in table 3.5. Although these results are somewhat

promising, they do not take into account the differences in size between the different

systems nor the changes in size between releases of a system. To alleviate this threat, we

also developed a multiple linear regression model which compensates for these issues.

Figure 3.1 Scatterplot and correlation matrix for TDE1, TDE2a, TDE2b, TDE2c,

TDE3, Reusability, Understandability, Functionality, Effectiveness, Extendibility,

and Flexibility

50

The significance of the results from the multiple linear regression analysis are

displayed in table 3.6. For each of the technical debt estimation approaches we found that

there was little to no evidence suggesting that the selected technical debt estimates have a

relationship to reusability, understandability, functionality, and extendibility (as defined

by the QMOOD quality model), while controlling for LOC and the number of releases in

systems. With the exclusion of one TD estimation technique (TDE2c), each of the

remaining technical debt estimation techniques show little to no evidence of a

relationship to flexibility or effectiveness.

Table 3.5 Correlation between TD estimates and quality attributes

51

The significance of the results from the multiple linear regression analysis are

displayed in table 3.6. For each of the technical debt estimation approaches we found that

there was little to no evidence suggesting that the selected technical debt estimates have a

relationship to reusability, understandability, functionality, and extendibility (as defined

by the QMOOD quality model), while controlling for LOC and the number of releases in

systems. With the exclusion of TDE2c, each of the remaining technical debt estimation

techniques show little to no evidence of a relationship to flexibility or effectiveness.

In summary, as seen in table 3.6, it appears that for all technical debt estimates

excluding TDE2c they appear to have no relation to the QMOOD quality model,

regardless of the correlation analysis shown in table 3.5 and figure 3.1. We have

demonstrated here, there is no evidence to suggest that these estimates of technical debt

reflect the expected relationship to quality.

Table 3.6 Indication of a relationship between each of the technical

debt estimates and each of the QMOOD quality attributes. An X

indicates no relationship and a check indicates a relationship

52

3.4 Conclusions

This motivational study investigated the level of agreement from 5 methods of

estimating technical debt principal to an external quality model. To address agreement,

we conducted both a correlation analysis and a regression analysis. The results of this

analysis showed that with the exception of one estimation method (for flexibility and

effectiveness) there was no observable relationship between the quality attributes and the

technical debt estimates. Additionally, given prior research showing that technical debt

impacts both reusability and understandability of a software system, we found that for

these quality attributes none of the technical debt principal estimates showed any

relationship when taking size into consideration. These results illuminate a clear gap in

the state-of-the-art, specifically that modern quality and TD estimation techniques do not

provide results that align with one another.

53

CHAPTER FOUR

INTERLUDE

A synthesis of the results from our studies in Chapters 2 and 3 reveals several

integral findings which provide motivation for the remainder of this work and the greater

contributions to the field. The findings presented in Chapter 2, specifically that the file

pairs we identified as having a large number of modularity violations also contributed to

a large number of bugs in future releases, validated the intuition of the developers where

the study was conducted (i.e., Golden Helix). The lead developer stated that the findings

of the research aligned with his intuition of the ‘problem areas’ within the code-base.

From an empirical perspective, our results provide the data to back the lead developer’s

intuition, which is a valuable result. Developers at Golden Helix had already begun

refactoring the problem areas of the code-base prior to our study, yet their decision to do

so was based entirely on their intuition. Our methods and tools provided validation for

Golden Helix developers, suggesting that their decision to refactor was a good decision,

as well as provided construct validity for our work as QA researchers.

The findings from the work in Chapter 3 revealed a potential flaw with the state-

of-the-art methods and tools used to measure quality and TD in a system. Specifically,

there was no relationship between quality attributes and TD estimators (with the

exception of one estimation method for flexibility and effectiveness) after accounting for

system size. In and of itself, this finding is surprising, as one would expect some tools to

agree that TD does affect quality. In the case of our case study however, this

54

disagreement poses a problem because each of these tools and methods claim to provide

meaningful estimates of software quality to stakeholders, yet there is no agreement on

what they consider to be important quality features. Practitioners expect methods and

tools that indicate areas of concerns and thus allow for the improvement of software

quality. To support practitioners, tools should provide results that agree given similar

systems.

 A synthesis of these results reveals two research gaps. First, the form of analysis

presented in both studies is restricted to static analysis, which only considers the

structural aspects of a code-base. The structure of a system includes the classes, class

members (variables, functions, etc.), and relationships between classes. While structural

analysis provides an important perspective into a software system, it does not capture

every aspect of best practice violations. Complementary to structural analysis techniques

is behavioral analysis, which entails identifying violations of best practices due to

unexpected runtime behaviors. This can be achieved either by normal runtime behavior

or simulation of cases that execute chunks of the code-base, similar to Unit Testing and

Integration Testing methods from the software testing domain. The key difference

between the behavioral analysis presented in this research and Unit Testing is that our

goal is to identify violations of best practices within program behaviors, while Unit

Testing seeks to identify correct program behaviors and outcomes. A second research gap

revealed by our studies presented in Chapters 2 and 3, is the lack of domain-specific

parameters in the models. Domain-specific parameters refers to terms within a model that

capture variables pertaining to the domain space, which grant the ability to configure the

55

model to allow for different generation and/or interpretation of results. The work with

CLIO (c.f. Chapter 2) found that simple intuition instigated changes in the process, and

our methods and tools validated those decisions. In Chapter 3 we identified that the out-

of-the-box implementations of quality and TD analysis tools did not produce results that

aligned with one another. While a user of these tools can technically configure them to

modify the results, as practitioners do in domain-specific contexts, the tools provide no

indication of an empirical process of calibration. Currently, selecting quality attribute

weight values is entirely arbitrary, based on perceived importance of each quality

attribute. This is not an empirical and data-driven way of approaching the QA process,

and requires improvement.

 Ultimately, our goal as software quality assurance researchers is to provide

software stakeholders with better methods and tools to measure and monitor the quality

of their products. Providing behavioral analysis capabilities will help with this goal,

because it provides a new perspective that will complement existing structural

approaches. Furthermore, the introduction of domain-specific parameters into these

models will proactively supply stakeholders with configurable solutions that cater

towards their quality concerns. These two points motivate the remainder of this research.

We frame our research into behavioral analysis by considering design pattern

evolution. This decision is made because design patterns are considered micro-

architectures of good design and have well-known expectations of structure and behavior.

The work presented in this document encompasses design pattern evolution, yet the

methods and tools can be generalized to consider any setting.

56

CHAPTER FIVE

A RESEARCH PLAN TO CHARACTERIZE, EVALUATE, AND PREDICT THE

IMPACTS OF BEHAVIORAL DECAY IN DESIGN PATTERNS12

5.0 Abstract

 We propose a research plan to further the understanding of design pattern

evolution. Current research into design pattern evolution focuses on the structural

elements of decay, which is realized as structural grime. We plan to expand the current

state of research by introducing the notion of behavioral grime, or unwanted artifacts that

appear at run-time in a pattern. This form of grime may be transparent to the current

analysis models. We seek to classify types of grime into taxonomy, evaluate each type in

terms of impacts on technical debt and quality in the pattern and system as a whole, and

predict future occurrences of behavioral grime. Studies are designed for each of these

respective goals. The results of this research will further the understanding of design

patterns, assisting practitioners and researchers alike.

5.1 Introduction

 Design patterns embody recurring solutions to common object-oriented problems

in software development. Patterns are design decisions that are reusable, maintainable,

12 Based on:

Reimanis D., Izurieta C., "A Research Plan to Characterize, Evaluate, and Predict the Impacts of

Behavioral Decay in Design Patterns," IEEE ACM IDoESE, 13th International Doctoral Symposium on

Empirical Software Engineering, Beijing, China, October 19, 2015.

57

and attempt to minimize re-design in the future [31]. However, the evolution of design

patterns is controversial. The original intent of the pattern may become obscured for

many reasons, including new developers contributing to a pattern, or the unforeseen

changes to elements participating in the pattern. Empirical work has shown that the

structure of a pattern has the potential to decay as the pattern ages [33] [34] [37] [38]

[39]. Furthermore, research has shown that the structural decay of patterns results in

decreased system quality and increased technical debt [22].

Although significant work has been made towards understanding design pattern

structural decay, little work has been made towards understanding behavioral decay.

Behavioral decay refers to the deterioration of the runtime design of a system. Behavioral

decay is complementary to structural decay, yet a large gap and dearth of research is

evident. The exploration of behavioral decay in design patterns will yield greater insights

into the benefits and detriments of utilizing design patterns.

This chapter is organized as follows: Section 5.2 discusses related work. Section

5.3 outlines the current challenges in the field, including research gaps and relevant

problems. Section 5.4 outlines research objectives. Section 5.5 describes the approach.

Section 5.6 identifies the threats to the validity of the proposed study, and section 5.7

provides concluding remarks.

58

5.2 Background and Related Work

4.2.1 Technical Debt

Technical debt (TD) is a metaphor coined by Ward Cunningham to describe the

gap between the current state of a software system and the ideal state [19]. TD captures

the effects of decisions that sacrifice good design principles for on-time delivery. Many

times these decisions take the form of shortcuts or workarounds in code that complete the

task at hand, but at the expense of decreased quality. Principal and interest are two

attributes of TD. Given a task to implement, principal refers to the cost in effort to

complete the task. Interest refers to the gap between maintenance costs under ideal

conditions versus conditions where maintenance is higher due to accrued debt from tasks

where TD is not repaid. Effectively managing TD is multi-faceted problem, where the

need to implement new features must be leveraged with the need to refactor.

Tom et al. performed a systematic literature review of the current state of TD in

academic literature [74]. The study reports that many of the difficulties of managing TD

are a result of poor problem definition and representative models. As an outcome of this

study, Tom et al. propose a fundamental framework of TD; this work follows this

framework.

Tom et al.’s framework identifies architectural technical debt (ATD) as a specific

type of TD that focuses on items originating from the design or architecture of a software

project. These are items such as modularity violations [79], architecture dependency

issues [66], and design pattern decay [11] [33] [34] [37] [38] [39]. Several operational

models for estimating TD have recently surfaced in the field [20] [32] [46] [49] [54],

59

however no single method has surfaced as a clear better approach, possibly because they

fail to capture domain specific information in a system.

5.2.2 Software Quality

Software quality has been categorized into a set of characteristics, each of which

is composed of related sub-characteristics. The ISO-IEC 25010 Software Quality

Specification formalizes a set of eight characteristics to form an abstract model for

measuring quality [36]. These characteristics, or attributes, are evaluated to the extent to

which a system realizes that characteristic. Several domain-agnostic quality models that

realize this specification have been developed. Two quality models, QMOOD and a

robust alternative QUAMOCO, have surfaced as operational quality models [7] [76].

5.2.3 Software Behavior

Preliminary research reveals that software behavior can be of two types; internal

and external. Internal behavior refers to the interior mechanisms and API calls that occur

during system runtime. Internal behaviors are not necessarily seen except at the point in

time in which they are executing. In this manner, internal behaviors are more a temporary

artifact that exists only for the duration of their execution. External behavior refers to the

external and observable result that the system produces. These may be represented as

system goals and are the consequences of internal behaviors. That is, internal behaviors

cause external behaviors.

60

5.2.4 Software Decay

Code decay is a term that refers to the case where code is “harder to change than

it should be” [24]. Similarly, software decay refers to software that is more difficult to

change than it should. Several types of software decay have been identified, including

code smells, anti-patterns, and design pattern decay [11] [28] [37] [38] [39]. Design

pattern decay refers to implementations of design patterns that gain undesired elements or

lose desired elements as they evolve. In this sense, the benefits that the pattern offers are

lost as its design becomes obfuscated. Studies have found that design pattern decay

negatively impacts testability and understandability of systems [11] [37].

Previous work in design pattern decay has focused on the structure of patterns

[22] [33] [34] [37] [38] [39]. These are realized as unwanted or missing artifacts that do

not follow the structural specification of the pattern. When these artifacts obscure the

implementation of a pattern while still maintaining some of the integrity of the original

pattern, they are referred to as design pattern grime. Alternatively, when these artifacts

obscure an implementation of a pattern to such an extent that the integrity of the pattern is

entirely lost, they are referred to as design pattern rot. Empirical studies have only

confirmed the existence of pattern grime.

Further work has classified the types of design pattern grime into three disjoint

categories: class grime, modular grime, and organizational grime [34] [37] [38] [39]. Of

these, Schanz and Izurieta expanded the modular grime category, identifying strength,

scope, and direction as attributes of modular grime [67]. Additionally, Griffith and

61

Izurieta expanded the class grime category, identifying strength, scope, and

direction/context as attributes of class grime [34].

5.2.4.1 Design Pattern Specification. The process of identifying pattern grime

consists of recognizing differences between a pattern instance and a pattern’s

specification. A common language used to specify patterns is the Role-Based Meta-

Modeling Language (RBML) [43]. RBML is realized in the Unified Modeling Language

(UML 2.0)13 and is an abstract language that generalizes each actor in a pattern to a

single common role. Depending on the type of pattern, there will be a number of possible

roles. For example, the Observer pattern has a Subject role and an Observer role.

Observer pattern instances have classes that fulfill both these roles.

Dae-Kyoo Kim has shown that RBML alone is not sufficient for specifying

patterns because it lacks constraint templates that limit the capabilities of roles [42]. In

order to combat this, the Object-Constraint Language (OCL) is used to provide necessary

constraints to RBML models.

5.3 Current Research Challenges

5.3.1 Research Gaps

The current knowledge base of design pattern grime features only structure-based

disconformities, or grime that is captured from a static snapshot of a pattern instance.

This works seeks to extend the knowledge base of pattern grime by considering behavior-

based disconformities, or grime that is captured during the runtime execution of a design

13 http://www.uml.org/

62

pattern. In an effort to achieve this goal, the authors have identified the following

research gaps.

1. Characterization of Behavioral Grime: Structural grime is incapable of

capturing whether or not a design pattern is behaving as intended. A pattern

instance may have no structural grime, but the runtime execution of the pattern

may not match the expected runtime execution of the pattern. Cases such as this

are not captured by the current knowledge base of pattern grime. This notion

forms the basis for this research. Given this, the characterization of behavioral

grime is a gap that needs clear definitions.

2. Behavioral Grime Taxonomy: To the best knowledge of the authors, no attempt

has been made at categorizing the types of behavioral grime in the context of

design patterns.

3. Impacts on Quality: Previous studies have identified the impact of structure-

based grime on quality attributes, showing that testability and maintainability are

negatively impacted from structural grime [34] [39]. However, no attempt has

been made at quantifying the impact of behavioral grime on these quality

attributes and the additional quality attributes featured in the ISO 25010 software

quality specification.

4. Impacts on Technical Debt: Dale and Izurieta showed that the injection of

modular grime into patterns increases the technical debt of the pattern [22]. No

work has sought to capture the impact of behavioral grime on technical debt.

63

5. Relationships between Behavioral and Structural Grime: Several questions

arise that are concerned with the relationships between behavioral and structural

grime. For example: How are structural grime and behavioral grime related? Is

the appearance of structural grime causal to the existence of behavioral grime? Is

the reverse true? Are there cases where structural grime exists but behavioral

grime does not?

6. Tool Support: Currently, there is no known tool support to operationalize

behavioral concepts. Implementing a tool is an important contribution to the

community.

7. Predicting Pattern Decay: No research has looked into predicting when a pattern

is prone to decaying, or even if certain patterns are more prone to decay. Bridges

to these two research gaps would give valuable insight to developers regarding the

implementation of patterns, and even when to be aware that a pattern might be

near decaying/rotting.

5.3.2 Operational Gaps

A pilot study was performed, in the form of a controlled experiment; in which

realizations of observer patterns were studied. We created three instances of the observer

pattern; one instance behaved as defined, one instance featured Subjects that waited a

significant amount of time before updating their Observers when their state changed, and

the final instance featured Subjects that did NOT update their Observers when their state

changed. These three instances exemplify cases where, respectively, (1) a pattern behaves

properly, (2) a pattern behaves properly but a disharmony exists during its lifetime, and

64

(3) a pattern behaves significantly different from its intended usage. The SonarQube [32]

tool, used to estimate Technical Debt, and the inCode tool14, used to identify design

flaws, were run across the pattern instances. Neither of these tools identified a major

difference between the three pattern instances, suggesting that state-of-the-art tools used

to identify issues are not capable of detecting problems concerning design pattern

behavior. This experiment highlights the need to explore this area further.

5.3.3 Proposed Contributions

To address current gaps, the following contributions are proposed:

1. The formal characterization of behavioral grime in design patterns

2. The development of taxonomy to classify behavioral grime

3. The development of empirical studies to capture the impacts of grime on TD and

quality

4. The identification of patterns that are prone to behavioral grime

5. The creation of a tool that aids in the detection of behavioral grime

6. The development of a method that allows predictive capabilities for recognizing

grime

5.3.4 IDoESE Feedback Sought

Advice on the following topics is sought:

1. Overall Scope: Whilst all topics presented in this paper are interesting and

necessary research items, advice on the estimation of work and its feasibility is

14 https://www.intooitus.com/products/incode

65

sought. For the scope of a doctoral-level degree, is this plan too ambitious? If so,

what parts should be prioritized?

2. Automation: Currently, there is very little automation of these processes. This is

a result of exploring a new area of research. To what extent should we focus on

operationalizing behavioral detection and quantification?

3. Pattern Dataset: The only available dataset of design pattern instances is the

Perceron’s dataset [2]. This dataset only features instances of 10 unique pattern

types, all from the Java programming language. This means that this research has

limited generalizability. Is it necessary or worth the effort to look at more pattern

types and/or patterns instances from other languages?

5.4 Objectives

5.4.1 Research Objectives

RG1: Investigate design pattern instances for the purpose of identifying and

characterizing internal and external behavioral grime with respect to proper pattern

behavior as defined by the design pattern specification from the perspective of the

software system in the context of design patterns in open source and commercial

software.

RQ1.1: Does the behavior of a design pattern instance deviate from the expected

behavior of that pattern type?

66

Rationale: This is the basic question of this research. If it is possible to identify

design pattern instances where the actual behavior deviates from expected behavior, then

the need to further explore this phenomenon is apparent.

RQ1.2: Do common types of behavioral grime exist within multiple instances of

a single pattern type?

Rationale: If common grime types can be identified within a specific pattern,

other instances of that pattern may be circumspect to the same type of grime.

RQ1.3: Do common types of behavioral grime exist across multiple instances of

different pattern types?

Rationale: If common types of behavioral grime exist across different types of

patterns, we will have attained some level of generalizability that applies to a larger set of

pattern types.

RG2: Express the difference between structural and behavioral grime for the

purpose of illustrating the importance of studying behavioral grime with respect to design

pattern instances from the perspective of design pattern instances in the context of open

source and commercial software.

RQ2.1: To what extent can patterns have both structural and behavioral grime?

Rationale: Consider the grime quadrant in table 5.1. Columns indicate whether

structural grime exists in a pattern, and rows indicate whether behavioral grime exists in

the same pattern. Current research has identified design patterns with grime, but those

patterns are constrained by cases A and B. This research needs to be expanded to

discover patterns that fall in cases C and D. This will illustrate that this work is novel.

67

RQ2.2: Does the current knowledge base of structural grime instances include

cases of behavioral grime?

Rationale: There may be behavioral grime in many of the patterns that exhibit

structural grime.

RQ2.3: What is the relationship between behavioral grime and structural grime?

Rationale: Intuitively, it appears a relationship exists between behavioral and

structural grime. Discovering the precise nature of this relationship will help developers

understand pattern decay in the future.

RG3: Quantify the impact of grime in internal and external design pattern

behavior for the purpose of capturing the effects on system quality and TD with respect

to proper pattern behavior as defined by the design pattern specification from the

perspective of the software system in the context of design patterns in open source and

commercial software.

RQ3.1: To what extent does behavioral grime affect the quality attributes of a

design pattern?

Table 5.1 Grime quadrant of possible grime types. For a given pattern, rows

correspond to at least once instance of behavioral grime existing in the pattern, and

columns correspond to at least one case of structural grime existing in the pattern.

 Structural grime does

not exist

Structural grime exists

Behavioral grime does

not exist

Case A Case B

Behavioral grime exists Case C Case D

68

Rationale: This research question seeks to quantify the impact behavioral grime

has on the quality of the pattern.

RQ3.2: Is the quality of certain types of behavioral grime worse than other types?

Rationale: This question attempts to identify the forms of behavioral grime that

are worse than others.

RQ3.3: To what extent does behavioral grime affect the TD of a software project?

Rationale: In essence, TD captures the financial impact of behavioral grime.

Understanding this impact is crucial for developers and project managers alike so

decisions regarding release timelines or refactorings can be made.

RQ3.4: Is the TD of certain types of behavioral grime worse than other types?

Rationale: This question attempts to identify the forms of behavioral grime that

are worse than others.

RQ3.5: Are the current TD estimation and quality measurement tools capable of

capturing behavioral grime?

Rationale: Behavioral grime may have an impact on the TD estimate and quality

of the pattern. If the current tools are not sufficient in capturing these impacts, then the

tools need to be extended in order to reflect the impact.

RG4: Investigate the evolution of internal and external behavior in design

patterns for the purpose of capturing trends of behavioral grime over time with respect to

proper pattern behavior from the perspective of the software system in the context of

pattern in open source and commercial software.

RQ4.1: Can common trends of behavioral grime be captured as a pattern evolves?

69

Rationale: This question identifies if patterns are more prone to certain

behavioral grime types. If we can predict which patterns tend towards building behavioral

grime, then development efforts can be more pro-active in addressing pattern evolution.

RQ4.2: Can behavioral grime be predicted?

Rationale: This question focuses on the possibility that underlying mechanisms

may exist that allow us to predict when a pattern will accumulate behavioral grime in the

future.

5.4.2 Research Metrics

Following the GQM approach [9], several metrics are identified that will be used

to answer the research questions.

M1: Structural Grime Count (SGC) – The total amount of grime accumulated in a

single pattern realization that is identified from structural models. This metric will be

used to answer RQs 2-4.

M2: Behavioral Grime Count (BGC) -- The total amount of grime accumulated in

a single pattern realization that is identified from behavioral models. This metric will be

used to answer RQs 2-4.

M3: Technical Debt Principal (TDP) – A measure of the cost required to

complete a task. This metric will be used to answer RQ 3.

M4: Technical Debt Interest (TDI) – A measure of differences in cost required to

complete tasks under ideal conditions versus the current condition of the system. This

metric will be used to answer RQ 3.

70

M5: Pattern Quality (PQ) – An aggregated measure of the eight quality

characteristics featured in the ISO 25010 software quality specification [36]. Each quality

characteristic is further broken down into a number of (sub)-characteristics. This metric

reflects an aggregation of the (sub)-characteristics. This metric will be used to answer RQ

3.

M6: Probability to Deviate (PD) – The probability that a pattern will accumulate

grime in the future, given its pattern type, past and current SGC, BGC, TDP, TDI, and

PQ. This metric will be used to answer RQ 4.

5.4.3 Working Hypotheses

H1: There exist instances of behavioral grime that are not captured by current

structural grime models.

H2: Common forms of behavioral grime exist within the same pattern type.

H3: Common forms of behavioral grime exist across different pattern types.

H4: Including behavioral grime in the current grime models will allow the

detection of pattern rot.

H5: Quality and TD

H5.1: Behavioral grime has a negative effect on the quality of the (a) pattern

realization, and (b) software system as a whole.

H5.2: Behavioral grime has a negative effect on the TD calculation of the (a)

pattern realization, and (b) software system as a whole.

71

H6: Given the pattern type, and past and current measurements of SGC, BGC,

TDP, TDI, and PQ, it is possible to predict whether a pattern will accumulate grime in the

future, with a degree of uncertainty.

5.5 Approach

5.5.1 Data Collection

Design pattern instances will be collected across a variety of open source and

commercial software systems. The Perceron’s dataset features 4500 pattern instances

from Java open source software systems [2]. The patterns featured in this database will be

downloaded to provide an initial set of design pattern instances. Additionally, design

patterns will be manually extracted from a commercial software system owned by a local

firm with an established relationship.

Models of each design pattern instance will be captured using UML class

diagrams and UML sequence diagrams15. Class diagrams capture the structural elements

of the pattern instance, and sequence diagrams capture the behavioral elements of the

pattern instance. Additionally, pattern specifications for each pattern type will be

captured in UML class and sequence diagrams, using RBML and OCL.

The PQ, TDI, and TDP of each pattern instance will be calculated. These metrics

will be calculated for both individual pattern instances and the entire software system that

the pattern originates from. This data will be stored in a relational database.

15 http://www.uml.org/

72

5.5.2 Research Approach

Once the data collection process is complete, a variety of case studies and

experiments will be used to answer the research questions. Juristo and Moreno’s guide on

experimentation in software engineering will be used to initially construct experiments

[40].

RQ1.1-3 will be evaluated using a case study, wherein the taxonomy of design

pattern grime will be extended to incorporate behavioral grime types. All pattern

instances will be categorized according to their behavioral and structural conformance

from the grime quadrant of table 5.1. We will manually sort through each category,

identifying design pattern violations. Violations that share similarities (OCL or RBML)

will be grouped.

RQ2.1-3 will be evaluated using a case study. Conformance checking algorithms

will be implemented that validate the structural conformance and behavioral conformance

according to the work done by [42] [71]. All available pattern instances will be

categorized into one of the four groups defined in table 4.1. A binomial regression model

will be fitted from the sample in order to answer RQ2.3.

RQ3.1-5 will be evaluated using a controlled experiment. Patterns will be blocked

according to pattern type and then randomly selected from the available dataset. Patterns

will be evaluated for TD and quality using a suite of static and dynamic analysis tools, as

discussed in section 4.2. After measurements are recorded, forms of grime will be

randomly selected and injected into patterns. After injecting, we will re-evaluate the TD

and quality measurements. To analyze the data, two ANOVA tests will be utilized.

73

RQ3.1-4 will be answered by fitting a two mean model, containing a mean for non-

injected patterns and a mean for injected patterns. That is, the respective TD and quality

measurements from all tools that analyzed non-injected patterns will be averaged.

Respectively, the same analysis will be done for injected patterns. RQ3.5 will be

answered by fitting a separate means model; that is, each quality analysis tool will have a

mean. Variance will be measured over all the analysis tools, for each of non-injected and

injected patterns.

RQ4.1-2 will be evaluated using an observational study. Patterns will be divided

by pattern type and assessed for the existence of grime across their lifetime in terms of

project releases. For each release, a record will exist documenting whether that pattern

instance has grime or not. Further, an ARIMA analysis will be performed. This will give

an indication into the tendencies of a pattern to collect grime as it ages.

5.6 Threats to Validity

There exist several threats to the validity of this study. Internal validity refers to

the ability to recognize a causative relationship in the study, and not as a result of

confounding variables. Internal validity is threatened because other design defects may

exist alongside grime in a pattern; thus design defects are a confounding variable in this

study. To attempt to remove the effect of design defects, we utilize a large number of

pattern instances in the analysis and block across pattern type. This mitigates the chance

that a design defect will affect the results of the study.

External validity refers to the ability to generalize from the results of the study.

External validity is threatened because of the limited datasets of design pattern instances.

74

To combat this threat, we have utilized the Perceron’s dataset, which is the only

publically available dataset of patterns that features a large number of instances (over

4500), and pattern instances from a local commercial software firm. Patterns from both

these datasets are implemented in Java, and the Perceron’s dataset features only open

source patterns. Therefore, the ability to generalize the results is limited to the population

of patterns in this study.

5.7 Conclusions

We have outlined the work that will result in a doctoral dissertation in hopes that

we can receive feedback on the merit of this research. Research gaps are presented and

studies are designed that fill them. We intend to contribute novel research that

strengthens the current state of empirical software engineering.

This research is in its early stages. Currently, preliminary research has been

performed, for the purpose of illustrating the research gaps. This research includes

generating pattern instances and manually injecting grime into them, as described in

section 5.2. Additionally, two potential forms of behavioral grime have been identified.

Next steps call for the analysis of a larger number of pattern instances that expand the

taxonomy of behavioral grime.

75

CHAPTER SIX

EVALUATIONS OF BEHAVIORAL TECHNICAL DEBT IN DESIGN PATTERNS:

A MULTIPLE LONGITUDINAL CASE STUDY

Contribution of Authors and Co-Authors

Manuscript(s) in Chapter(s) 6

Author: Derek Reimanis

Contributions: Selection of research questions and design of study, the development of

the methods and tools to answer the research questions, the analysis of the results

including discussions, and the initial drafts of the manuscript.

Co-Author: Clemente Izurieta

Contributions: Kept motivations and scope grounded and achievable, provided substantial

edits to the manuscripts, and provided valuable advice for the analysis and presentation of

figures.

76

Manuscript Information

Derek Reimanis, Clemente Izurieta

IEEE Transactions on Software Engineering

___X_ Prepared for submission to a peer-reviewed journal

____ Officially submitted to a peer-reviewed journal

____ Accepted by a peer-reviewed journal

____ Published in a peer-reviewed journal

IEEE Computer Society

https://www.google.com/search?q=who+is+the+publisher+of+ieee+transactions&rlz=1C1CHBF_enUS761US761&tbm=isch&source=iu&ictx=1&fir=BQUbIu3Vy1I5oM%253A%252CUqoeeZubIoX0zM%252C%252Fm%252F03fb9h&vet=1&usg=AI4_-kQ465dEIWF-UVl1OHRcFBcmA8yoMw&sa=X&ved=2ahUKEwjF7rH634LkAhUdHjQIHc3-CEkQ_B0wAXoECAQQAw#imgrc=BQUbIu3Vy1I5oM:
https://www.google.com/search?q=who+is+the+publisher+of+ieee+transactions&rlz=1C1CHBF_enUS761US761&tbm=isch&source=iu&ictx=1&fir=BQUbIu3Vy1I5oM%253A%252CUqoeeZubIoX0zM%252C%252Fm%252F03fb9h&vet=1&usg=AI4_-kQ465dEIWF-UVl1OHRcFBcmA8yoMw&sa=X&ved=2ahUKEwjF7rH634LkAhUdHjQIHc3-CEkQ_B0wAXoECAQQAw#imgrc=BQUbIu3Vy1I5oM:

77

CHAPTER SIX

EVALUATIONS OF BEHAVIORAL TECHNICAL DEBT IN DESIGN PATTERNS: A

MULTIPLE LONGITUDINAL CASE STUDY16

6.0 Abstract

 Design patterns represent a means of communicating reusable solutions to

common problems, provided they are implemented and maintained correctly. However,

many design pattern instances erode as they age, sacrificing qualities they once provided.

Identifying instances of pattern decay, or pattern grime, is valuable because it allows for

proactive attempts to extend the longevity and reuse of pattern components. Apart from

structural decay, design patterns can exhibit symptoms of behavioral decay. We

constructed a taxonomy that characterizes these negative behaviors and designed a case

study wherein we measured structural and behavioral grime, as well as pattern quality

and size, across pattern evolutions pertaining to four design pattern types. We evaluated

the relationships between structural and behavioral grime and found statistically

significant cases of strong correlations between specific types of structural and behavioral

grime. Furthermore, we identified the rates at which behavioral grime accumulates in

pattern instances using multiple linear regression analysis. We extended the QATCH

software quality model to incorporate design pattern grime, and measured and correlated

16 Based on:

Reimanis D., Izurieta,C, "Behavioral Evolution of Design Patterns: Understanding Software Reuse through

the Evolution of Pattern Behavior," 18th International Conference on Software Systems and Reuse, ICSR

2019. In: Peng X., Ampatzoglou A., Bhowmik T. (eds) Reuse in the Big Data Era. Vol 11602, Springer

Cham. https://doi.org/10.1007/978-3-030-22888-0_6 Cincinnati, OH, June 26-28 2019.

78

software quality to the presence of behavioral grime in software systems. Our results

suggest a strong inverse relationship between software quality and behavioral grime.

6.1 Introduction

Software products have evolved rapidly over the last several decades.

Increasingly complex software requirements from customers have prompted advances in

software development practices and automation across all disciplines. These

circumstances have helped create an ecosystem where the expectations of software

products is significantly higher, and where once minor upgrades were sufficient, now

fully functional and highly specialized products are expected. To cope with higher

expectations and complex requirements, software quality assurance is becoming a

mainstream approach to meet those needs.

The deployment of complex products with multiple components does not come

without its drawbacks, however. The expectation that multi-component complex systems

are delivered on time and within budget, require the adoption of robust processes to

accommodate all phases of the product’s software life-cycle. One such process is

software quality assurance (QA); which seeks to measure and monitor all aspects of

software quality over the entire lifetime of a software product. In fact, traditional

software testing is no longer enough, and more advanced QA methods, such as

continuous integration, are necessary approaches to ensure the quality of every

component at all stages of the product’s life-cycle. Software design is one phase in the

software life-cycle where QA techniques are necessary. Software design represents the

79

vision of a software solution, considering current and potential future requirements.

Designs must be flexible enough to accommodate change, facilitate extensibility, and

promote the ease of interchangeable and reusable software components, while still

maintaining a high level of quality. One common strategy to assist with this balance is to

use design patterns.

Design patterns embody recurring and reusable solutions to common problems

encountered in the software development process [31]. Design patterns capture

experience reuse and represent decisions that are made in the design phases of software

life-cycles. They have the properties of being reusable, maintainable, and easy to extend

in future versions. The choice to utilize design patterns in a project comes with the

understanding of an important assumption– specifically, that the initial implementation of

a pattern instance may take longer than a non-pattern implementation, but future

revisions and maintenance efforts will be faster and therefore cheaper if a pattern is

present. This assumption holds true in a theoretical sense, yet is controversial in a

practical sense. Historically, design pattern realizations have been found to deviate or

drift from their initial intent, thus eliminating many of the beneficial qualities the pattern

offers in the first place. Such a deviation may occur if a new developer is unfamiliar with

a code-base, or if pressure from management to ship a product requires ’quick-and-dirty’

extensions of the pattern. Such a phenomenon is referred to as technical debt (TD) [4],

and the existence and extent of TD are not fully explored; for example, it is not known

whether the presence of such a deviation within a design pattern provides more harm to a

software product than choosing not to utilize a design pattern in the first place.

80

6.1.1 Research Problem

Previous research efforts have both explored the existence and measured the

effects of design pattern deviations from only a structural perspective. The structural

perspective of a design pattern refers to the class members of the pattern, including the

operations and attributes of the pattern’s classes, as well as the relationships between

class members. This research has found that such deviations do exist within a design

pattern’s evolution, and that these deviations have a negative effect on software quality.

However, the structural perspective is one of many perspectives into a design pattern.

Another perspective necessary to understand design patterns is the behavioral

perspective, or the events that occur as a design pattern instance is operating at program

run-time, which are not visible from a structural perspective. A behavioral perspective

offers additional insights into a design pattern and its evolution, thus refining existing

scientific models and taxonomies [67] [34] [83] that capture design pattern evolution.

6.1.2 Research Objective

The goal of this research is to expand the body of knowledge surrounding

software quality and technical debt, as it pertains to design pattern evolution, from a

behavioral perspective. Four specific activities aligned with our overarching goal are

identified. First, the identification of design pattern deviations from a behavioral

perspective. Second, the characterization of behavioral deviations into a structured

organizational scheme, a taxonomy. Third, the comparison of behavioral grime to current

grime models, specifically structural grime. Fourth, the evaluation of the effects that

81

behavioral deviations have on software quality and technical debt. Meeting these

objectives complements structural approaches, and provides software stakeholders with

more advanced techniques and tools to monitor software quality, so that important

decisions pertaining to software products can be made with increased certainty.

6.1.3 Contributions

The contributions of this work include:

• A taxonomy that captures behavioral grime in design pattern instances.

• Evaluation of the relationships between structural grime and behavioral grime.

• Analyses illustrating the rate at which behavioral grime accumulates in a pattern

instance.

• Extension of the QATCH [70] quality model to include design pattern evolution

quality properties.

• Evaluations of the relationships between behavioral grime and software quality.

6.2 Background and Related Work

In the following subsections we discuss relevant background and research, which

can be broadly labeled as software quality assurance. We also provide definitions for key

terms, and follow by detailing the process we employed to identify important research

topics aligned with our goal.

82

6.2.1 Software Quality

Software product quality, hereafter referred to as software quality, is broadly

defined by the ISO-25010 specification as the degree to which a software product

satisfies its various needs [36]. This general definition can be applied to any and all

software products. To aid in the operationalization of such an abstract concept, a

hierarchy of software quality characteristics and attributes are provided by the

specification. At the second-highest level in the hierarchy, software quality is divided into

eight characteristics, which themselves consist of multiple sub-characteristics or

properties. An illustration of the software product quality model is presented in figure

6.1. Largely, every quality sub-characteristic or quality property is defined as the degree

to which a software product satisfies it.

Because of its abstract nature, the ISO-25010 quality model can be viewed more

as an academic, or research tool, not a practitioner’s tool. This conflicts with the goal of

the quality model, because its purpose is to facilitate operationalization, and ideally help

Figure 6.1 The ISO-25010 software product quality model [36]. Software product

quality is divided into eight primary quality characteristics, which each have multiple

quality sub-characteristics or properties themselves.

83

quantify or qualify software products with the intention that practitioners use the results

to better understand their software. As the model is defined, it does not immediately

provide practitioners with guidance for measuring each of the characteristics. Fortunately,

several research projects have taken steps to improve the model’s usefulness by

operationalizing the model with concrete measurements of each quality characteristic or

property, at the code level. Such operational models perform static analysis on a

product’s code-base, identifying violations of coding best practices or suggestions for

improvements (such as insufficient code commenting). Following the code-level analysis,

all findings are aggregated and mapped to corollary characteristics or properties within

the quality model. This mapping effectively connects the abstract levels of the quality

model with its operationalized counterparts, thereby providing practitioners with

meaningful and actionable methods to measure software quality.

6.2.2 Technical Debt

TD is a metaphor coined by Ward Cunningham in the seminal Wycash Portfolio

Management System report [19]. TD captures the trade-offs between spending time to

follow good design and development practices versus rushing a product to market to

secure a market niche before competitors. If more time is spent on product quality, the

product may never be released in a timely manner. Yet if more time is spent on shipping

a product to market, the quality of the underlying design and code may suffer, meaning

future changes may be more difficult to make. Contrary to intuition, TD is not a

minimization or maximization problem, but rather a portfolio management problem. With

the understanding that it is very difficult or, in many cases impossible, to predict the

84

future direction of a product, it is preferable to provide stakeholders with a TD report and

allow them to make an informed decision regarding the state of TD in their product.

Some scenarios may encourage TD remediation efforts, while some scenarios may

encourage the push to production. Additionally, the domain of the company, and

subsequent products, may have an effect on the decision to re-mediate TD items. Recent

work from a Dagstuhl17 seminar narrowed the scope of the TD field to consider only

internal code issues, stemming from the quality characteristic of Maintainability [4]. This

narrowing of scope was necessary as a means to identify the search space of TD, in order

to effectively measure TD in a software system.

6.2.3 Design Pattern Formalization

Design patterns can be formally specified using a combination of the Role-Based

Meta-Modeling Language (RBML) [42] and the Object Constraint Language (OCL) [77].

RBML specializes the Unified Modeling Language (UML) [65] meta-model and captures

key elements of a design pattern, based on specific roles that participants in that design

pattern may take. A design pattern specification consists of two sub-specifications, the

Structural Pattern Specification (SPS) and the Interaction Pattern Specification (IPS)

[42]. An SPS characterizes the structural elements of a pattern, including the class

members, attributes, operation signatures, and relationships. An IPS characterizes the

behavioral elements of a pattern, referring to the flow of information that occurs when a

design pattern is in operation, at program run-time. SPSs are analogous to UML class

diagrams, whereas IPSs are analogous to UML sequence diagrams at the M2 level of

17 https://www.dagstuhl.de/en/

85

design specification. For example, consider the Observer pattern instance illustrated in

figure 6.2. In this example inspired by [29], we consider an Observer pattern

implementation that controls the operation of a kiln system. Two kiln classes,

CeramicKiln and SteelKiln are Subjects in this example, and each kiln is monitored by

two Observers, an LEDObserver and a RemoteObserver. The UML class diagram of this

system is shown on the left half of the figure, and the corresponding UML sequence

diagram of the system is shown on the right half. Both of these diagrams are depicted as

M1 level specifications. The diagram also shows the respective M2 level SPS (top-left)

and IPS (top-right) specifications of the Observer pattern. Dotted lines capture mappings

from individual elements of the kiln system to the corresponding design pattern role

characterized by the specification. The arrows represent conformance to the intended

design of the pattern. To improve clarity, individual mappings for the operations and

attributes are not shown, yet they are considered in the actual mapping process. This

example is naive in the sense that this kiln system nearly perfectly aligns to the Observer

pattern SPS and IPS; such close alignments are unlikely in practical systems. However,

the example serves as a visual representation of mappings from design pattern instance to

design pattern specification.

8
6

Figure 6.2 Example Observer pattern instance of a kiln system. The class and sequence diagrams for the kiln system are shown on

the bottom half, and the SPS/IPS for the Observer pattern are shown on the top half. Mappings are shown, using dotted arrows,

from concrete instance to SPS (on the left), and to IPS (on the right)

87

6.2.4 Design Pattern Decay

Software applications are used every day, yet they do not ’wear out’ over

extended use periods in the classical sense, as physical objects would. Instead, software is

subject to a different type of wear, related to the maintenance of the underlying design

and code. Over time, many factors such as unforeseen changing requirements, developer

turnover, legacy code dependencies, and others, will contribute to the degradation of

software quality. This phenomenon is captured by the terms software decay and code

decay. Software and code are deemed decayed if they are harder to change than they

should be [24]. A specific form of software decay is design pattern decay. Design pattern

decay refers to the addition of undesired elements or loss of desired elements in a design

pattern instance, over the lifetime of the design pattern [37] [38]. Design pattern decay is

considered a sub-domain of design decay, which is analogous to code decay with the

exception that the decay occurs in the design level of a software project instead of at the

code level. Design pattern decay consists of two categories; design pattern grime and

design pattern rot [38]. Design pattern grime, hereafter referred to as grime, is defined as

the build-up of unintended artifacts, or elements, over the lifetime of a design pattern

instance. These artifacts do not contribute to the pattern’s intended role in the overall

software project, detracting from the beneficial qualities the pattern would otherwise

provide. A key distinction exists between grime and elements that are necessary for the

implementation of the design pattern in the system; specifically that grime considers the

evolution of the design pattern instance, illustrating elements that appear over time that

do not reflect an initial and clean version of the design.

88

Previous work has shown that the presence of grime is associated with decreases

in testability and adaptability, as well as the presence of anti-patterns [39]. Additionally,

recent work has shown that the presence of grime is related to the depreciation of system

correctness, system performance, and system security [26]. Furthermore, Feitosa et al.

has found that grime has a tendency to accumulate linearly, suggesting the quality of a

pattern worsens as the grime of that pattern increases [25]. Design pattern rot, hereafter

referred to as rot, is defined as the removal of key elements of the pattern such that the

pattern no longer retains its core elements. A pattern that has succumbed to rot no longer

identifies as such; instances of rot in software projects has eluded researchers because of

the difficulty in identifying it. From a formal perspective, a pattern has succumbed to rot

when it no longer conforms to, or successfully maps to, a pattern’s SPS or IPS. The

degree to which a pattern instance conforms to its intended design is a research topic that

has not been explored.

6.2.5 Literature Review

In an effort to identify important and relevant research topics, we utilized a

Systematic Mapping Study (SMS) as outlined by Peterson et al. [61]. A SMS seeks to

provide an organized overview of a research area, categorizing the quantity and type of

research performed by various research groups. Within our SMS, we employed Budgen’s

protocol for identifying research ‘gaps’ as well as ‘clusters’ using mapping studies [14].

Gaps present research areas that have little exploration, where new or improved primary

studies are required. Alternatively, clusters indicate areas that already have been

explored, where more complete Systematic Literature Reviews (SLRs) may be

89

undertaken. After finding several clusters in software quality assurance, with respect to

software quality and TD, we performed a formal literature review with a focus on

identifying research goals with respect to evident gaps. The following section details this

process by introducing research accomplishments in software quality assurance with

focus on software maintainability and technical debt. Along with these definitions of

software quality and technical debt, we briefly describe several state-of-the-art

operational research-based quality assurance tools and discuss their impact on open

source and commercial software projects. Following, we draw logical connections across

research groups as well as operational tools to highlight gaps in the research area.

Table 6.1 presents the results from our SMS using Budgen’s formatting [14]. We

have elected to remove the column titled ‘Period Searched’ because the scope of focus

for this study includes all publications from the listed author(s) until the current date.

Synthesizing the results, we identify an immediate research gap in behavioral TD

analysis. Every research cluster presented in the table utilizes some form of structural

analysis to perform their research, yet none has considered the behavioral aspects, or the

intricacies of how software quality and TD are affected by the run time attributes and

properties of code. More specifically, behavioral aspects in the context of design patterns,

of which we have quite formal specifications for understand that deviations away from

the formal specification is a form of TD [82]. This clear gap provides the need and basis

for the extent of this study.

9
0

Table 6.1 Results from our Systematic Mapping Study, following the format of Budgen [14].

Author(s) Years

Published

Topic No. of

Studies

Form of Research Sources Searched

Seaman, Shull, Guo 2006-2018 TD

Management

26 TD Management; TD

identification and

decision-making

frameworks

Google Scholar & dblp

database

Cai, Wong, Kazman,

Xiao

2007-2016 Architectural

TD

24 Version Control/Ticket

System Analysis &

Tool development &

Case Studies

Google Scholar & dblp

database & ACM library

Morisio, Vetro,

Torchiano

2004-2017 Automatic

Static Analysis

Issues

10 Model and Evaluation Google Scholar & dblp

database & ACM library

Fontana, Zanoni,

Roveda

2011-2018 Code Smells 19 Code smell

identification, Code

smell evaluation

dblp database

Kim, France, Bieman 2002-2018 Design Pattern

Formalization

33 Model formalization,

Model checking,

conformance

dblp database

Izurieta, Griffith,

Reimanis

2007-2016 Design Pattern

Evolution

24 TD Identification, TD

evaluation, TD

injection, TD evolution

Google Scholar & ACM

library

Avgeriou, Ampatzoglou,

Chatzigeorgiou, Feitosa

2003-2019 Software

Architecture

Evolution

31 TD management, TD

evaluation, TD evolution

Google Scholar & dblp

database

91

6.3 Research Approach

In an effort to expand on software quality assurance, as it pertains to design

pattern evolution from a behavioral perspective, the strategy employed in this research

has three-steps; first, the identification and detection of unintended behavioral items, as

they appear in the code of design pattern instances. Second, the characterization of

unintended behavioral items into categories that simplify the remediation effort. Third,

the measurement of severity of unintended behavioral items so that remediation efforts

can be prioritized. The third step has three sub-steps, involving first the comparison of

behavioral items to existing structural items, second the exploration of how unwanted

behavioral items come to appear in design pattern instances, and third, the evaluation of

behavioral items as they affect software quality and TD.

6.3.1 GQM

We use Basili’s Goal-Question-Metric (GQM) approach [10] as a guide for this

research. The GQM approach dictates an outline of high-level research goals (RG)

supplemented with questions (RQ) and metrics (M) that guide the research. The GQM for

this research is listed below:

RG1: Explore design pattern instances for the purpose of identifying and

characterizing behavioral deviations with respect to proper pattern behaviors as defined

by the design pattern’s specification from the perspective of the software system in the

context of design patterns in open source software systems.

92

RQ1: How does the behavior of a design pattern instance deviate from the

expected behavior of that pattern type?

RQ2: Is there evidence to suggest that behavioral grime is present in pattern

instances of a single pattern type?

RQ3: Is there evidence to suggest that behavioral grime is present in pattern

instances across different pattern types?

RQ4: To what extent can a pattern instance have both structural and behavioral

grime?

RG2: Evaluate design pattern behavioral grime for the purpose of understanding

the value of behavioral grime with respect to structural grime and software evolution

from the perspective of the software system in the context of design patterns in open

source software systems.

RQ5: What is the relationship between structural and behavioral grime?

RQ6: Is the size of a design pattern instance related to the amount of behavioral

grime in that pattern instance?

RQ7: What is the rate at which patterns accumulate behavioral grime?

RG3: Quantify the impact of behavioral grime for the purpose of capturing the

effect of behavioral grime on patterns with respect to quality of pattern implementation

and greater software system from the perspective of the software system in the context of

design patterns in open source software systems.

RQ8: Are state of the art software quality analysis tools capable of identifying

behavioral grime?

93

RQ9: How can the ISO 25010 software quality specification be implemented to

consider design pattern grime?

RQ10: What is the relationship between behavioral grime and system quality and

TD?

Metrics: Several metrics are outlined that will aid in answering the questions.

• M1: Structural Conformance

• M2: Behavioral Conformance

• M3: Structural Grime

• M4: Behavioral Grime

• M5: Pattern Integrity

• M6: Pattern Instability

• M7: Pattern Size

• M8: Pattern Age

• M9: Pattern Quality

Table 6.2 describes the formulations for each metric, with respect to a pattern

instance P.

94

Table 6.2 Summary of the metrics selected for this analysis.

Metric Name Description

Structural Conformance (M1) The percentage of structural

roles in P that conform to at least one structural role

from P’s SPS.

Behavioral Conformance

(M2)

The percentage of behavioral

roles in P that conform to at least one behavioral role

from P’s IPS.

Structural Grime (M3) A tuple <SGΣ, SGδ+, SGδ->, referring to the <count,

number of additional elements, and number of

removed elements>, respectively, that constitute

structural grime in a single pattern P, in a single

version.

Behavioral Grime (M4) A tuple < BGΣ, BGδ+, BGδ- >, referring to the:

<count, number of additional elements, and number

of removed elements>, respectively, that constitute

behavioral grime in a single pattern P, in a single

version.

Pattern Integrity (M5) M1 + M2

2

Pattern Instability (M6) Adopted from Martin’s

Instability metric (I) [50], the afferent coupling of P

divided by the sum of the efferent coupling of P and

the afferent coupling of P.

___Ce(P)___

Ce(P) + Ca(P)

Pattern Size (M7) Adopted from Li and Henry’s

Size2 metric (size2) [48], the sum of attributes and

methods across all classes in P.

Pattern Age (M8) Age of a design pattern

instance, calculated as a count of the number of

software versions one design pattern instance appears

in.

Software Quality (M9) Scores of quality and all eight

quality characteristics across an entire software

project at a single version, derived from the QATCH

toolchain [70]

95

6.3.2 Study Design

The study design for this research is depicted in figure 6.3. To begin, we selected

several software projects to study according to the selection process presented in the

paragraph below. From these software projects, we identified design pattern instances

using the design pattern detection tool described by Tsantalis et al. in [75]. We chose this

tool because it is based on strong theory and claims little to no false positives in practice.

Additionally, we used the tool SrcML [18] to assist in the source code parsing process.

We chose this tool because it offers a translation from language-specific source code to

standard format XML, meaning this process becomes language-agnostic. Following

XML generation, we reverse-engineered the UML class and sequence diagrams of the

entire software project. The entire software project’s UML class and sequence diagrams

need to be reverse-engineered, not just a subset, because the behavioral aspects that we

wish to study require a holistic view of the software project, so that function calls and

data types are assigned correctly. Once we had reverse-engineered the UML class and

sequence diagrams, we generated a UML representation of the design pattern by

combining the design pattern’s detection results with the corresponding UML diagrams.

Next, we subjected each design pattern instance to a process of coalescence. The process

of pattern coalescence involves identifying members of the design pattern not captured by

the design pattern detection tool. Such members may be sub-classes, super-classes, or

pattern-methods within a pattern class that the design pattern detection tool may have

missed. Following coalescence, we extracted the evolution of each pattern instance by

tracking and connecting contributing roles of patterns across software versions.

96

Once pattern instance evolutions were generated, we entered the evaluation stage

wherein we evaluated pattern conformance, pattern grime, and pattern quality/size for

each version (pattern instance) in the pattern instance evolution. Regarding pattern

conformance, we chose to evaluate each pattern instance to the pattern’s SPS and IPS

presented in the RBML specification [29]. While any user can modify a given pattern’s

SPS or IPS based on expectations for the pattern instance, utilizing the SPSes and IPSes

presented in the specification offer a general solution that caters to domain differences,

Figure 6.3 Summary of study design. Design pattern instances are extracted from

software projects, and the associated UML is reverse-engineered from source code.

The evolution of each pattern instance is generated, and evaluations for conformance,

grime, and metrics are found across each pattern instance evolution.

97

even though such SPSes and IPSes may be considered too formal for many developers.

Regarding pattern grime, there is the question of whether a non-pattern element is

considered essential for the application, even if it might not align with the pattern’s

specifications. Such elements are not considered grime because the design pattern

definition is flexible enough to allow for non-pattern elements to be present in the pattern

instance while still allowing complete conformance. However, pattern grime has been

shown to be present, and therefore we need to differentiate between non-pattern members

that represent grime or not. To alleviate this differentiation, we made the assumption that

each pattern is allowed one incoming non-pattern element and one outgoing non-pattern

element. This assumption is based on usage of patterns; ideally a pattern will have one

client, and we allow it to use up to one non-pattern class. Anything else is considered

grime. While these precise values are configurable based on application, we chose such

strict allowances for this study to model applications where program conformance is a

necessity. The complete tool-chain is available under the MIT license at the following

GitHub repository18.

The process of selecting experimental units, or software projects, is as follows. In

an effort to increase generalizability of results, we chose to analyze ten projects in total.

To ensure relevancy, projects were selected based on their popularity ranking on the

online code repository GitHub19. Specifically, we ranked all projects according to their

’number of stars’, which is synonymous with a favorite or bookmark, and selected the

first ten projects such that each project had at least 2,000 commits, 20 releases, and 100

18 https://github.com/MSUSEL/msusel-pattern-behavior
19 www.github.com

98

unique contributors. In most cases, all projects had significantly more than the minimum

required filters; for example, the Selenium project features 23,550 commits, 116 releases,

and 424 contributors. From each project, we selected 20 minor releases evenly divided

between the oldest release and most recent release, under the assumption that each project

followed traditional notation for release numbers, which is: [major.minor.bug fix]. As an

example, if a project had releases labeled v2.0 through v2.40, in which 40 minor releases

existed between v2.0 and v2.40, we selected every other minor release (v2.0, v2.2, v2.4,

..., v2.38, v2.40). We utilized this process to generate an even spread of data points

between the most recent release and the first release, providing an accurate summary of a

project’s history. The outcome from this project selection process is presented in table

6.3, along with the release numbers and respective release dates.

Table 6.3 Demographics of the projects under analysis.

Project name Domain Releases Release Dates

Apache Commons-

lang

Java Libraries 1.0 - 3.9 Jul 2007 - Apr 2019

Elasticsearch Distributed Search

Engine

2.0.0 - 6.6.2 Oct 2015 - Mar 2019

Glide Image caching

library

3.3.0 - 4.9.0 Sept 2014 - Feb 2019

Google Guava Java Libraries 9.0 - 27.1 Apr 2011 - Mar 2019

Hystrix Fault tolerance

library

1.0.2 - 1.5.18 Nov 2012 - Nov 2018

Mockito Unit Testing

Framework

1.8.0 - 2.28.1 Jul 2009 - May 2019

Netty Asynchronous

application

4.0.0 - 4.1.34 Jul 2013 - Mar 2019

RxJava Asynchronous

Streaming

2.0 - 2.2.7 Oct 2016 - Feb 2019

Selenium Testing Framework 3.0 - 3.141.59 Oct 2016 - Nov 2018

Spring-boot Java packaging

framework

1.0 - 2.1.3 Apr 2014 - Feb 2019

99

We chose to focus our analysis on seven pattern types; the Factory Method and

Singleton patterns from the ‘Creational’ category [31], the Decorator and Object-Adapter

patterns from the ‘Structural’ category [31], and the Observer, State, and Template

Method patterns from the ‘Behavioral’ category [31]. Our initial intuition was that

patterns in the behavioral category may be more prone to behavioral deviations, so we

selected three pattern types from that category. Additionally, these seven pattern types

provided us the largest sample size of detected pattern instances; many projects featured

zero pattern instances of certain types, such as the Visitor or Prototype pattern. The count

of pattern instance evolutions for each pattern type and across each project under analysis

is shown in table 6.4. Note this is a count of pattern instance evolutions, not pattern

instances; the difference being pattern instance evolutions track a single pattern instance

across multiple versions, while pattern instances refer to a single pattern instance at a

single software version.

1
0
0

Table 6.4 Count of pattern instance evolutions for each of the projects under analysis.

Project Name Decorator

Evolutions

Factory

Method

Evolutions

(Object)

Adapter

Evolutions

Observer

Evolutions

Singleton

Evolutions

State

Evolutions

Template

Method

Evolutions

commons-

lang

1 0 1 0 15 0 9

elasticsearch 13 68 126 0 214 186 81

glide 9 2 21 1 18 25 8

guava 4 20 4 0 35 28 89

hystrix 0 1 0 0 14 5 5

mockito 12 15 35 0 18 37 14

netty 14 52 42 0 97 138 56

rxjava 6 5 21 0 5 125 10

selenium 5 11 17 0 6 28 7

springboot 2 0 4 0 13 10 15

Total 66 174 271 1 435 582 294

101

6.4 Results

6.4.0 Preliminary Work20

To address the research questions, we began with a preliminary experiment in

which we identified two specific behavioral deviations that can commonly occur while

implementing design patterns. We know these behaviors are deviations because they

detract from the intent of the design pattern and thus, have an undesired effect on TD. To

illustrate these behaviors, consider the RBML sequence diagram of the IPS for the

Observer pattern shown in figure 6.4 [30]. This example features a system that tracks the

temperature and pressure of a kiln. The RBML sequence consists of the two roles in the

Observer pattern; the Subject and the Observer. The two roles and their expected

behaviors are shown on the top of the diagram. For behavioral conformance, it is

expected that the Subject role calls the Update() operation on all the Observer roles when

the Notify() operation is called. Then, the Observer calls the Subject using a GetState()

operations. The bottom of the figure shows a pattern instance. Notice that the

implementing classes in the sequence diagram conform to their role expectations. We use

figure 6.4 as a baseline to which we inject our two behavioral deviations. Specifically, the

two deviations we identifed are Excessive Action(s) and Improper Order of Sequences.

20 Based on:

Reimanis D., Izurieta C., "Towards Assessing the Technical Debt of Undesired Software Behaviors in

Design Patterns," IEEE ACM MTD 2016 8th International Workshop on Managing Technical Debt. In

association with the 32nd International Conference on Software Maintenance and Evolution, ICSME,

Raleigh, North Carolina, October 4, 2016.

102

6.4.0.1 Excessive Action(s). The first behavior deviation we consider involves

one or more ‘excessive’ action(s) that occur during the standard runtime operation of the

pattern. The excessive action(s) perform operations that are un-essential to the functional

runtime behavior of the pattern. That is, if the excessive action(s) were to be removed, the

pattern would behave in entirely the same manner (as expected). We characterize this

type of behavior as behavioral grime because the excessive action(s) cause the pattern

instance to not conform to the pattern’s IPS. The excessive action(s) are not necessarily

structural grime, but may be the result of implementing new functional requirements.

Regardless, the intent of the pattern, according to its IPS is violated. The addition of

excessive action(s) affects software maintainability and TD, because while the pattern

will achieve the same external behavior, modifying the pattern in the future will require

domain knowledge of the action(s) and their intent.

Figure 6.4 Diagram of the RBML sequence diagram for the Observer pattern [30],

image from [64]. The Subject and Observer roles and their sequence of behaviors

are shown on the top, and a conforming pattern instance is shown on bottom. The

pattern instance conforms to the RBML sequence diagram.

103

Our illustrative implementation of this behavioral deviation uses a loop construct

that counts to 100 and sums values along the way. The loop’s internal and external

behaviors are not referenced by any other components in the remainder of the software

application. Practically speaking, this may happen when a developer forgets to delete

debugging code or decides upon a different strategy for the implementation of an

algorithm half-way through development and forgets to delete the original code.

Although all design patterns allow for the introduction of new tasks (i.e.,

excessive actions) as interspersed elements of existing behaviors, the introduction itself

needs to be explicitly described by elements of the RBML IPS diagram. If not, then the

introduction of the behavior is unintended, even if it provides needed functionality for the

software. The IPS of a design pattern must then be responsible for capturing the strictness

of adherence with which instances are created. Only then, new functionality can be

planned for without affecting TD. To illustrate how this behavior violates the RBML IPS

diagram in our implementation, refer to figure 6.5 [30]. The Observer RBML IPS is

shown on the top. Our implementation of the Observer pattern is shown on the bottom.

This figure is similar to figure 6.4, with the exception that the excessive behavior has

been injected. The excessive behavior is shown in red, and labeled with the operation

‘Excessive()’. Notice that in the RBML IPS, the Observer role only performs one

operation, which is to call GetState() from the Subject role. Conversely, the TempObs

class performs two operations, Excessive() and then GetState(). Because of this,

TempObs has behavioral grime.

104

6.4.0.2 Improper Order of Sequences. The second behavioral deviation we

consider involves cases where the order of operations that a pattern should be following,

according to the SPS and IPS, is improperly sequenced. This type of behavioral deviation

constitutes behavioral grime because it causes the pattern instance to not conform to the

IPS of the pattern. Additionally, this type of behavioral deviation affects the

maintainability and TD of the pattern for much the same reasons as the excessive

action(s) does; any modification of the pattern instance in the future will be hindered by

the need to first understand the order of sequences in the application.

In our implementation of this behavioral deviation, we injected a class that

represents a valid extension of each pattern. However, the injected class was only

instantiated from the incorrect class role in each pattern. In other words, in our Observer

Figure 6.5 Excessive behavior grime in an Observer

pattern instance (ObserverExcess) [30], image from [64].

The top sequence of this image illustrates the RBML IPS

of the Observer pattern. The bottom sequence illustrates

our application of the Observer, with the injected

behavior ‘Excessive()’. The injected behavior constitutes

behavioral grime because it does not conform to the

pattern’s IPS.

105

pattern instance we injected an observer that only received updates from other observers.

This is incorrect behavior for this pattern because the Observer pattern instance should

enforce that the subject is responsible for updating the observer. Practically speaking, this

would happen if a developer who was unfamiliar with the Observer pattern, either a

novice developer or a new hire, made changes to the existing pattern.

Figure 6.6 [30] illustrates the improper order of sequences errant behavior in our

application. The top sequence of the figure features the RBML IPS of the Observer

pattern. The bottom sequence illustrates the behavior of the Observer pattern in our

application. The TempObs2 class was added to the pattern, which has the potential to be

a proper extension to the pattern instance. However, its state is being updated from the

TempObs class, which belongs to the Observer role. This is a violation of the RBML of

the Observer pattern because the Subject is responsible for updating the Observers.

TempObs2 is being updated immediately after the update to TempObs, even before

TempObs has called the GetState() operation. This type of behavior constitutes

behavioral grime.

106

6.4.1 RQ1

With preliminary results identified, we began our assessment of research question

1, which is concerned with identifying how the behavior of a design pattern instance can

deviate from the expected behavior of that pattern type. To further assess this question,

we performed an in-vitro experiment [40] in which we implemented the proposed

behavioral deviations from section 6.4.0. Specifically, we began with an implementation

of the Observer pattern such that the implementation perfectly aligned to its SPS and IPS.

Figure 6.6 Improper order of sequences behavior grime in an Observer pattern

instance (ObserverImprop) [30], image from [64]. The top sequence of this image

illustrates the RBML IPS of the Observer pattern. The bottom sequence illustrates

our application of the Observer, with the injected class TempObs2 and injected

operation Update(s) (shown in red). The injected behavior constitutes behavioral

grime because it does not conform to the pattern’s IPS.

107

Such an instance might be impractical in the real-world, yet would mark a starting point

for our experiments. To this Observer pattern instance, we injected code that constitutes

modular structural grime, as presented by Schanz and Izurieta [67]. Modular structural

grime is concerned with the relationships that pattern members may have with either

other pattern members, or non-pattern members. Therefore, modular structural grime

provides a constraint on all possible pattern behaviors. In other words, a given behavior,

whether between pattern members or non-pattern members, cannot exist unless the two

members share a relationship. To each injected modular grime instance, we applied the

behavioral deviations as presented by Reimanis and Izurieta [64]. Specifically, these

deviations are ‘Improper Order of Sequences’, in which expected behaviors occur in an

incorrect order, and ‘Excessive Actions’ in which excessive actions hamper the run-time

expectations of a pattern. For this work, we chose to focus on a subset of Excessive

Actions, which we refer to as ‘Repetitive Actions’, or cases where the same behavior is

performed within the same scope, or function call, of a pattern instance at run-time. After

applying said behavioral deviations to the modular grime taxonomy, we generated a

taxonomy of behavioral grime, which is shown in figure 6.7.

1
0
8

Figure 6.7 Behavioral grime taxonomy. Dimensions of behavioral grime are listed on the left, and corresponding

characterizations are shown in the taxonomy tree.

109

The dimensions for this taxonomy are mirrored from the modular grime

taxonomy [67], which are explained as follows. Strength refers to the strength of a

relationship between two UML members; Persistent Strength refers to a UML association

while Temporary Strength refers to a UML use-dependency. Scope refers to the context

of the relationship between two UML members; Internal Scope refers to a relationship

between two pattern members, and External Scope refers to a relationship between one

pattern member and one non-pattern member. Direction refers to the direction of the

relationships. Afferent Direction refers to an incoming relationship while Efferent

Direction referring to an outgoing relationship. In the taxonomy, the Classification row

refers to the acronym that captures that type of behavioral grime; for example, the PIO

classification is an acronym for ‘Persistent-Internal-Order’ grime. This behavioral grime

taxonomy closely mirrors the modular grime taxonomy presented in [67], with two

exceptions. First, we have incorporated the ‘Behavioral Deviations’ dimension, which

corresponds to the type of behavioral grime (Order or Repetition). Second, the taxonomy

is not symmetrical across Order and Repetition sub-trees; specifically, the sub-tree

pertaining to External Efferent Order (-EEO) type grime is nonexistent. This is because

this sub-tree represents an outgoing relationship from a pattern member to a non-pattern

member cannot be in an incorrect order; such relationships are not captured by the design

pattern, and thus cannot be in an incorrect order.

While the taxonomy of behavioral grime was initially created from synthetic in-

vitro examples, we validated this taxonomy by identifying instances of each form of

110

behavioral grime in real-world systems. These results are presented in research questions

2 and 3.

6.4.2 RQ2

This section reports the results from RQ2, which postures, “Is there evidence to

suggest that behavioral grime is present in pattern instances of a single pattern type?.” To

answer this question, consider table 6.5, which summarizes the grime counts found from

our analysis. Each cell in the table refers to a non-unique count of behavioral grime

across all pattern instances under analysis, of the corresponding pattern type. The

phrasing non-unique grime refers to counting the same grime artifact more than once, if it

appears in more than one pattern version. For this specific research question, we consider

the columns of the table, because the columns report counts of behavioral grime for a

single pattern type. For all patterns except the Observer pattern, we see relatively large

counts of behavioral grime, with the State pattern reporting the largest raw count of non-

unique instances of grime. However, these numbers appear inflated because we

encountered a different number of pattern instances for each pattern type. To counter this

inflation, we have included a ‘Normalized Total’ row, which refers to the Raw Total

divided by the count of pattern instances for each pattern type.

1
1
1

Table 6.5 Count of behavioral grime across each pattern instance.

Behavioral

Grime Type

Decorator Factory

Method

(Object)

Adapter

Observer Singleton State Template

Method

Total

PEAO 0 0 0 0 0 372 0 372

PIO 0 0 0 0 0 13 0 13

TEAO 0 0 0 0 0 4014 0 4014

TIO 0 0 0 0 0 30 0 30

PEAR 1155 117 8309 0 0 14580 192 24353

PEER 9375 7722 12572 0 3340 25741 6458 65208

PIR 3723 102 1182 0 0 6206 164 11377

TEAR 8998 1166 15007 0 0 66026 258 91455

TEER 41655 41407 82704 0 34632 201773 76324 478495

TIR 3691 739 2683 0 24 9148 617 16902

Raw Total 68597 51253 122457 0 37996 327903 84013

Normalized Total 64.47 19.66 34.50 0 10.70 39.83 19.65

112

To answer this exploratory research question, we look at the raw and normalized

counts of grime across the various pattern types. We encountered behavioral grime from

every pattern we studied except the Observer pattern, and the most prevalent form of

behavioral grime for each individual pattern type was TEER grime, or Temporary

External Efferent Repetition grime. This is not a surprise, as grime of this type manifests

itself as non-pattern members that are used by a pattern, but only as a use-dependency

(not an association). This may occur when a new functionality requires extension of a

design pattern instance, but pressures from management or clients force a quick-and-dirty

change. Generally speaking, behavioral grime concerned with Order was the rarest form

of grime, and was only identified in State pattern instances. The counts were low; for

example, we identified only 13 instances of PIO (Persistent Internal Order) grime in our

study. Upon further investigation, we discovered that all PIO grime came from the same

pattern instance, suggesting that this form of behavioral grime might be rare.

Furthermore, we found no evidence of behavioral grime in the Observer pattern instances

under our analysis. However, because we identified only a single Observer pattern

instance from the ten projects under analysis, a meaningful exploration of the Observer

pattern is not possible. Regardless, in terms of answering our second research question

(RQ2), we are able to answer in the affirmative for six out of seven of our pattern types

(all except the Observer pattern), that behavioral grime is indeed present in pattern

instances of a single pattern type.

113

6.4.3 RQ3

This section reports the results from RQ3, which generalizes RQ2 to consider, “Is

there evidence to suggest that behavioral grime is present in pattern instances across

different pattern type?.” To answer this research question, we begin by referencing table

6.5, considering the rows of the table which represent the counts of behavioral grime

types across pattern instances. We see that many behavioral grime types are present in

pattern instances of more than one pattern type. Specifically, PEER, TEER, and TIR

grime appear in all pattern types analyzed, except the Observer pattern. PEER (Persistent

External Efferent Repetition) and TEER (Temporary External Efferent Repetition) grime

are not necessarily a surprise, based on intuition. Grime of these forms represents a

relationship from a pattern member to a non-pattern member, likely indicating an

extension of the pattern instance to accommodate new functionalities within the software

project. TIR (Temporary Internal Repetition) grime refers to temporary use dependencies

that appear between two or more pattern members as the pattern ages, indicating new

relationships between that likely facilitate new functionalities elsewhere in the code-base.

The appearance of PEER, TEER, and TIR grime across the Decorator, Factory-Method,

(Object) Adapter, Singleton, State, and Template-Method patterns confirms that these

patterns are susceptible these forms of grime.

Furthermore, PEAR, TEAR, and PIR grime was found in five of the seven pattern

types analyzed, excepting the Observer and Singleton pattern. PEAR (Persistent External

Afferent Repetition) and TEAR (Temporary External Afferent Repetition) grime refers to

non-pattern members that establish a relationship to pattern members, over the pattern’s

114

lifetime. The lifetime of these non-pattern members is not specified under this analysis;

they could be new classes added later in the project’s lifetime, or they could be classes

that have existed since the first version of the software, and the relationship between it

and the pattern might have been established in a later version. PIR (Persistent Internal

Repetition) grime refers to a stronger relationship, exclusively between pattern members.

The elusiveness of these three forms of grime (PEAR, TEAR, PIR) in the Singleton

pattern is not a surprise. The majority of Singleton pattern instances featured only one

class, and did not deviate from the expected structure or behavior. Because of the

uniqueness of a Singleton pattern, specifically that only one instance of that class is

allowed, intuitively it seems rare that additional classes would be created that depend on

the Singleton because these additional classes would not be able to retrieve a new

instance of the Singleton. There is an important distinction here, between PIR and TIR

grime. Recall TIR grime refers to the addition of UML use-dependencies between two

pattern members, and PIR grime refers to the addition of UML associations between two

pattern members. Our results indicate that TIR grime was found in Singleton instances,

but PIR grime was not. If PIR grime was found in a Singleton, it might indicate that an

extraneous class variable references the Singleton class itself, which violates the purpose

of the Singleton pattern because the Singleton object should only be stored and

retrievable from one single class variable. The Singleton IPS allows class variables to

reference the Singleton class itself, but the existence of PIR grime suggests this is

happening more than the allowable amount. Such an instance of a Singleton would be

referred to as a rotted pattern, because the addition of elements would have violated its

115

purpose. Therefore, our results indicate that only five of the seven pattern types analyzed

are susceptible to PEAR, TEAR, and PIR grime. These pattern types are the Decorator,

Factory-Method, (Object) Adapter, State, and Template-Method patterns.

Order grime was the rarest form of grime encountered from our analysis, and was

only present in small amounts in State pattern instances. We see three likely viable

options for this phenomenon. First, it could hold that the State pattern is the only design

pattern under our analysis that is susceptible to Order grime. However, when answering

RQ1, in section 6.4.1, we successfully injected Order grime into an Observer pattern

instance to show that Order grime can exist in Observer patterns. Because this occurred

in an in-vitro setting and not an in-vivo one [40], we have chosen to not consider it in this

discussion. A second viable explanation for this phenomenon holds that the State pattern

was the largest sampled pattern type in our analysis, and thus the scope of our results

when considering the State pattern is over-amplified. In statistical terms, these results

could have appeared due to a sampling bias which increases the likelihood that grime

might exist in a State pattern instance. A third explanation for this result is related to the

second explanation, but considers that we did not sample enough of the other pattern

members to uncover the ‘true population group’ that such a form of grime exists in. It

seems most likely that this third option holds true; that Order grime is indeed rare but that

other pattern types are exposed to it, yet replicating these experiments on more pattern

instances and across more software projects might yield pattern instances that contain

Order grime.

116

6.4.4 RQ4

This question considers the extent to which a pattern instance can have both

structural and behavioral grime. To answer this question, we consider the presence of

structural and behavioral grime for a single pattern instance, across each pattern type. The

grid in figure 6.8 displays the labels for all four possibilities of structural and behavioral

grime presence and absence, in a single pattern instance. For example, the label A would

be applied to a pattern instance if the instance accumulated at least one case of both

structural and behavioral grime, over its evolution. In order to answer this question, we

labeled every pattern instance in our analysis according to this labeling scheme and

summed the counts of each label across each pattern type. The results from this

aggregation are presented in table 6.6.

 Behavioral grime

present

Behavioral

grime absent

Structural grime present A B

Structural grime absent C D

Figure 6.8 Grime quadrant of possible grime types. For a given

pattern, rows correspond to at least once instance of behavioral grime

existing in the pattern, and columns correspond to at least one case of

structural grime existing in the pattern.

117

Table 6.6 shows the counts of each grime possibility label across each pattern

type under our analysis. The most immediate and striking result from this table is that the

column featuring the label C is nearly empty, only showing six cases where a pattern

instance evolution contained behavioral grime, but no structural grime. Additionally, all

six cases occurred within the Template Method design pattern. Upon initial glance, this

result seems counter-intuitive; the structure of a pattern dictates behavior, so it seems

impossible for a pattern instance to be susceptible to behavioral grime when there is no

structural grime. However, the important distinction is that grime is only considered as

such if it manifests as unexpected elements within a pattern instance. In pattern instances

where behavioral grime is present yet structural grime is absent, the structural elements

are correct and expected while the behavioral elements are unexpected. As an example

where such an occurrence would appear, consider a variable that is being initialized more

times than expected; the fact the variable has a dependency or association to another class

matches with structural expectations, but structural checks would fail to find issue when

the same variable is being initialized more than once. The structural perspective only

illustrates such a case as one single structural element; thus a deeper level of granularity

Table 6.6 Count of labels, according to figure 6.8, for each pattern instance evolution,

separated by pattern type.

Pattern Type A counts B counts C counts D counts

Decorator 53 13 0 0

Factory Method 91 76 0 7

(Object) Adapter 232 34 0 5

Observer 0 1 0 0

Singleton 122 312 0 1

State 411 139 0 32

Template Method 131 147 6 10

Total 1040 722 6 55

118

into the system is required, which is what behavioral grime analysis provides. While we

only found six instances of label C across our pattern instance evolutions, label A shows

the case where both structural and behavioral grime were found at least once in a pattern

instance evolution. Label A is the most prevalent label, suggesting that patterns tend to be

susceptible to both structural and behavioral grime. Label B considers cases where

structural grime is present, yet behavioral grime is absent. Similar to label C, this label

may seem non intuitive– how can a pattern instance have structural grime elements with

no behavioral grime elements? The explanation is similar to the explanation for label C,

yet flipped. A pattern can have unexpected structural elements that constitute grime, but

if each of those elements behave how they are expected to behave; i.e., properly, there

would be no behavioral grime. Such a case might occur when applying a design pattern

for a library, that will be used heavily by other components in the project, or other

projects. Compared to label A, we found a slightly lower number of label B patterns, yet

still more than labels C and D. This result suggests that the structural aspects of a pattern

are violated more frequently than the behavioral aspects, but the most common case is

that both structure and behavior are violated together.

6.4.5 RQ5

This research question is concerned with identifying the relationship between

structural and behavioral grime. To answer this question, we began by generating a

pairwise scatter-plot for each type of structural and behavioral grime, which is shown in

figure 6.9. Structural grime is shown on the x-axis, and behavioral grime is shown on the

119

y-axis. Points in the scatter-plot represent the count of modular grime and type of

behavioral grime for a single pattern instance.

To assess the strength of each relationship between structural and behavioral

grime, we calculated pairwise correlation coefficients and respective p-values for each of

structural grime and behavioral grime. The nature of our data is a count, which falls

under the ratio numeric scale, and a visual assessment of the scatter-plots suggests a

Figure 6.9 Pairwise scatter-plots illustrating the relationships between structural grime,

shown on the x-axis, and behavioral grime, shown on the y-axis.

120

linear relationship in several plots. We choose to use Pearson’s method to evaluate the

precise nature of the relationships, because Pearson’s provides a parametric estimate of

correlation coefficients, compared to the nonparametric alternatives of Spearman’s ρ or

Kendall’s τ. The application of Pearson’s requires addressing two primary assumptions;

the normality assumption and the independence assumption. We may say we have not

violated the normality assumption to a great extent because of the large sample size of

our data [87]. However, we cannot say we have satisfied the independence assumption.

Specifically, each data point comes from a single pattern instance in a single software

version, and pattern instances may appear in more than one software version, meaning

grime in a future version might be, and likely is, dependent on grime in previous

versions. We alleviate this concern because of the number of pattern instance evolutions

we have detected, which is captured in table 6.4, but we cannot say we have satisfied the

independence assumption. Regardless, we assume this threat to validity, and provide the

correlation coefficients for each pairwise relationship between structural and behavioral

grime in table 6.7, with strong relationships (r > 0.60 or r < 0.60) shown in bold. We also

calculated the p-values for each pairwise correlation coefficient, which is shown after

every correlation coefficient values in table 6.7. Because this work is concerned with

identifying the strength of the relationship between pairwise metrics, we chose to assume

a very weak relationship exists in the first place. In other words, all of our null

hypotheses assume no correlation. Therefore, each p-value corresponds to the probability

that the correlation coefficient we received did not occur because of chance, under the

assumption that the true correlation coefficient is zero, which implies a very weak

121

relationship. P-values across each pairwise comparison are shown as the second value in

each cell in table 6.7.

Because of the inherent relationship between structure and behavior, specifically

that structure enforces behavior, our initial expectations held that grime types across their

mirrored dimensions would share a strong relationship. Specifically, these would be

forms of grime that share every dimension except for their structural or behavioral

distinction. For example, TEE (Temporary External Efferent) grime and TEER

(Temporary External Efferent Repetition) grime share every dimension except for their

Table 6.7 Correlation coefficients and respective p-values for each pairwise type of

grime, using Pearson’s method. Columns feature structural grime, while rows feature

behavioral grime. Correlation coefficients are shown first and p-values second,

separated by a forward slash. Strong relationships (r > 0.60 or r < −0.60) are shown in

bold.

 PEA grime PEE grime PI grime TEA

grime

TEE

grime

TI grime

PEAO grime 0.2511 /

<1e-16

0.1583 /

<1e-16

0.6633 /

<1e-16

0.5962 /

<1e-16

0.1488 /

<1e-16

0.6812 /

<1e-16

PIO grime -0.0055 /

0.37

0.0003 /

0.96

-0.0021 /

0.73

-0.0061 /

0.33

0.0027 /

0.66

-0.0022 /

0.72

TEAO grime 0.0971 /

<1e-16

0.4705 /

<1e-16

0.1321 /

<1e-16

0.2181 /

<1e-16

0.4000 /

<1e-16

0.3688 /

<1e-16

TIO grime -0.0008 /

0.89

0.0433 /

2.65e-12

-0.0060 /

0.34

-0.0063 /

0.31

0.0294 /

2.04e-6

-0.0045 /

0.47

PEAR grime 0.2475 /

<1e-16

0.1311 /

<1e-16

0.4653 /

<1e-16

0.5028 /

<1e-16

0.1178 /

<1e-16

0.5090 /

<1e-16

PEE grime 0.1694 /

<1e-16

0.6984 /

<1e-16

0.3415 /

<1e-16

0.3453 /

<1e-16

0.5991 /

<1e-16

0.4174 /

<1e-16

PIR grime 0.1408 /

<1e-16

0.2630 /

<1e-16

0.4215 /

<1e-16

0.4251 /

<1e-16

0.2571 /

<1e-16

0.4453 /

<1e-16

TEAR grime 0.0675 /

<1e-16

0.0537 /

<1e-16

0.1398 /

<1e-16

0.3237 /

<1e-16

0.0527 /

<1e-16

0.1527 /

<1e-16

TEER grime 0.2395 /

<1e-16

0.6912 /

<1e-16

0.2607 /

<1e-16

0.2613 /

<1e-16

0.8219 /

<1e-16

0.4101 /

<1e-16

TIR grime 0.1306 /

<1e-16

0.3837 /

<1e-16

0.3201 /

<1e-16

0.3325 /

<1e-16

0.3841 /

<1e-16

0.3941 /

<1e-16

122

structural and behavioral distinction. We found that only two such pairs of mirrored

grime shared strong relationship; PEE (Persistent External Efferent) and PEER

(Persistent External Efferent Repetition), and TEE and TEER grime. These two pairs

support our expectations, but no other mirrored pairs do. This is an interesting finding

because it suggests that across mirrored pairs, structural and behavioral grime do not

appear at the same rate. Two scenarios explain this result. The first scenario considers

one instance of structural grime that has multiple behavioral grime instances associated

with it, such as a variable that constitutes structural grime, that is being improperly

initialized multiple times. In such a case, each improper initialization would constitute as

behavioral grime. The second scenario considers pattern members that contain structural

grime, yet their behavior aligns with behavioral expectations, so they would not

constitute behavioral grime. Upon initial inspection, this scenario appears impossible

because if a pattern element has structural issues, then surely any behaviors associated

with it are issues as well. However, this is not the case because the definition of pattern

grime allows for this scenario. As an example, consider a pattern instance that contains

two different variables that fulfill the same role, as a relationship between pattern

members. Additionally, these two variables have identical behaviors that match

behavioral expectations of the pattern. If the specifications of this pattern hold that only

one variable should be fulfilling that role, then one variable would constitute structural

grime. However, because the two variables behave identically, we cannot say which

variable should be the one that constitutes structural grime. Therefore, such a pattern

would contain structural grime with no behavioral grime, illustrating our second scenario.

123

Such a scenario might be rare in the real world, yet it is important to consider that it

exists and may explain this situation.

Considering grime types that are not mirrored across their dimensions, we found

strong relationships between the following pairs: TEER/PEE, PEER/TEE, PEAO/PI,

PEAO/TEA, and PEAO/TI. Discussing Repetition grime first (TEER/PEE and

PEER/TEE), strong relationships between these two pairs are not unexpected. The

dimensions these pairs of grime share are ‘External Efferent’, which refer to non-pattern

members that a pattern member uses. Grime of these types would appear in a pattern

instance to accommodate new features in the software project that the pattern instance

uses. From a design perspective, this means the pattern instance is being extended, but

not in the correct and intended manner. Such improper extensions would happen if under

pressure to release new features quickly, or perhaps if a developer was unfamiliar with

the design pattern. In terms of the strong Order grime relationships we encountered, a

visual analysis of the scatter plots in figure 6.9 suggests that these strong correlation

coefficient values might be unfounded. Order grime was the rarest form of grime we

encountered, yet when it was found the counts for it were relatively high. This, coupled

with the numerous counts of structural grime we encountered across pattern instances

with any type of Order grime, implies that a pattern instance with Order grime likely has

high structural grime, which explains the strong relationship. This result may be

contentious, as the correlation coefficients are strong and their respective p-values are

low, yet a visual analysis of the plots shows otherwise. Our claim is that Order grime and

structural grime are related in that the presence of Order grime is associated with high

124

values of structural grime, but ultimately patterns that contain more instances of Order

grime are required before a more accurate correlation coefficient describing the

relationship can be attained.

Of particular note in these relationship plots are the low p-values. Recall our null

hypothesis that there exists a very weak relationship between structural and behavioral

grime types, specifically one in which the correlation coefficient is zero. All p-values

with respect to Repetition grime are very low, suggesting that we reject the null

hypothesis that the correlation coefficients are equal to zero. This result advocates that a

relationship does exist between structural and behavioral grime types. However, we

cannot claim that the correlation coefficients we found are accurate estimates of the true

relationship between any pair of structural and behavioral grime instance. Though, we

can point out that due to the large sample size of grime instances, coupled with visual

analyses of the scatter plots, the correlation coefficients may provide a good estimate of

the actual relationship. Of course, more experiments need to be performed to assert this

result.

6.4.6 RQ6

This research question is concerned with identifying if the size of a design pattern

instance is related to the amount of behavioral grime in that pattern instance. To capture

design pattern size, we chose to use an adaptation of Li and Henry’s Size2 metric, which

we refer to as M7 and is explained in table 6.4. Similarly to RQ5 in section 6.4.5, we

began by generating pairwise scatter-plots showing size and each behavioral grime type

to visually assess trends. This scatter-plots are shown in figure 6.10.

125

An initial visual inspection of the scatter plots in figure 6.10 reveals that no clear

relationship appears from the data. Some patterns with small size (0-40 members) have

large counts of behavioral grime, while some pattern with medium size (190-230

members) also have large counts. The internal Repetition grime cases (PIR and TIR)

appear to have the most monotonically linear relationship, but many points in the plot

feature zero grime. To further assert the data, we calculated the correlation coefficients

Figure 6.10 Scatter plots of behavioral grime and pattern size. Behavioral grime is on

the y-axis, Pattern Size is on the x-axis, and points in the plot represent individual

pattern instances, which are shaped and colored according to their design pattern type.

126

and respective p-values for each pair of behavioral grime and pattern size, under similar

conditions as our structural vs behavioral analysis, in section 6.4.5. That is, because the

nature of our data is a count which falls under the ratio numeric scale, we chose to use

Pearson’s method for calculating the correlation coefficients. Pearson’s requires

assessment of the independence assumption, which we cannot say we have satisfied

because of several confounding factors, such as the fact that our data consists of

evolutionary data, in which one value likely depends on a value from a previous

evolution state. We can say we have alleviated the independence assumption slightly

because of our large sample size, and that any one evolutionary chain will not carry as

much weight because of the sheer number of data in the analysis. The null hypotheses we

use to test our p-values are the cases where correlation coefficient is equal to zero, which

implies a very weak relationship. Therefore, each p-value corresponds to the probability

that the correlation coefficient we received is not due to chance, under the assumption

that the true correlation coefficient is zero. We show the correlation coefficients and

respective p-values in table 6.8.

127

As expected based on our visual analysis of the scatter plots in figure 6.10, the

correlation coefficients as presented in table 6.8 are relatively low for all forms of

Repetition grime (0.18 - 0.34), and most forms of Order grime (0.00 - 0.45). This

suggests a weak relationship between these forms of pattern grime and pattern size.

Furthermore, the p-values associated with these correlation coefficients are very low,

suggesting we reject the hypotheses that the relationship between size and each type of

behavioral grime is zero. In other words, the correlation coefficient values we received

are correct in the context of this study, under the assumption that the true relationships

between behavioral grime and pattern size is zero. However, they are still quite low and

would not be useful in any predictive sense. This finding is interesting though; it implies

that behavioral grime appears in pattern independently of the pattern’s size. The

definitions and specifications of design patterns that we use are extendable in the sense

that a pattern could have any number of members, yet still conform perfectly (i.e., no

grime or rot). And indeed, we see this from the data. Several pattern instances that have

Table 6.8 Correlation coefficients and respective p-values for each type of

behavioral grime and pattern size, using Pearson’s method. Columns show the

correlation coefficients and p-values, and rows shows behavioral grime.

Behavioral grime type Correlation Coefficient p-value

PEAO grime 0.4508 <1e-16

PIO grime 0.0114 0.06

TEAO grime 0.1751 <1e-16

TIO grime 0.0090 0.14

PEAR grime 0.3456 <1e-16

PEE grime 0.2797 <1e-16

PIR grime 0.3231 <1e-16

TEAR grime 0.1897 <1e-16

TEER grime 0.2918 <1e-16

TIR grime 0.2874 <1e-16

128

over 500 members have zero behavioral grime. Pattern instances such as these would be

considered good implementations of the expected design pattern because they do not

deviate from their intent. Therefore, extending these pattern instances to allow for future

functionalities would be easier than one deviates significantly. Our results indicate that

pattern instances with the opposite measurements are present too. That is, pattern

instances with small size yet a high count of behavioral grime. Some patterns under this

designation feature dozens of behavioral grime instances while only having a single-digit

size. In code, this occurs when one or a few members are used in an unexpected manner a

multitude of times; consider a pattern instance’s variable that is used by numerous non-

pattern members, in an unexpected manner. Pattern instances such as these illustrate

cases where the amount of behavioral grime makes the pattern instance difficult to extend

and maintain, which sacrifices many of the good qualities usage of the pattern offers in

the first place.

6.4.7 RQ7

Research question 7 is concerned with identifying the rate at which patterns

accumulate behavioral grime. This question is fairly broad, but left so intentionally. We

understand that numerous confounding factors exist in this space that affect the rate at

which a pattern instance accumulates behavioral grime, such as project coding standards,

developer habits, changing technology dependencies, project domain, etc., but several of

these confounding factors are impossible to retrieve and capture in a model. Therefore,

we outline the process and results from our analysis, but we leave the format of the

statistical models general so that terms can be added to it, to capture these confounding

129

factors if a particular domain has knowledge of them. The process we chose to answer

this question involved first identifying the factors that have a significant effect on

behavioral grime. To do this, we performed several ANOVA calculations, one for each

form of behavioral grime, with three factors we had available based on our project

selection process, and one derived factor. The factors we had available from the selection

process are Project, Pattern Type, and Software Version, which are all categorical

variables. The derived factor is Pattern Age, explained in the metrics table, table 6.2 in

section 6.2, which is a categorical variable representing the number of previous software

versions we have seen a pattern instance in. This makes each of our ANOVAs a four-way

ANOVA, but to generalize this model one would include the factors they had captured

from their specific circumstance. Because of our intuition that interacting factors likely

exist in our data, i.e. that behavioral grime is contingent on the combination of Project

and Pattern Type, and the fact we have a large sample size, we chose to consider several

combinations of interactions in our ANOVA. Specifically, the interaction terms we

considered were Project and Pattern Type, Project and Pattern Age, Pattern Type and

Pattern Age, and the three-way interaction between Project, Pattern Type, and Pattern

Age. We chose not to look at interaction terms involving Software Version because (1)

such interactions do not have a meaningful explanation in the real world, and (2) it

increases model complexity to a point where computational power starts to become

questioned. In terms of assumptions, we assessed the independence assumption, the

normality assumption, the equal variance assumption, and the homogeneity assumption.

130

We found that there were no major violations of any assumption for each ANOVA. The

final model we used is presented below:

𝑌𝑖𝑗𝑘𝑙 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑘 + 𝛿𝑙 + (𝛼𝛽)𝑖𝑗 + (𝛼𝛿)𝑖𝑙 + (𝛽𝛿)𝑗𝑙 + 𝛼𝛽𝛿𝑖𝑗𝑙 + 𝜀𝑖𝑗𝑘𝑙

where:

𝑌𝑖𝑗𝑘𝑙 refers to the measurement of behavioral grime with levels i, j, k, l

𝜇 refers to the grand mean.

𝛼𝑖 refers to the ith level of the Project variable.

𝛽𝑗 refers to the jth level of the Pattern Type variable.

𝛾𝑘 refers to the kth level of the Software Version variable.

𝛿𝑙 refers to the lth level of the Pattern Age variable.

𝜀𝑖𝑗𝑘𝑙 refers to the random error present in the data.

Table 6.9 shows the results from our ANOVA models, listing the F-values in the

cells of the table. We chose to do this because the F-values provide more insight into the

data than simple p-values, because many of our p-values are incalculably small.

However, we have emboldened F-values that have corresponding statistically significant

p-values < 0.05.

1
3
1

Table 6.9 Results from ANOVA models. Behavioral grime types are shown on the rows, and ANOVA model terms

(including interaction terms) are shown on the columns. Cells show the F-value corresponding to the variance the column

term takes on the given behavioral grime type. Emboldened F-values represent statistically significant p-values p< 0.05.

Behavioral

Grime Model

Project
Pattern

Type

Software

Version

Pattern

Age

Project:

Pattern Type

Project:

Pattern Age

Pattern

Type:

Pattern Age

Project:

Pattern

Type:

Pattern Age

PEAO grime 97.653 159.102 1.442 46.852 36.524 12.944 7.331 5.217

PIO grime 2.785 7.257 0.687 1.484 2.379 0.326 0.864 0.276

TEAO grime 46.944 58.613 0.225 1.948 18.234 0.974 1.239 0.371

TIO grime 78.910 199.884 0.055 10.626 35.054 5.761 2.677 1.930

PEAR grime 43.219 150.872 0.403 8.672 27.077 2.194 2.443 0.967

PEER grime 135.943 186.576 1.569 0.622 54.096 5.062 2.364 5.124

PIR grime 71.393 458.892 0.175 27.677 30.901 2.984 4.4345 2.322

TEAR grime 6.084 29.763 0.484 0.389 4.082 0.765 0.161 0.529

TEER grime 106.499 89.940 0.178 2.166 16.141 4.206 0.260 1.030

TIR grime 78.910 199.884 0.055 10.626 35.054 5.761 2.677 1.930

132

 The results from our ANOVAs in table 6.9 provide several insightful glimpses

into our exploration of the terms that dictate the presence of behavioral grime. First, three

model terms accounted for a statistically significant amount of variance for every

behavioral grime type; Project, Pattern Type, and the interaction between Project ID and

Pattern Type. Particularly, Pattern Type accounted for the most variance in the model in

all cases except for TEER grime, followed by Project, and finally the interaction between

the two. This means that the type of design pattern nearly always accounts for more

variance in the data with respect to behavioral grime than the software project. Though,

the software project still accounts for a large and significant amount of the variance in the

data as well. The interaction between the two, which explained in less statistically

technical terms translates to ‘the combination of the design pattern type and the software

project that the design pattern instance exists in’, also accounts for a significant amount

of variance in the data, but less so than either one of its two building terms. The Software

Version term accounted for a statistically significant amount of variance for the PEE

(Persistent External Efferent) grime type, but it was much lower of a contribution than

the other terms. Pattern Age accounted for a significant amount of variance in half of the

models, specifically the PEAO, TIO, PEAR, PIR, and TIR grime models. This means that

Pattern Age may play an important role when considering the presence of PEAO, TIO,

PEAR, PIR, or TIR grime, but the ANOVA results only yield explanations of the

variance in the data, and do not provide any causative or predictive power. Finally, the

interaction terms including Pattern Age frequently accounted for a statistically significant

133

amount of variance in the data, but these yielded low F-values respective to the individual

terms that make up the interaction terms.

 The results from the ANOVAs table are insightful, but they themselves do not

provide an equation that explains the rate at which behavioral grime appears in patterns.

Rather, the next step in our process to answer this research question involves utilizing the

results from our ANOVAs table, table 6.9, to generate regressions that explain the data.

While seeming applicable, time series analysis does not apply to our data because

classical time series analysis considers one sampling of data across a series of time, and

our data contains many replicates. Additionally, our variables related to time, specifically

Software Version and Pattern Age, are categorical variables and do not represent equally

continuous spaces of time between each measurement; rather, they represent discrete

points with the potential of having little direct relation to the previous measurement,

because it is impossible to glean what has occurred between two successive

measurements. Instead of time series analysis, we perform regression analysis, the first

step of which is to generate plots to visually assess the nature of relationships between

behavioral grime counts and the statistically significant terms in our models. These plots

are presented in figure 6.11, with two exceptions. First, we have not shown Order grime

in these plots because of the few instances of Order grime. Most plots with Order grime

showed little counts of behavioral grime. Second, we have chosen to exclude pattern

instances that have behavioral grime counts of zero in these plots alone. Because of the

large number of pattern instances with zero behavioral grime counts, it was very difficult

to distinguish between trendlines, representing the mean of the data. These cases are

134

excluded from the plots only, and only to aide in visual inspection. The final model we fit

does include these cases where the behavioral grime count is zero.

 A visual inspection of the plots shows a lot of variance in the data, but largely

linear relationships between grime count and both of Pattern Type and Project. Because

of these reasons, we choose to fit a linear regression model from the data, considering the

Figure 6.11 Counts of Repetition behavioral grime over Pattern Age, across the

Pattern Type factor on the left column and the Project factor on the right column.

Every point within the plots refers to a singular pattern instance. To generate visually

clear plots in which the linear regression lines can be clearly seen, we have chosen to

exclude pattern instances that have behavioral grime counts of zero. Our linear model

fitting, explained in section 6.4.7, does include these cases, but for visual aesthetics

they are excluded here.

135

terms Pattern Type, Project, and Pattern Age. Note that we understand Pattern Age is a

categorical variable, yet we treat it as if it were a continuous variable to keep the resulting

model simple. Though with this decision, we do not make interpolation or extrapolation

claims with Pattern Age, and we address this decision in the Threats to Validity section,

section 6.6. For similar reasons, we chose not to include the interaction terms because of

the increased complexity every interaction term would add to the model; with 7 Pattern

Types and 10 Projects we would have 69 additional model coefficients. Note that one

combination of Pattern Type and Project would be captured by the intercept term within

the model, so we would only generate 69 coefficients. The results from our linear

regression analysis is shown in tables 6.10 through 6.17, with each table referring to a

single type of behavioral grime, each row representing the variable term from the model,

and each column referring to the statistical estimate of corresponding model term. We

have elected to exclude tables for PIO and TIO grime because they featured very low

counts of grime, and the estimates we calculated from them are inaccurate and therefore

provide limited value. Furthermore, the first row showcasing ‘Intercept’ refers to the case

capturing the Decorator Pattern Type in the commons-lang Project.

 Table 6.10 shows the results from our fitted model for PEAO grime. As an

example of how to glean a rate from this table, consider the Coefficient values from the

table for the rows Intercept, elasticsearch, Factory Method, and Pattern Age. These

estimates provide the statement: “The rate at which PEAO occurs in the elasticsearch

project in Factory-Method pattern instances is equal to 0.002 + (-0.010) + (-0.009) +

(Pattern Age * 0.0007). Generally speaking, we found very few instances of PEAO grime

136

so the estimates are near zero. Many of them are negative, suggesting that PEAO grime is

less in contexts corresponding to the row name the coefficient comes from. Though the

Intercept, which represents the commons-lang Project and the Decorator Pattern Type,

and the (Object) Adapter, Observer, and State Pattern Types, and the netty project

provided positive estimates, suggesting that in these contexts PEAO grime is higher.

Pattern Age is slightly positive, demonstrating that PEAO grime increases as a pattern

ages. Ultimately, these low estimates are likely due to the low count of PEAO grime

instances we identified in our study; future studies are needed to assert the strength of

these findings.

Table 6.10 PEAO grime model linear regression estimates. p-values, which test

the null hypothesis that the estimate is equal to zero, are shown emboldened if

they are statistically significant (< 0.05)

Variable Coefficient Standard Error t-value p-value

Intercept 0.002 0.008 0.31 0.75989

elasticsearch -0.010 0.007 -1.29 0.19778

glide -0.019 0.008 -2.28 0.02257

guava -0.010 0.007 -1.27 0.20358

hystrix -0.010 0.010 -1.03 0.30436

mockito -0.019 0.008 -2.28 0.02253

netty 0.028 0.007 3.69 0.00022

rxJava -0.040 0.008 -5.01 5.5e-07

selenium -0.025 0.008 -3.01 0.00265

springboot -0.010 0.009 -1.08 0.28162

Factory Method -0.009 0.004 -2.22 0.02655

(Object) Adapter 0.001 0.004 0.26 0.79716

Observer 0.010 0.028 0.38 0.70057

Singleton -0.007 0.004 -1.91 0.05649

State 0.045 0.003 11.64 <2e-16

Template Method -0.004 0.004 -1.16 0.24568

Pattern Age 0.0007 0.0001 5.19 2.1e-07

137

 Table 6.11 shows the results from our fitted model for TEAO grime. As an

example of how to glean a rate from this table, consider the Coefficient values from the

table for the rows Intercept, elasticsearch, Factory Method, and Pattern Age. These

estimates provide the statement: “The rate at which TEAO occurs in the elasticsearch

project in Factory Method pattern instances is equal to 0.033 + (-0.137) + (-0.107) +

(Pattern Age * 0.005). Similarly to PEAO grime, we found very few instances of TEAO

grime, so many of the estimates are near zero. Additionally, many of them are negative,

suggesting that TEAO grime is less in contexts corresponding to the row name the

coefficient comes from. However, and identical to PEAO grime, the (Object) Adapter,

Observer, and State Pattern Types, and the netty project provided positive estimates,

suggesting that in these contexts TEAO grime is higher. Note that the Intercept, which

represents the commons-lang Project and the Decorator Pattern Type, was also positive.

Pattern Age is slightly positive, demonstrating that TEAO grime increases as a pattern

ages. Similarly to PEAO grime, these low estimates are likely due to the low count of

TEAO grime instance we identified in our study; future studies are needed to assert the

strength of these findings.

138

Table 6.12 shows the results from our fitted model for PEAR grime. As an

example of how to glean a rate from this table, consider the Coefficient values from the

table for the rows Intercept, elasticsearch, Factory Method, and Pattern Age. These

estimates provide the statement: “The rate at which PEAR occurs in the elasticsearch

project in Factory Method pattern instances is equal to 1.368 + (-0.298) + (-1.439) +

(Pattern Age * 0.020). We found many more instances of PEAR grime than PEAO or

TEAO grime, and therefore our estimates are generally larger than the estimates for either

PEAO or TEAO grime. Though, many of them are negative, suggesting that PEAR grime

is less in contexts corresponding to the row name the coefficient comes from. Though,

the positive Intercept representing the commons-lang Project and the Decorator Pattern

Table 6.11 TEAO grime model linear regression estimates. P-values, which test

the null hypothesis that the estimate is equal to zero, are shown emboldened if

they are statistically significant (< 0.05).

 Variable Coefficient Standard Error t-value p-value

Intercept 0.033 0.145 0.23 0.8156

elasticsearch -0.137 0.133 -1.03 0.3016

glide -0.202 0.146 -1.39 0.1652

guava -0.099 0.137 -0.73 0.4684

hystrix -0.110 0.175 -0.63 0.5281

mockito -0.201 0.144 -1.39 0.1639

netty 0.371 0.134 2.77 0.0056

rxJava -0.420 0.138 -3.04 0.0024

selenium -0.263 0.145 -1.81 0.0700

springboot -0.103 0.159 -0.65 0.5166

Factory Method -0.107 0.075 -1.43 0.1536

(Object) Adapter 0.019 0.071 0.27 0.7839

Observer 0.122 0.487 0.25 0.8015

Singleton -0.075 0.068 -1.10 0.2718

State 0.486 0.067 7.23 4.8e-13

Template Method -0.052 0.071 -0.73 0.4625

Pattern Age 0.005 0.002 2.37 0.0179

139

Type offsets some of these negative values. Similar to PEAO and TEAO grime, the

(Object) Adapter, and State Pattern Types, and the netty project provided positive

estimates, suggesting that in these contexts PEAR grime is higher. Pattern Age is slightly

positive, illustrating that PEAR grime slowly increases as a pattern ages.

 Table 6.13 shows the results from our fitted model for PEER grime. As an

example of how to glean a rate from this table, consider the Coefficient values from the

table for the rows Intercept, elasticsearch, Factory Method, and Pattern Age. These

estimates provide the statement: “The rate at which PEER occurs in the elasticsearch

project in Factory Method pattern instances is equal to 9.952 + (-0.601) + (-6.713) +

(Pattern Age * 0.031). Our coefficients are generally larger than the estimates for Order

Table 6.12 PEAR grime model linear regression estimates. p-values, which test

the null hypothesis that the estimate is equal to zero, are shown emboldened if

they are statistically significant (< 0.05).

Variable Coefficient Standard Error t-value p-value

Intercept 1.368 0.393 3.47 0.0005

elasticsearch -0.298 0.360 -0.82 0.407

glide -1.144 0.394 -2.89 0.003

guava -0.556 0.370 -1.50 0.132

hystrix -0.518 0.473 -1.09 0.273

mockito -0.978 0.390 -2.50 0.012

netty 0.812 0.362 2.24 0.025

rxJava -1.364 0.373 -3.65 0.0002

selenium -1.078 0.393 -2.73 0.006

springboot -0.832 0.431 -1.93 0.053

Factory Method -1.439 0.202 -7.09 1.33e-12

(Object) Adapter 1.218 0.193 6.29 3.21e-10

Observer -0.400 1.319 -0.30 0.761

Singleton -1.434 0.185 -7.71 1.29e-14

State 0.627 0.181 3.45 0.0005

Template Method -1.235 0.193 -6.38 1.76e-10

Pattern Age 0.020 0.006 3.35 0.0008

140

grime, and are larger than PEAR grime estimates. Though, many of them are negative,

suggesting that PEER grime is less in the contexts corresponding to the row name the

coefficient comes from. Similarly to PEAR grime, the large and positive Intercept offsets

many of these negative coefficients. Aside from the Intercept which represents the

commons- lang Project and the Decorator Pattern Type, only two contexts provided

positive coefficient estimates, which were the hystix and netty projects. This suggests that

PEER grime is higher in these contexts. Interestingly, Pattern Age is slightly negative,

asserting that PEER grime slowly decreases as a pattern ages.

 Table 6.14 shows the results from our fitted model for PIR grime. As an example

of how to glean a rate from this table, consider the Coefficient values from the table for

Table 6.13 PEER grime model linear regression estimates. p-values, which test

the null hypothesis that the estimate is equal to zero, are shown emboldened if

they are statistically significant (< 0.05).

Variable Coefficient Standard Error t-value p-value

Intercept 9.952 0.679 14.65 2e-16

elasticsearch -0.601 0.621 -0.97 0.33306

glide -1.445 0.681 -2.12 0.03400

guava -2.484 0.639 -3.89 0.00010

hystrix 0.147 0.817 0.18 0.85728

mockito -1.865 0.674 -2.77 0.00564

netty 2.522 0.625 4.03 5.6e-05

rxJava -3.911 0.645 -6.06 1.4e-09

selenium -2.692 0.679 -3.96 7.4e-05

springboot -2.542 0.744 -3.41 0.00064

Factory Method -6.713 0.350 -19.18 2e-16

(Object) Adapter -5.386 0.334 -16.11 2e-16

Observer -8.243 2.276 -3.62 0.00029

Singleton -9.133 0.321 -28.46 2e-16

State -5.672 0.313 -18.09 2e-16

Template Method -7.384 0.334 -22.11 2e-16

Pattern Age -0.031 0.010 -2.91 0.00364

141

the rows Intercept, elasticsearch, Factory Method, and Pattern Age. These estimates

provide the statement: “The rate at which PIR occurs in the elasticsearch project in

Factory Method pattern instances is equal to 3.442 + (-0.070) + (-3.579) + (Pattern Age *

0.009). Our coefficients relating to Project are similar in size to the estimates for Order

grime, but are much smaller than PEAR or PEER grime estimates. However, the

coefficients relating to Pattern Type are larger. This suggests that Project Type holds

more weight when providing PIR grime rates. Many coefficient estimates are negative,

suggesting that PIR grime is less in the contexts corresponding to the row name the

coefficient comes from. Similarly to PEAR and PEER grime, the large and positive

Intercept offsets many of these negative coefficients. Aside from the Intercept which

represents the commons-lang Project and the Decorator Pattern Type, only two contexts

provided positive coefficient estimates, which were the netty and selenium projects. This

suggests that in these contexts PIR grime is higher. Pattern Age is slightly positive,

demonstrating that PIR grime slowly increases as a pattern ages.

142

 Table 6.15 shows the results from our fitted model for TEAR grime. As an

example of how to glean a rate from this table, consider the Coefficient values from the

table for the rows Intercept, elasticsearch, Factory Method, and Pattern Age. These

estimates provide the statement: "The rate at which TEAR occurs in the elasticsearch

project in Factory Method pattern instances is equal to 9.705 + (2.40) + (-9.966) +

(Pattern Age * 0.001). Our coefficients are much larger than the coefficients capturing

Order grime, and are similar in value to the coefficients for Persistent Repetition grime.

Many coefficient estimates are negative, suggesting that TEAR grime is less in the

contexts corresponding to the row name the coefficient comes from. Similarly to the

forms of Persistent Repetition grime, the large and positive Intercept corresponding to the

Table 6.14 PIR grime model linear regression estimates. p-values, which test the

null hypothesis that the estimate is equal to zero, are shown emboldened if they

are statistically significant (< 0.05).

Variable Coefficient Standard Error t-value p-value

Intercept 3.442 0.160 21.42 2e-16

elasticsearch -0.070 0.147 -0.48 0.6303

glide -0.068 0.161 -0.43 0.6692

guava -0.144 0.151 -0.95 0.3405

hystrix -0.128 0.193 -0.66 0.5064

mockito -0.313 0.159 -1.97 0.0493

netty 0.458 0.148 3.10 0.0019

rxJava -0.702 0.152 -4.60 4.2e-06

selenium 0.261 0.160 1.63 0.1032

springboot -0.319 0.176 -1.81 0.0697

Factory Method -3.579 0.082 -43.22 2e-16

(Object) Adapter -3.129 0.079 -39.58 2e-16

Observer -3.458 0.538 -6.42 1.4e-10

Singleton -3.575 0.075 -47.09 2e-16

State -2.684 0.074 -36.19 2e-16

Template Method -3.470 0.079 -43.91 2e-16

Pattern Age 0.009 0.002 3.95 7.7e-05

143

commons-lang Project and the Decorator Pattern Type offsets many of these negative

coefficients. Aside from the Intercept, only two contexts provided positive coefficient

estimates, which were the elasticsearch and netty projects. This suggests that in these

contexts TEAR grime is higher. Pattern Age is very slightly positive, demonstrating that

TEAR grime slowly increases very slowly as a pattern ages.

 Table 6.16 shows the results from our fitted model for TEER grime. As an

example of how to glean a rate from this table, consider the Coefficient values from the

table for the rows Intercept, elasticsearch, Factory Method, and Pattern Age. These

estimates provide the statement: "The rate at which TEER occurs in the elasticsearch

project in Factory Method pattern instances is equal to 41.631 + (2.739) + (-31.750) +

Table 6.15 TEAR grime model linear regression estimates. p-values, which test

the null hypothesis that the estimate is equal to zero, are shown emboldened if

they are statistically significant (< 0.05).

Variable Coefficient Standard Error t-value p-value

Intercept 9.705 3.579 2.71 0.0067

elasticsearch 2.400 3.275 0.73 0.4636

glide -4.452 3.591 -1.24 0.2151

guava -1.532 3.369 -0.45 0.6492

hystrix -1.238 4.308 -0.29 0.7737

mockito -4.176 3.551 -1.18 0.2396

netty 2.106 3.297 0.64 0.5228

rxJava -5.539 3.400 -1.63 0.1033

selenium -5.044 3.579 -1.41 0.1587

springboot -2.017 3.923 -0.51 0.6070

Factory Method -9.966 1.844 -5.40 6.6e-08

(Object) Adapter -5.208 1.761 -2.96 0.0031

Observer -5.265 11.996 -0.44 0.6607

Singleton -10.879 1.691 -6.43 1.3e-10

State -0.611 1.652 -0.37 0.7112

Template Method -9.590 1.760 -5.45 5.1e-08

Pattern Age 0.001 0.056 0.03 0.9798

144

(Pattern Age * 0.017). Our coefficients are the largest coefficients for all forms of grime

we identified, which is not a surprise considering TEER grime was the most widely

encountered. Many coefficient estimates are negative, suggesting that TEER grime is less

in the contexts corresponding to the row name the coefficient comes from. Similarly to

the forms of Persistent Repetition grime, the large and positive Intercept corresponding to

the commons-lang Project and the Decorator Pattern Type offsets many of these negative

coefficients. Aside from the Intercept, only two contexts provided positive coefficient

estimates, which were the elasticsearch and netty projects. This suggests that in these

contexts TEER grime is higher in these projects. Pattern Age is very slightly positive,

demonstrating that TEER grime slowly increases very slowly as a pattern ages.

Table 6.16 TEER grime model linear regression estimates. p-values, which test

the null hypothesis that the estimate is equal to zero, are shown emboldened if

they are statistically significant (< 0.05).

Variable Coefficient Standard Error t-value p-value

Intercept 41.631 5.433 7.66 1.9e-14

elasticsearch 4.739 4.972 0.95 0.34049

glide -18.853 5.452 -3.46 0.00055

guava -15.067 5.114 -2.95 0.00322

hystrix -5.593 6.540 -0.86 0.39238

mockito -13.407 5.391 -2.49 0.01290

netty 23.159 5.005 4.63 3.7e-06

rxJava -21.977 5.162 -4.26 2.1e-05

selenium -12.757 5.433 -2.35 0.01889

springboot -12.185 5.956 -2.05 0.04078

Factory Method -31.750 2.800 -11.34 2e-16

(Object) Adapter -18.379 2.673 -6.87 6.4e-12

Observer -22.922 18.211 -1.26 0.20816

Singleton -41.871 2.567 -16.31 2e-16

State -16.160 2.508 -6.44 1.2e-10

Template Method -22.893 2.672 -8.57 2e-16

Pattern Age 0.017 0.085 0.20 0.84198

145

 Table 6.17 shows the results from our fitted model for TIR grime. As an example

of how to glean a rate from this table, consider the Coefficient values from the table for

the rows Intercept, elasticsearch, Factory Method, and Pattern Age. These estimates

provide the statement: “The rate at which TIR occurs in the elasticsearch project in

Factory Method pattern instances is equal to 3.845 + (-0.457) + (-3.489) + (Pattern Age *

0.007)”. The scalar values of our coefficients are small for Repetition grime, and on par

with Order grime coefficients. Many coefficient estimates are negative, suggesting that

TIR grime is less in the contexts corresponding to the row name the coefficient comes

from. Similarly to the other forms of Repetition grime, the relatively large and positive

Intercept corresponding to the commons-lang Project and the Decorator Pattern Type

offsets many of these negative coefficients. Aside from the Intercept, only one context

provided positive coefficient estimates, which was the netty project. This suggests that

TIR grime is higher in the netty project. Pattern Age is slightly positive, demonstrating

that TIR grime slowly increases slowly as a pattern ages.

146

 The results from tables 6.10 through 6.17 illustrates one important finding that is

not immediately revealed through the ANOVAs tables in table 6.9. Specifically, as

expected from our ANOVAs table analysis shown in table 6.9, the Project and Pattern

Type variables dictated the count of behavioral grime much more strongly than Pattern

Age. In fact, the coefficient values we calculated for Pattern Age were consistently very

small, with the largest being from PEAR grime in table 6.12 with a value of 0.020.

Practically speaking, this means that ignoring the Project and Pattern Type, a pattern

instance would have to age through roughly 50 versions before it saw a single instance of

PEAR grime. This is in our highest Pattern Age coefficient too; lower Pattern Age

coefficients imply cases where a pattern instance would have to age longer than this

Table 6.17 TIR grime model linear regression estimates. p-values, which test the

null hypothesis that the estimate is equal to zero, are shown emboldened if they

are statistically significant (< 0.05).

Variable Coefficient Standard Error t-value p-value

Intercept 3.845 0.263 14.61 2e-16

elasticsearch -0.457 0.240 -1.90 0.05767

glide -0.939 0.264 -3.55 0.00038

guava -0.567 0.247 -2.29 0.02195

hystrix -0.400 0.316 -1.26 0.20675

mockito -1.116 0.261 -4.27 1.9e-05

netty 0.711 0.242 2.93 0.00337

rxJava -0.918 0.250 -3.67 0.00024

selenium -0.972 0.263 -3.69 0.00022

springboot -0.507 0.288 -1.76 0.07865

Factory Method -3.489 0.135 -25.71 2e-16

(Object) Adapter -2.718 0.129 -20.98 2e-16

Observer -2.971 0.882 -3.37 0.00076

Singleton -3.718 0.124 -29.89 2e-16

State -2.468 0.121 -20.30 2e-16

Template Method -3.482 0.129 -26.90 2e-16

Pattern Age 0.007 0.004 1.85 0.06504

147

predicted value to generate a single instance of behavioral grime. This finding illustrates

that the Project and Pattern Type have much more bearing on how grime is added or

removed from a pattern instance. An interesting side-note is that in the PEER grime table,

table 6.13, the estimated coefficient for Pattern Age is negative. This suggests that PEER

pattern grime generally is removed as a pattern ages. From a quality perspective, PEER

grime can be considered an especially unwanted type of grime because it refers to cases

where a pattern class contains an association to a non-pattern class. As associations are

stronger relationships than use-dependencies, it would be preferable to remove Persistent

forms of grime for the equivalent Temporary form of grime, if the situation allows. The

data reflects this thought, for PEER grime types.

6.4.8 RQ8

Our eighth research question considers if state of the art software quality analysis

tools are capable of identifying behavioral grime. This is the first step in our exploration

of how design pattern grime affects pattern and system quality. Our rationale is as

follows: if state of the art software quality analysis tools are capable of detecting and

measuring behavioral grime, the results from such tools would heavily complement the

findings from this study. If these tools are not capable of such, it is required to extend

upon those tools to capture an understanding of how behavioral grime affects system

quality. To assess this research problem, we performed a systematic search to identify

state of the art software analysis tools that perform behavioral analysis. The systematic

approach that involved searching popular search engines for terms including the

keywords ‘software quality analysis tools’. For each tool we identified, we searched

148

features of the tool on their website, specifically looking for terms that indicate

behavioral analysis, such as ‘Behavioral Analysis’. We reason that if a tool performs

some form of behavioral analysis similar to what we perform in this study, they would be

quick to generalize the capabilities of their tool, and therefore would label their form of

analysis ‘Behavioral Analysis’. The findings from this study is presented in table 6.18.

The results from table 6.18 indicate that none of the software quality analysis

tools we identified from our search are capable of performing behavioral analysis. Nearly

all tools advertised ‘static code analysis’ as their primary feature, of which behavioral

analysis is the corollary to. To verify the results from this study, we performed an in-vitro

experiment [40] wherein we tested the tool SonarQube [32] on a pattern instance

Table 6.18 Summary of results from RQ8, which considers if state of the art software

quality analysis tools are capable of identifying and/or measuring behavioral grime.

Tool name Tool description Behavioral

Analysis?

FindBugs Static analysis tool

to look for bugs

No

PMD An extensible

cross-language static analyzer

No

SonarQube Your teammate for

Software Quality and Security

No

QATCH[6] An Adaptive

framework for software product

quality model assessment

No

Understand Visualize your code No

Parasoft Automated

Software Testing Tools for

Creating High Quality Software

No

Coverity Find and fix

security and quality issues as you

code, fast

No

149

evolution. This pattern instance evolution is the same one used to answer RQ1 in section

6.4.1, in which we started with a perfect implementation of an Observer pattern, with

perfect conformance to specifications and no grime. Recall that to this pattern instance

we simulated design pattern evolution by injecting one singular form of grime, which

constituted a version. We removed each injected grime instance in the next version to

ensure that the presence of pattern grime was the only variable that was changing. We

evaluated the quality and technical debt of this pattern instance evolution using the tool

SonarQube, and found that the changing quality of each pattern instance across versions

was insignificant, and any deviation was due to the addition or removal of lines of code,

which serve as a normalization value in SonarQube results. This means that SonarQube,

which does not claim to perform behavioral analysis, is incapable of performing

behavioral analysis. However, this result illustrates a gap in the state of the art,

specifically that these tools are incapable of performing behavioral analysis. This means

the next steps of this research will seek to extend existing quality models to provide

behavioral analysis capabilities, which can ultimately be incorporated into these state-of-

the-art quality tools to provide more useful results to practitioners and stakeholders alike.

6.4.9 RQ9

Research question 9 considers how the ISO 25010 software quality specification

[36] can be implemented such that a resulting operational model includes design pattern

grime in its calculations. Recall from section 6.2.1 that the ISO 25010 software product

quality model consists of eight primary quality characteristics at its highest level of

abstraction, and each of those eight quality characteristics has a set of quality properties

150

that represent the grounding of various properties that are important from an

implementation perspective. The problem of extending and implementing the ISO 25010

software quality model involves identifying code-level violations and mapping them to

the various quality properties, which in term map to the quality characteristics. We have

elected to perform this mapping process in the same manner as the tool QATCH [70],

which provides a holistic approach to the mapping process and greater quality

calculations, in a simple manner that ensures the resulting model is not too complex that

it distracts from the value it offers. Models that fit into this category of being too

complex, such QUAMOCO [76], rarely see practical use because of the complicated

nature of the mapping process, which requires in-depth and manual calibration involving

connecting each code-level measurement to each software quality property or

characteristic, as well as manually specifying the weight that each measurement has on

each quality entity. The tool QATCH avoids this issue by requiring stakeholders to

specify fuzzy levels of importance for each quality property, characteristic, and code-

level measurement in a table format, and automatically performing the mapping process

based on its holistic assumption. See figure 6.12 for a visual example of the QATCH

model, which is taken from [70]. As an example illustrating how the mapping process

occurs, a user of QATCH specifies that a code-level measurement A is twice as impactful

as code-level B measurement on the quality property C, and therefore will generate

weights between A and C, and B and C, that illustrate this relationship. The mathematical

process that is responsible for generating the weights involves a Fuzzy Logarithmic Least

Squares method wherein each entity (measurement, property, or characteristic) at each

151

layer in the quality hierarchy is ranked according to the other entities at that layer, and

mapping weights are assigned based on the lower quartile, median, and upper quartile

values that the entity was calculated, such that the sum of all weights going into the next-

higher level of the hierarchy sums to 1. The utilization of this model to capture system

quality assures that an extension has no effect on the default model’s code-level

measurement calculations, and only affects the edge weights that make up the calculation

for next-highest level of the overall hierarchy. In other words, the effect of each code-

level measurement from the default QATCH model on each quality property and

characteristic remains the same, yet we allow for the incorporation of design pattern

grime measurements such that we can understand the effects of design pattern grime on

each quality property and characteristic.

To perform this model extension, we first need to select metrics that summarize

the code-level measurements for design pattern grime we have computed. This step is

Figure 6.12 Visual illustration of the QATCH model, image taken from [70].

152

important for two reasons. First, it ensures the resulting model is not too complex that it

will preserve the simplicity property, which was a major reason for choosing QATCH in

the first place. Specifically, we have 16 code-level measurements for design pattern

grime, one for each form of grime including both structural and behavioral, and the

inclusion of all 16 code-level measurements would substantially increase the number of

quality rankings an end-user would need to perform. This increase is on the order of

thousands of more rankings, because all metrics need to be pairwise ranked against all

other metrics, and for each quality characteristic under consideration, which is eight

according to the ISO 25010 specification [36]. Second, the default QATCH model

hierarchy consists of metrics that summarize code-level measurements, so for consistency

sake we also build metrics that summarize design pattern grime. The metrics we selected

to summarize design pattern grime are presented in table 6.19.

153

Table 6.19 also shows the expected relationship each metric takes with quality via

the column ‘Relationship with Quality’. In other words, this column signifies how quality

changes as the metric’s measurement changes. A direct relationship implies that both

increase or decrease together, while an inverse relationship implies the opposite happens;

as the measurement increases, quality decreases, or vice versa. We selected values for the

relationship with quality borrowing from analogous Object-Oriented system metrics, such

as Pattern Instability being the design pattern equivalent of Instability from [50], as well

as domain knowledge of the metrics, i.e., Pattern Structural and Behavioral Aberrations

embody negative and unexpected additions to a design pattern, therefore are inversely

related to quality. In terms of integration into the QATCH model, each metric from table

18 fits into the ’Properties’ layer, representing their own node, presented from figure

Table 6.19 Summarization metrics we have selected for the QATCH model

extension.

Metric name Description Range Relationship

with Quality

Pattern Structural

Integrity

M1 from table 3.1 [0,1] direct

Pattern Behavioral

Integrity

M2 from table 3.1 [0,1] direct

Pattern Instability M6 from table 3.1 [0,1] inverse

Pattern Structural

Aberrations

Count of

occurrences of all

structural grime in a

pattern instance

divided by the pattern

size.

[0, ∞] inverse

Pattern Behavioral

Aberrations

Count of

occurrences of all

behavioral grime in a

pattern instance

divided by the pattern

size.

[0, ∞] inverse

154

6.12. Because of the simplicity of QATCH, nothing else from the base model needs to be

changed; therefore we ensure this extension has no effect on the default model’s code-

level measurement calculations, and corresponding quality properties. However, because

of the holistic nature of QATCH, the values of the quality characteristics and greater

quality measurement will be changed, but that change indicates the extension has been

completed correctly.

6.4.10 RQ10

Research question 10 is concerned with identifying the relationship between

behavioral grime and system quality and TD. In essence, this question involves

calculating system quality using the QATCH model [70] for each version of each project

under analysis, and applying a correlation analysis to quality and design pattern

behavioral grime. A key point here is that because of QATCH’s holistic nature, which

provides a better estimation of system quality than piece-wise analysis, we do not capture

the quality or grime counts of individual pattern instances. Rather, we use aggregation

measurements to summarize quality and grime counts of individual pattern instances

across projects and versions. In other words, each project at each version will have one

measurement for both quality and pattern behavioral grime. Before the QATCH model

can be applied to these data, two important steps are necessary; ranking quality entities

and model calibration.

6.4.10.1 Ranking Quality Entities. The process of ranking quality entities involves

specifying the importance for each Property and Characteristic entity presented in figure

155

6.12, compared to all other entities a that layer, to make up the later above it. That is, for

each layer in the QATCH model we need to specify importance of each entity in the

layer below it. For the Property layer, we consider all Measurements of the QATCH

default model, including (Bad Functionality, Comprehensibility, Redundancy,

Structuredness, Assignment, Resource Handling, Cohesion, Coupling, Complexity,

Messaging, and Encapsulation) and our extension Measurements presented from research

question 9 in section 6.4.9 (Pattern Structural Integrity, Pattern Behavioral Integrity,

Pattern Instability, Pattern Structural Aberrations, Pattern Behavioral Aberrations). The

Measurements from the QATCH default model come from the PMD ruleset list21 and the

CKJM (Chidamber and Kemerer Java Metrics[16]) extended metric package22. For the

Characteristics layer, we properly exemplify the ISO-25010 specification by considering

all eight quality properties (Functional Suitability, Performance Efficiency, Compatibility,

Usability, Reliability, Security, Maintainability, Portability) from figure 6.1.

We complete the ranking process in a bottom-up approach, starting with the

Measurements so that we can complete the Property layer. To complete the rankings, we

utilized the default QATCH rankings as well as our domain knowledge of design pattern

grime. The Property rankings are presented in appendix A, figures 6.16a and 6.16b, with

Characteristics shown on the left side of each line, and each Property’s ranked

importance is shown on top of each line. Tick lines indicate when multiple Properties

share the same importance. Once the Properties layer has been completed, we completed

21 https://pmd.github.io/

22 https://github.com/mjureczko/CKJM-extended

156

the Characteristics layer. When completing this layer, we assumed what we consider to

be a ‘Standard Operations’ perspective, or one that models the average work week of a

practitioner in an agile setting. In this perspective, a practitioner maintains a status quo,

with perhaps a few pressing matters, yet not in an emergency mode. Of course, this is not

true for all situations, yet the benefits of using QATCH allows for easy re-configuration

of rankings to fit any need. Our rankings for the Characteristics layer is presented in

appendix A, figure 6.17.

6.4.10.2 Model Calibration. QATCH requires model calibration before it can be

appropriately applied to measure quality in a project. The calibration process involves

calculating the metrics that make up the Properties layer across a large number of

projects, and selecting the lowest, median, and highest value of each metric after

removing outliers via inter-quartile range selection [70]. This process of ensures that the

model contains maximum level of variability from the benchmark data. To calibrate our

model, we used all of the projects and all their versions we present in this study treating

each as if it were an independent project. We do this because we don’t concern ourselves

with the scalar values of system quality, but rather we care about the relationships

between quality and behavioral grime. Regardless, in [70], it is shown that little to no

statistical difference occurs in model calibration when the benchmark repository features

greater than 1.3 million lines of code, which we surpass with our projects. Once our

model was calibrated, we evaluated every project and every version of this analysis (in

table 6.3) using our implementation and calibration of QATCH.

157

After model calibration, we calculated the Total Quality Index (TQI) for each

project across each version. The precise value of the TQI comes from the calibration

process; if the model is calibrated on different benchmark repositories then each of these

projects will yield different TQI values. Though, as [70] suggests, as the size of the

benchmark repository increases, little statistically significant change is seen in TQI

scores. The TQI value can be interpreted as follows: ‘The quality score of a project when

considering all of the benchmark repository as a reference point.’ The TQI score must be

in range [0,1], inclusive, and it is considered that scores between [.8 and 1.0] represent 5-

star quality, [.6 to .8] represent 4 star quality, etc. The TQIs for each project are presented

in figure 6.13. The Software Versions are presented on the x-axis, while TQI

measurement is presented on the y-axis. Lines on the graph capture the TQI score of a

software project over the versions under analysis. Recall that Software Version is a

categorical variable, so while tempting, we cannot perform time-series analysis on these

data. A visual inspection of figure 6.13 reveals that the quality of these projects does not

majorly fluctuate over the versions we analyzed, beyond roughly a 5% change in TQI

score. Though none of the projects feature monotonicity, which implies that either or

both of: (1) when new features are added their quality is higher than existing code, or (2)

developers are actively taking steps to refactor their code to improve quality.

158

After quality calculations were complete, we generated scatter plots between

pattern grime and quality to identify the precise nature of the relationship. Specifically,

we use our metric Pattern Behavioral Aberrations, from table 6.19, as an aggregation of

pattern grime per software project and across versions because of the holistic nature of

our quality measurement. This scatter plot is presented in figure 6.14, with TQI scores

shown on the y-axis, and scores of Pattern Behavioral Aberrations are shown on the x-

axis. Pattern Behavioral Aberration scores capture how few instances of behavioral grime

exist in a project, compared across projects in the benchmark repository. The score of

Pattern Behavioral Aberrations is non-intuitive; high scores on the x-axis indicate lower

individual measurements of grime, i.e. better pattern conformance, and lower scores

indicate higher individual measurements of grime. Points in the graph represent an

individual project’s TQI score and Pattern Behavioral Aberration score. Generally, we

Figure 6.13 Quality scores (TQI) for each project under analysis, over each version

under analysis. Software Version is shown on the x-axis, while TQI measurement is

shown on the y-axis. Lines on the graph capture the TQI score of a software project

over the versions under analysis

159

see a linear trend between Pattern Behavioral Aberrations and TQI, suggesting our

relationship will be linear in nature. Because the nature of our data is a rank-based

percentage, the rank being based on the benchmark repository we calibrated our QATCH

model on, it falls under the ordinal numeric scale. This means we cannot use Pearson’s

method for calculating the correlation coefficients capturing the relationship between TQI

and Pattern Behavioral Aberrations as we did for research question 5, from section 6.4.5.

Instead, we use Spearman’s rank-order correlation calculation. Spearman’s provides a

nonparametric alternative to Pearson’s. The only assumption required for Spearman’s is

that the data has ordinal nature, which ours does. The estimate of Spearman’s ρ for these

data is 0.594, suggesting a strong positive relationship between TQI and Pattern

Behavioral Aberration score. When asserting the null hypothesis that the relationship is

equal to zero, which implies no relationship, we received a p-value of < 2.2−16,

suggesting that the estimate of 0.594 is an accurate non-zero estimate of the true

relationship between TQI and the Pattern Behavioral Aberration score.

160

A strong relationship between TQI and Pattern Behavioral Aberration score

indicates that pattern behavioral grime and system quality are strongly and inversely

related. Recall that the Pattern Behavioral Aberration score captures how few instances of

pattern behavioral grime occur in a software project when compared to all other projects

in our benchmark repository. That is, a higher score indicates fewer instances of

behavioral grime. Because of this, when we synthesize the results and translate Pattern

Behavioral Aberration scores to design pattern behavioral grime measurements, we need

to consider inverted relationships. Therefore, because we identified a strong relationship

between TQI and Pattern Behavioral Aberration score, we can assert that a strong inverse

relationship exists between quality and pattern behavioral grime.

Figure 6.14 Scatter plot of TQI and Pattern Behavioral Aberrations. Scores of TQI are

shown on the y-axis, and scores of Pattern Behavioral Aberrations are shown on the x-

axis. Pattern Behavioral Aberration scores capture how few instances of behavioral

grime exist in a project, compared across the other projects we used to calibrate the

model. High scores indicate lower individual measurements of grime, i.e. better

pattern conformance, and lower scores indicate higher individual measurements of

grime. Points in the graph represent an individual project’s TQI score and Pattern

Behavioral Aberration score.

161

This research question also aims to consider the relationship between pattern

behavioral grime and Technical Debt. Recall that in research question 8, from section

6.4.8, we identified that no state-of-the art tools are capable of identifying or measuring

behavioral grime, and that as a case study the state-of-the-art TD measurement tool

SonarQube did not detect behavioral grime. Additionally, we know that results from a

recent Dagstuhl seminar [4] suggest the definition of TD is narrowed to consider only

internal code-quality issues, specifically pertaining to Maintainability. From these two

points, we can conclude that no tools currently exist that calculate the TD score of

behavioral grime, yet that Maintainability serves as the boundaries on a search space that

contains all TD items. From this point, we choose to use Maintainability as a surrogate

measurement for TD. While we do not have the means to calculate the actual effects of

behavioral grime on TD, which requires domain-specific calibration techniques, we do

know that any TD items must be contained within the Maintainability quality

characteristic. Therefore, in order to assess the relationship between pattern behavioral

grime and TD, we consider the relationship between pattern behavioral grime and

Maintainability score.

To identify the relationship between pattern behavioral grime and Maintainability,

we apply a similar analysis as we did between pattern behavioral grime and quality. This

entails generating a scatter plot and calculating the Spearman correlation coefficient. The

scatter plot between Pattern Behavioral Aberrations and Maintainability is shown in

figure 6.15. Similar to the TQI scatter plot in figure 6.14, scores of Maintainability are

shown on the y-axis, and scores of Pattern Behavioral Aberrations are shown on the x-

162

axis. Pattern Behavioral Aberration scores capture how few instances of behavioral grime

exist in a project, compared across projects in the benchmark repository. High scores

indicate lower individual measurements of grime, i.e. better pattern conformance, and

lower scores indicate higher individual measurements of grime. Points in the graph

represent an individual project’s Maintainability score and Pattern Behavioral Aberration

score. We see a similar linear trend in this scatter plot as we did for the TQI scatter plot,

and therefore decided to calculate Spearman’s ρ for the same reasons. Our data yields a

Spearman’s ρ value of 0.6652, implying a strong positive relationship between Pattern

Behavioral Aberration scores and Maintainability. The p-value for this correlation

coefficient is < 2.2−16, implying the estimate of 0.6652 is an accurate non-zero estimate

of the true relationship between Maintainability and the Pattern Behavioral Aberration

score. For the same reasons as the TQI analysis, we can state that a strong negative

relationship exists between pattern behavioral grime and Maintainability. Furthermore,

we generalize this statement to state that a strong negative relationship exists between

pattern behavioral grime and Technical Debt.

163

6.5 Discussion

The high-level goals of our study were two-fold. First, we sought to investigate

the usefulness of incorporating behavioral analysis in the context of design patterns,

complementing existing structural models. Second, we sought to evaluate the relationship

behavior and quality so that high- level goal of our study was to investigate the

relationship between pattern behavioral grime and system quality and technical debt.

Figure 6.15 Scatter plot of Maintainability score and Pattern Behavioral Aberrations.

Scores of Maintainability are shown on the y-axis, and scores of Pattern Behavioral

Aberrations are shown on the x-axis. Pattern Behavioral Aberration scores capture

how few instances of behavioral grime exist in a project, compared across the other

projects we used to calibrate the model. High scores indicate lower individual

measurements of grime, i.e. better pattern conformance, and lower scores indicate

higher individual measurements of grime. Points in the graph represent an individual

project’s Maintainability score and Pattern Behavioral Aberration score.

164

6.5.1 Structure vs Behavior

With respect to the relationship between structure and behavior, our results from

research questions 1-7 indicate that studying behavior offers a new dimension of insight

into design pattern evolution. Prior to this study, only structural analysis methods have

been utilized to study design pattern evolution, which do provide better analysis than

none at all, yet do not provide a complete view of the patterns or system. This statement

is backed by our findings from table 6.5, which show that pattern instances are most

likely to contain both structural and behavioral grime at some point in their lifetime.

Interestingly, a large number of pattern instances contained structural grime but no

behavioral grime. In the absence of behavioral grime analysis, this distinction would not

be possible. The two categories of most prevalent grime, labeled A and B according to

figure 6.8, would be combined as one designation if behavioral grime had not been

explored. Label C, corresponding to pattern instances that contain behavioral grime but

no structural grime, were considered impossible in the real world because of our initial

understandings that structural deviations enforces behavioral deviations. In other words, a

behavioral deviation would be impossible without a structural deviation in the first place.

Our findings illustrate a select few pattern instances that violate this level of

understanding, but it still represents a violation of our perceived understanding of design

pattern evolution. Our initial statement that structural deviations enforce behavioral

deviations is misguided; instead, a better statement is that structural deviations guide

behavioral deviations. In other words, the structural aspects of a pattern, and more

specifically the instances they are violated in, play a strong role on the presence of

165

behavioral deviations, but they do not restrict the presence of behavioral deviations.

While the case where behavioral deviations appear in the absence of structural ones

appears rare in software projects, it is still a possibility. This finding is significant, if not

just for the context and research area of this study, but for (1) studies that seek to explore

behavior in non-pattern settings, such as security concerns or computational performance,

as well as (2) explorations of behavior in tools that perform quality and technical debt

analysis. It is important to remember that just because an issue does not exist within a

project’s structure, issues might still exist with the project’s behavior.

6.5.2 Behavior and Quality

Research questions 8-10 sought to answer the high-level goal concerned with the

relationship between behavior and quality. We first identified that no state-of-the-art tools

currently exist that identify behavioral grime. This finding, while not being a surprise,

illustrates a gap in the field. And the identification of this gap, coupled with our results

from our first high-level research goal which shows that behavior offers a new

perspective into software quality assurance techniques, reveal that operational models of

behavioral analysis offer a niche solution to a novel problem. However, it is the view of

these authors that the implementation details of such operational models will always be

under contention, simply because different stakeholders hold different views of what

should be considered important in software quality. For example, a company following a

rigorous lifecycle to release human-critical software will be concerned with different

quality items than an indie video game development company; such differences will

always exist to some degree. This problem is why we have elected to choose a

166

configurable quality model, specifically QATCH [70], to extend. The configuration in

this model comes from the varying degrees of importance for each of the software quality

Properties and Characteristics, and we show our rankings for the degrees of importance in

appendix A, figures 6.16a, 6.16b, and 6.17. We expect that these rankings will change

under different domains, because of the different quality concerns of stakeholders. Our

extension of the QATCH model accommodates this, by providing design pattern

evolution quality Properties that a user of QATCH can configure to their degree of

importance. Specifically, we focus on the behavioral aspects of this extension because

that is our primary concern in this research. Yet, this extension shows the process that

any user of QATCH can follow to properly extend a model they are concerned with. This

research and process proves the concept that was proposed in [70].

In terms of behavioral effects of system quality, we found strong inverse

relationships between quality and behavioral grime, meaning that under our calibration of

the quality model QATCH, the addition of behavioral grime elements in a project was

strongly correlated with a decrease in system quality. We need to point out a few

assumptions we made to reach this statement. First, we assumed a ‘strict’ implementation

of design patterns. That is, we allowed each design pattern instance to have one incoming

non-pattern member, and one outgoing non-pattern member. This decision was based on

two premises: (1) patterns need some non-pattern relationships to actually be functional,

and (2) preservation of maintainability in the design pattern instance is more important

compared to system functionality. The second premise we make because we reason that

non-design pattern based solutions can be used to solve as many problems as pattern-

167

based solutions, but the choice to use a design pattern implies one expends more effort

designing and developing the pattern instance, but that that effort pays off in the long run

with faster extensions of the code in the future. This ‘strictness’ expectation can be

configured though; our tools and methods presented herein have the capability built-in, so

that users that want a more relaxed implementation of design pattern instances can

consider such.

A second assumption we made in this research is that the addition of pattern

grime has a homogeneic and monotonically-negative impact on system quality. Meaning

that each instance of grime that is added, per grime type, has the same negative effect on

system quality. It could very well be that in certain applications, adding grime to a design

pattern instance is simply the optimal solution to the problem, and our models and tools

do not capture this possibility. However, capturing this phenomenon is incredibly

difficult, and would likely require domain-specific implementations of models and tools.

We aim to provide general models and tools with our research, with the benefit of

configurability, yet we understand this large assumption in our study.

6.6 Threats to Validity

There are several design and implementation considerations in this study that

threaten the validity of the results. External validity is concerned with the generalization

of results. In this study, we limited ourselves to 20 minor-release versions of ten Java

projects, chosen based on popularity from the online repository GitHub. While we

attempted to systematically select projects so that our results would be generalizable, we

168

can only claim that our results hold true for the projects under analysis, and for the

language (Java). More case studies are necessary before more general claims can be made

concerning behavioral impacts, and specifically design pattern behavioral grime.

However, our extension of the QATCH quality model is generalizable, and the manner in

which it was developed makes it easy to do so [70].

Internal validity refers to the ability to reach causal conclusions based on the

study design. Internal validity is minimal in this study because we make no causal claims,

just correlations and linear model-fitting. In terms of the correlation results, specifically

research question 5 from section 6.4.5, and research question 10 from section 6.4.10, we

do not make claims beyond identifying the rate at which structural grime and behavioral

grime, and behavioral grime and quality, increase together. In terms of research question

7, from section 6.4.7, which identifies the rate that patterns develop behavioral grime, we

do provide estimates for a linear model equation. However, these estimates and their

greater equation cannot be used to interpolate or extrapolate the rate at which behavioral

grime appears in pattern instances. Generally, and though many times done incorrectly,

linear models should not be used to extrapolate data, which we do not do here. In terms

of interpolation, we cannot interpolate on these data either. This is because our choice of

time-dependent variables are Software Version and Pattern Age, which are both

categorical variables. We do not know how much physical time actually passed in

between subsequent Software Versions, or resulting Pattern Ages. While Pattern Age is a

derived metric based on Software Version, we are still under the same constraints; no

data interpolation can be performed. However, our results showed that Project and

169

Pattern Type had the largest statistically significant impact on design pattern grime,

suggesting their estimates supply better approximations for pattern behavioral grime.

Construct validity refers to the choice of independent and dependent variables,

with respect to the conclusions of the study. Construct validity is threatened in our study

from two major sources; pattern coupling and the measurements of software quality. In

terms of the pattern coupling, it is important to note that we do not consider pattern

coupling in this study. Pattern coupling entails that two or more separate pattern

instances, likely from two or more separate pattern types, share one or more members.

Our definitions of design pattern grime, and our conclusions, do not take into account the

possibility that grime for one pattern instance might be a necessary member of a separate

pattern instance. In terms of the measurements of software quality, construct validity is

violated because of the selection of quality Properties used in the default QATCH model.

The default QATCH model uses 11 Properties, originating from the PMD ruleset list23 or

the CKJM-extended metric package24. These Properties provide beneficial perspectives

into quality, but they do not encompass all Properties that need to be considered when

accounting for quality. We do extend the QATCH model to consider behavioral

perspectives, but ultimately more Properties may need to be developed before a complete

grasp of quality can be achieved.

23 https://pmd.github.io/

24 https://github.com/mjureczko/CKJM-extended

170

6.7 Conclusion

Our research goals focused on the exploration and initial understandings of

behavioral deviations, as they pertain to design pattern evolution and software quality

assurance. To this end, we have constructed a taxonomy that classifies behavioral grime

types. Furthermore, we designed and implemented a case study wherein we measured

counts of structural and behavioral grime, as well as software quality and TD, across

pattern instance evolutions pertaining to seven design pattern types, originating from 20

versions of ten open source software projects. We evaluated the relationships between

structural and behavioral grime and found statistically significant cases of strong

correlations between specific types of structural and behavioral grime. We computed

regressions that capture the rate at which design pattern behavioral grime appears in

pattern instances, specifically finding that pattern type and project provided the most

dominating terms in the models. We extended a state-of-the-art operationalized quality

model, QATCH [70] to incorporate model terms that capture design pattern evolution

properties, including behavioral grime, and we identified that a strong inverse

relationship exists between design pattern behavioral grime and system quality.

Furthermore, we identified a strong inverse relationship between design pattern

behavioral grime and Maintainability, suggesting that behavioral grime is strongly related

to TD.

171

CHAPTER SEVEN

CONCLUSIONS

7.0 Foreword

 This chapter presents the conclusions of this doctoral dissertation. We begin in

section 7.1 by re-iterating the problem statement, followed by a summarization of the

work presented in the greater body of this document in section 7.2. Section 7.3 lists the

contributions of this work, and section 7.4 considers the future of this work. Section 7.5

concludes.

7.1 Problem Statement

 Software quality assurance techniques provide software developers and managers

with the methods and tools necessary to monitor their software product to encourage fast,

on-time, and bug-free releases for their clients. Ideal circumstances hold that the methods

and tools of software quality assurance provide significant value and highly-specialized

results to product stakeholders, while being fully incorporated into a firm’s process and

with actionable and easy-to-interpret outcomes. However, modern approaches fall short

on these goals, and while many QA techniques exist that provide results to stakeholders,

many times these results do not provide their stated value or are simply ignored. We

claim this is due to two primary influences. First, current software QA approaches do not

fully reveal all aspects of a software product because of their focus on static, or structural

analysis. By itself, static analysis is not detrimental, yet it simply does not provide

172

sufficient insight into a product’s inner-workings to allow for a thorough analysis.

Second, many QA techniques provide general packaged solutions, which fail to capture

domain-specific concerns. Different firms have different expectations of quality, both

from an end-user perspective and from an internal software quality perspective. Packaged

solutions do not provide maximum value because they either do not allow for the ability

to configure the solution to cater to firm needs, or the customizations they provide are

difficult to implement because of the arbitrary process in which such a solution is

calibrated. Specifically, our formal problem statement is as follows:

Ideal circumstances hold that software quality assurance efforts

provide significant, highly-specialized, and immediate value to

software product stakeholders. However, many modern

approaches fall short on these desires, due to lack of models that

fully capture the entities of a system, as well as models that fail to

capture domain specific concerns.

To remedy these issues, we have committed to the exploration of behavioral

analysis techniques, which consider the mechanisms that occur as a product is executing

its code at runtime. Specifically, we focus on design pattern evolution because of the

known quality properties of design patterns, yet our methods capture all instances where

expected product behavior is known. The exploration of behavioral analysis techniques

complements existing structural analysis techniques, expanding upon the capabilities of

state-of-the-art QA techniques. Furthermore, the manner in which we developed and

evaluated these newfound capabilities, via extending an existing quality model that is

173

highly-customizable yet easy-to-use and interpret, encourages a straightforward and non-

arbitrary customization that fits all domains.

7.2 Summary of Work

Chapter 1 formulated the problem statement of this dissertation, and set the stage

for the work performed in the greater body of this document. Chapters 2 and 3 served as

empirical evidence that the problem statement is indeed an issue in the field. Specifically,

Chapter 2 revealed that modern QA methods support developer intuition, and Chapter 3

revealed that out-of-the-box implementations of state-of-the-art tools provided differing

results on what is considered good software quality. These two results laid the

groundwork for the larger body of work presented in this dissertation.

Chapter 5 illustrates the results from a presentation [63] to the greater empirical

software engineering community at the International Doctoral Symposium on Empirical

Software Engineering (IDoESE’15), of a proposed plan of action to address a clear gap in

the research. This plan entailed exploring behavioral deviations in the context of design

pattern evolution, so that QA techniques can be advanced further, to ultimately supply

practitioners and managers with more advanced and useful techniques to monitor and act

on software QA. The feedback we received was that our four goals were very ambitious,

and it was suggested we remove the fourth goal pertaining to prediction of behavioral

deviations, which we elected to do. Yet it was agreed upon that such a plan would

provide significant value to the field.

174

Chapter 6, which is based on a publication [83] at the International Conference on

Software Reuse (ICSR’19) conference, and a work-in-progress submission to the IEEE

Transactions on Software Engineering, presented the results from the remaining two

research goals. These goals are paraphrased as: (1) “investigation of design pattern

instances for the purpose of identifying and characterizing behavioral grime”, and (2)

“quantify the impact of behavioral grime on quality and TD”. To address the first goal,

we constructed a taxonomy of design pattern behavioral grime that considers all known

forms of behavioral grime, and is used as a complement to existing structural taxonomies.

We then evaluated the relationship between behavioral grime and structural grime, to

illustrate how the two forms of analysis can complement one another. We found that

strong relationships exists between five pairs of structural and behavioral grime,

specifically TEER/PEE, PEER/TEE, PEAO/PI, PEAO/TEA, and PEAO/TI. To address

the second goal, we extended an existing state-of-the-art operational quality model to

incorporate model-based behavioral issues, and we used the extended model to evaluate

the relationship between behavioral grime and quality and TD. We found that the

presence of behavioral grime has a strong negative correlation with system quality, and a

strong negative correlation with Maintainability, which serves as a surrogate

measurement to TD.

7.3 Contributions

The contributions of this body of work are the following:

1. Identification of model-based behavioral deviations in code.

175

2. Classification of model-based behavioral deviations in code into a

taxonomy.

3. Comparison to existing structural models to reveal how behavioral

analysis can complement structural analysis.

4. Extension of an existing state-of-the-art quality measurement model to

incorporate model-based behavioral deviations.

5. Evaluation of the relationship between model-based behavioral deviations

and system quality and TD.

7.4 Future Work

 Because this work marks the beginning of the exploration of a new phenomenon,

there are many routes for future work to extend this work. First, expanding upon the

behavioral grime taxonomy would be a valuable prospect. This would require a combined

effort of in-vitro and in-vivo work, where the in-vitro work represents the possible or

theoretical forms of behavioral grime, and the in-vivo work validates that such a form of

behavioral grime exists in the real-world. We were not able to conceive of additional

forms of behavioral grime when completing this work, but that does not mean additional

forms of behavioral grime do not exist in software systems. If additional forms of

behavioral grime are discovered, subjecting them to the same process as presented herein

would be helpful for generating a deeper understanding of them. Specifically, this would

entail characterizing their forms in an extended taxonomy, and evaluating them with

respect to quality and TD.

176

 A second form of future work entails expanding on the projects under analysis.

The behavioral grime work presented in this dissertation features ten Java project, and 20

versions of each project. However, this sample is not representative of the entire

population of software project, so our ability to generalize is limited. Performing

replication studies on more projects would build on the results from this study, which

would increase understanding of this field.

 A third outlet of future work involves exploring more design pattern types for

behavioral grime. The work in Chapter 6 considers only seven pattern types, which were

selected because they were the most populous pattern types reported from the design

pattern detection tool we used [75]. We found numerous forms of behavioral grime

across six of the seven pattern types, with the exception of the Observer pattern, though

we only identified one pattern instance evolution of the Observer pattern. Expanding on

the pattern types will help identify the extent of behavioral grime.

7.5 Conclusion

 This body of work encompasses the work performed to fulfill the requirements of

the Doctor of Philosophy degree. Herein, we identified a gap in the research field

pertaining to software quality assurance. Chapters 2 and 3 served as empirical evidence

such a gap exists. Chapter 5 proposed a plan to explore the gap, which was vetted by the

empirical software engineering research community as being a valuable contribution to

the field. Chapter 6 completed the proposed contribution, resulting in the identification,

classification, and evaluation of model-based behavioral deviations in software.

177

REFERENCES CITED

178

1. Ammann, P., & Offutt, J. (2008). Introduction to software testing. Cambridge

University Press.

2. Ampatzoglou, A., Michou, O., and Stamelos, I. Building and mining a repository of

design pattern instances: Practical and research benefits, Entertainment Computing,

Volume 4, Issue 2, April 2013, Pages 131-142, ISSN 1875-9521, DOI=

http://dx.doi.org/10.1016/j.entcom.2012.10.002.

3. Ayewah, N., Pugh, W., Hovemeyer, D., Morgenthaler, J.D. and Penix, J., 2008. Using

static analysis to find bugs. IEEE software, 25(5), pp.22-29.

4. Avgeriou, P., Kruchten, P., Ozkaya, I. and Seaman, C., 2016. Managing technical debt

in software engineering (dagstuhl seminar 16162). In Dagstuhl Reports (Vol. 6, No.

4). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

5. Bakota, T., Hegedűs, P., Körtvélyesi, P., Ferenc, R. and Gyimóthy, T., 2011,

September. A probabilistic software quality model. In 2011 27th IEEE International

Conference on Software Maintenance (ICSM) (pp. 243-252). IEEE.

6. Baldwin, C. and Clark, K. 2000. Design Rules: The power of Modularity. Vol. 1. MIT

Press., Cambridge, MA.

7. Bansiya, J. and Davis, C. G. 2002. A hierarchical model for object-oriented design

quality assessment. In IEEE Transactions on Software Engineering 28, 1 (Aug. 2002),

4- 17. DOI=http://dx.doi.org/10.1109/32.979986.

8. Basili, V. R., Selby, R. W., and Hutchens, D. H. 1986. Experimentation in Software

Engineering. In IEEE Transactions on Software Engineering 12,7 (July 1986), 733-

743. DOI=http://dx.doi.org/10.1109/TSE.1986.6312975.

9. Basili, V.R., 1992. Software modeling and measurement: the Goal/Question/Metric

paradigm.

10. Basili, V., Caldiera, G., and Rombach, H. D. 1994. The goal question metric approach.

Encyclopedia of Software Engineering. 2, 528-532. DOI=http://dx.doi.org/

10.1002/0471028959.sof142.

11. Bieman, J.M., and Wang, H. 2006. Design pattern coupling, change proneness, and

change coupling: A pilot study. Technical Report. Colorado State University.

12. Brooks, A., Roper, M., Wood, M., Daly, J., and Miller, J. 2008. Replication's Role

in Software Engineering. In Guide to Advanced Emprirical Software Engineering,

Shull, F., Singer, J., and Sjøberg, D. I. K. Springer London, Springer, 365-379.

http://dx.doi.org/10.1016/j.entcom.2012.10.002
http://dx.doi.org/10.1109/32.979986
http://dx.doi.org/10.1109/TSE.1986.6312975

179

DOI=http://dx.doi.org/10.1007/978-1-84800-044-5_14.

13. Brown, W. H., Malveau, R. C., McCornnick III, H. W., and Mowbray, T. J. 1998.

Antipatterns: Refactoring Software, Architectures, and Projects in Crisis. Wiley &

Sons, NY.

14. Budgen, D., Turner, M., Brereton, P. and Kitchenham, B.A., 2008, September.

Using Mapping Studies in Software Engineering. In PPIG (Vol. 8, pp. 195-204).

15. Campbell, D.T. and Cook, T.D., 1979. Quasi-experimentation: Design & analysis

issues for field settings. Chicago: Rand McNally College Publishing Company.

16. Chidamber, S.R. and Kemerer, C.F., 1994. A metrics suite for object oriented

design. IEEE Transactions on software engineering, 20(6), pp.476-493.

17. Chin, S., Huddleston, E., Bodwell, W. and Gat, I., 2010. The economics of

technical debt. Cutter IT Journal, 23(10), p.11.

18. Collard, M.L., 2005, May. Addressing source code using srcml. In IEEE

International Workshop on Program Comprehension Working Session: Textual

Views of Source Code to Support Comprehension (IWPC’05).

19. Cunningham, W. 1992. The Wycash portfolio management system. In OOPSLA

'92 Addendum to the proceedings on Object-oriented programming systems,

languages, and applications (Dec. 1992). OOPSLA '92. SIGPLAN ACM, New

York, NY 29-30. DOI= http://dx.doi.org/10.1145/157709.157715.

20. Curtis, B., Sappidi, J. and Szynkarski, A., 2012. Estimating the principal of an

application's technical debt. IEEE software, 29(6), pp.34-42.

21. Curtis, B., Sappidi, J. and Szynkarski, A., 2012, June. Estimating the size, cost,

and types of technical debt. In Proceedings of the Third International Workshop

on Managing Technical Debt (pp. 49-53). IEEE Press.

22. Dale, M.R., and Izurieta, C. 2014. Impacts of design pattern decay on system

quality. In Proceedings of the 8th ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement (ESEM '14). ACM, New York,

NY, USA, Article 37, 4 pages.

DOI=http://doi.acm.org/10.1145/2652524.2652560.

23. De Veaux, R. D., Stats: data and models, 3rd ed ed., Boston: Pearson Education,

http://dx.doi.org/10.1007/978-1-84800-044-5_14
http://dx.doi.org/10.1007/978-1-84800-044-5_14
http://dx.doi.org/10.1145/157709.157715

180

2012.

24. Eick, S.G., Graves, T.L., Karr, A.F., Marron, J.S., and Mockus, A. Does code

decay? Assessing the evidence from change management data, Software

Engineering, IEEE Transactions on, vol.27, no.1, pp.1-12, Jan 2001.

25. Feitosa, D., Avgeriou, P., Ampatzoglou, A. and Nakagawa, E.Y., 2017, November.

The evolution of design pattern grime: An industrial case study. In International

Conference on Product-Focused Software Process Improvement (pp. 165-181).

Springer, Cham.

26. Feitosa, D., Ampatzoglou, A., Avgeriou, P. and Nakagawa, E.Y., 2018. Correlating

pattern grime and quality attributes. IEEE Access, 6, pp.23065-23078.

27. Ferenc, R., Hegedűs, P., and Gyimóthy, T.,, "Software Product Quality Models,"

in Evolving Software Systems, T. Mens, A. Serebrenik and A. Cleve, Eds., Berlin,

Heidelberg, Springer Berlin Heidelberg, 2014.

28. Fowler, M., Beck, K., Brant, J., and Opdyke, W. 1999. Refactoring: Improving the

Design of Existing Code. Addison-Wesley Longman, Inc., Reading, MA.

29. France R. E. S., Kim, D., and Ghosh, S., Metarole-Based Modeling Lanugage

(RBML) Specification V1.0, 2002.

30. France, R.B., Kim, Dae-Kyoo, Ghosh, S., and Song, E. 2004. A UML-based

pattern specification technique, Software Engineering, IEEE Transactions on,

vol.30, no.3, pp.193, 206. DOI=http://dx.doi.org/10.1109/TSE.2004.1271174

31. Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1994.

32. Gaudin, O., 2009. Evaluate your technical debt with Sonar. Sonar, Jun.

33. Griffith, I., and Izurieta, C. 2013. Design Pattern Decay: An Extended Taxonomy

and Empirical Study of Grime and its Impact on Design Pattern Evolution. In

Proceedings of the 11th ACM/IEEE International Doctoral Symposium on

Empirical Software Engineering and Measurements, USA.

34. Griffith, I., and Izurieta, C. 2014. Design pattern decay: the case for class grime.

In Proceedings of the 8th ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement (ESEM '14). ACM, New York, NY, USA,

181

Article 39, 4 pages. DOI=http://doi.acm.org/10.1145/2652524.2652570

35. ISO, I., 1991. Information technology-software product evaluation-quality

characteristics and guide lines for their use. Iso/iec is, 9126.

36. ISO/IEC 25010: Systems and software engineering. Systems and Software Quality

Requirements and Evaluation (SQuaRE). System and software quality models,

2011.

37. Izurieta, C., and Bieman, J. 2007. How software designs decay: A pilot study of

pattern evolution. In Proceedings of the First Symposium on Empirical Software

Engineering and Measurement (Madrid, Spain, 2007). ESEM 2007. 449-451.

DOI= http://dx.doi.org/10.1109/ESEM.2007.55.

38. Izurieta, C. 2009. Decay and Grime Buildup in Evolving Object Oriented Design

Patterns. Ph.D. Dissertation. Colorado State University, Fort Collins, CO, USA.

Advisor(s) James Bieman. AAI3385139.

39. Izurieta, C. and Bieman, J. 2013. A multiple case study of design pattern decay,

grime, and rot in evolving software systems. In Software Quality Journal, 21, 2

(June 2013),

289-323, DOI=http://dx.doi.org/10.1007/s11219-012-9175-x.

40. Juristo, N. and Moreno, A. M. 2010. Basics of Software Engineering

Experimentation (1st ed.). Springer Publishing Company, Incorporated.

41. Kendall, M. G. 1938. A new measure of rank correlation. In Biometrika, 30 (1938), 81-

93.

42. Kim, D. 2004. A Meta-Modeling Approach to Specifying Patterns, Ph.D. Dissertation.

Colorado State University, Fort Collins, CO, USA. Advisor(s) Robert France.

43. Kim, D. The Role-Based Metamodeling Language for Specifying Design Patterns. In

Toufik Taibi, editor, Design Pattern Formalization Techniques. Idea Group Inc., 2006.

44. Knoop, J., Rüthing, O. and Steffen, B., 1994. Partial dead code elimination (Vol. 29,

No. 6, pp. 147-158). ACM.

45. Lajoie, R. and Keller, R.K., 1995. Design and reuse in object-oriented frameworks:

Patterns, contracts, and motifs in concert. In Object-Oriented Technology for Database

and Software Systems (pp. 295-312).

http://dx.doi.org/10.1109/ESEM.2007.55
http://dx.doi.org/10.1007/s11219-012-9175-x

182

46. Letouzey, J.L. and Ilkiewicz, M., 2012. Managing technical debt with the SQALE

method. IEEE software, 29(6), pp.44-51.

47. Letouzey, J.L., 2012, June. The SQALE method for evaluating technical debt. In 2012

Third International Workshop on Managing Technical Debt (MTD) (pp. 31-36). IEEE.

48. Li, W. and Henry, S., 1993. Object-oriented metrics that predict

maintainability. Journal of systems and software, 23(2), pp.111-122.

49. Marinescu, R., 2012. Assessing technical debt by identifying design flaws in software

systems. IBM Journal of Research and Development, 56(5), pp.9-1.

50. Martin, R.C., 2002. Agile software development: principles, patterns, and practices.

Prentice Hall.

51. McCabe, T.J., 1976. A complexity measure. IEEE Transactions on software

Engineering, (4), pp.308-320.

52. McConnell, S., 2008. Managing technical debt. Construx Software Builders, Inc, pp.1-

14.

53. Mordal-Manet, K., Balmas, F., Denier, S., Ducasse, S., Wertz, H., Laval, J., Bellingard,

F. and Vaillergues, P., 2009, September. The squale model—A practice-based

industrial quality model. In 2009 IEEE International Conference on Software

Maintenance (pp. 531-534). IEEE.

54. Nugroho, A., Visser, J. and Kuipers, T., 2011, May. An empirical model of technical

debt and interest. In Proceedings of the 2nd Workshop on Managing Technical

Debt (pp. 1-8). ACM.

55. O'Keeffe, M. and Cinnéide, M.Ó., 2006, March. Search-based software maintenance.

In Conference on Software Maintenance and Reengineering (CSMR'06) (pp. 10-pp).

IEEE.

56. Ohlsson, N. and Alberg, H. 1996. Predicting fault-prone software modules in

telephone switches. In IEEE Transactions on Software Engineering, 22, 12 (Dec.

1996), 886-894, DOI= http://dx.doi.org/10.1109/32.553637.

57. Olague, H.M., Etzkorn, L.H., Gholston, S. and Quattlebaum, S., 2007. Empirical

validation of three software metrics suites to predict fault-proneness of object-

oriented classes developed using highly iterative or agile software development

processes. IEEE Transactions on software Engineering, 33(6), pp.402-419.

http://dx.doi.org/10.1109/32.553637

183

58. Ostrand, T. J. and Weyuker, E. J. 2007. How to measure success of fault prediction

models. In Fourth international workshop on Software quality assurance: in

conjunction with the 6th ESEC/FSE joint meeting (SOQUA '07). ACM, New York,

NY, USA, 25-30. DOI= http://doi.acm.org/10.1145/1295074.1295080.

59. Ott, R. and Longnecker, M.1993. An introduction to statistical methods and data

analysis. Vol. 4. Duxbury Press, Belmont, CA.

60. Parnas, D. L. 1972. On the criteria to be used in decomposing systems into

modules. Commun. ACM 15, 12 (December 1972), 1053-1058.

61. Petersen, K., Feldt, R., Mujtaba, S. and Mattsson, M., 2008, June. Systematic

mapping studies in software engineering. In Ease (Vol. 8, pp. 68-77).

62. Plasil, F., & Visnovsky, S. (2002). Behavior protocols for software components.

IEEE transactions on Software Engineering, 28(11), 1056- 1076.

63. Reimanis D., Izurieta C., "A Research Plan to Characterize, Evaluate, and Predict

the Impacts of Behavioral Decay in Design Patterns," IEEE ACM IDoESE, 13th

International Doctoral Symposium on Empirical Software Engineering, Beijing,

China, October 19 2015.

64. Reimanis, D. and Izurieta, C., 2016, October. Towards assessing the technical debt

of undesired software behaviors in design patterns. In 2016 IEEE 8th International

Workshop on Managing Technical Debt (MTD) (pp. 24-27). IEEE.

65. Rumbaugh, J., Jacobson, I. and Booch, G., 2004. Unified modeling language

reference manual, the. Pearson Higher Education.

66. Sangal, N., Jordan, E., Sinha, V., and Jackson, D. 2005. Using dependency models

to manage complex software architecture. In Proceedings of the 20th annual ACM

SIGPLAN conference on Object-oriented programming, systems, languages, and

applications (OOPSLA '05). ACM, New York, NY, USA, 167-176.

DOI=http://doi.acm.org/10.1145/1094811.1094824.

67. Schanz, T., and Izurieta, C. 2010. Object oriented design pattern decay: a

taxonomy. In Proceedings of the 2010 ACMIEEE International Symposium on

Empirical Software Engineering and Measurement (ESEM '10). ACM, New York,

NY, USA, Article 7, 8 pages. DOI=http://doi.acm.org/10.1145/1852786.1852796.

68. Schwanke, R., Xiao, L., and Cai, Y. 2013. Measuring architecture quality by

structure plus history analysis. In 2013 35th International Conference on Software

http://doi.acm.org/10.1145/1295074.1295080

184

Engineering (ICSE) (San Francisco, CA, May18 - 26 2013). ICSE '13. IEEE, San

Francisco, CA, 891-900. DOI= http://dx.doi.org/10.1109/ICSE.2013.6606638.

69. Shull, F. J., Carver, J. C., Vegas, S., and Juristo, N. 2008. The role of replications

in Empirical Software Engineering. In Empirical Software Engineering 13, 2 (April

2008), 211- 218. DOI= http://dx.doi.org/ 10.1007/s10664-008-9060-1.

70. Siavvas, M.G., Chatzidimitriou, K.C. and Symeonidis, A.L., 2017. QATCH-An

adaptive framework for software product quality assessment. Expert Systems with

Applications, 86, pp.350-366.

71. Strasser, S., Frederickson, C., Fenger, K., and Izurieta, C. 2011. An automated

software tool for validating design patterns. In Proceedings of the of ISCA 24th

International Conference on Computer Applications in Industry and Engineering

(HI, USA, November 16-18). CAINE'11.

72. Sunyé, G., Pollet, D., Le Traon, Y., & Jézéquel, J.M. “Refactoring UML models,”

In: Proc. Int. Conference Unified Modeling Language (pp. 134-138), Lecture Notes

in Computer Science 2185, Springer, Heidelberg. 2001.

73. Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H. and

Noble, J., 2010, December. The Qualitas Corpus: A curated collection of Java code

for empirical studies. In 2010 Asia Pacific Software Engineering Conference (pp.

336-345). IEEE.

74. Tom, E., Aurum, A., and Vidgen, R. 2013. An exploration of technical debt. J. Syst.

and Softw. 86, 6 (Jun. 2013), 1498- 1516.

DOI=http://dx.doi.org/10.1016/j.jss.2012.12.052.

75. Tsantalis, N., Chatzigeorgiou, A., Stephanides, G. and Halkidis, S.T., 2006. Design

pattern detection using similarity scoring. IEEE transactions on software

engineering, 32(11), pp.896-909.

76. Wagner, S., Lochmann, K., Heinemann, L., Kläs, M., Trendowicz, A., Plösch, R.,

Seidl, A., Goeb, A. and Streit, J., 2012, June. The quamoco product quality

modelling and assessment approach. In Proceedings of the 34th international

conference on software engineering (pp. 1133-1142). IEEE Press.

77. Warmer, J. B., & Kleppe, A. G. (1998). The Object Constraint Language: Precise

Modeling With Uml (Addison-Wesley Object Technology Series).

78. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A.

http://dx.doi.org/10.1109/ICSE.2013.6606638
http://dx.doi.org/%2010.1007/s10664-008-9060-1

185

2012 Experimentation in software Engineering. Springer Berlin Heidelberg. DOI=

http://dx.doi.org/10.1007/978-3-642-29044-2.

79. Wong, S., Cai, Y., Kim, M., and Dalton, M., 2011. Detecting software modularity

violations. In Proceedings of the 33rd International Conference on Software

Engineering (ICSE '11). ACM, New York, NY, USA, 411-420. DOI=

http://doi.acm.org/10.1145/1985793.1985850.

80. Zazworka, N., Shaw, M.A., Shull, F. and Seaman, C., 2011, May. Investigating the

impact of design debt on software quality. In Proceedings of the 2nd Workshop on

Managing Technical Debt (pp. 17-23). ACM.

81. Zazworka, N., Seaman, C. and Shull, F., 2011, May. Prioritizing design debt

investment opportunities. In Proceedings of the 2nd Workshop on Managing

Technical Debt (pp. 39-42). ACM.

82. Zazworka, N., Vetro, A., Izurieta, C., Wong, S., Cai, Y., Seamon, C., and Shull, F.

2013. Comparing four approaches for technical debt identification. In Software

Quality Journal (April 2013), 1-24, Springer US.

83. Reimanis D., Izurieta,C, "Behavioral Evolution of Design Patterns: Understanding

Software Reuse through the Evolution of Pattern Behavior," 18th International

Conference on Software Systems and Reuse, ICSR 2019. In: Peng X., Ampatzoglou

A., Bhowmik T. (eds) Reuse in the Big Data Era. Vol 11602, Springer Cham.

https://doi.org/10.1007/978-3-030-22888-0_6 Cincinnati, OH, June 26-28 2019.

84. Wieringa, R.J., 2014. Design science methodology for information systems and

software engineering. Springer.

85. Feitosa, D., 2019. Applying Patterns in Embedded Systems Design for Managing

Quality Attributes and Their Trade-offs. PhD dissertation. University of Groningen,

The Netherlands.

86. Izurieta C., Reimanis D., Griffith I., Schanz T. "Structural and Behavioral

Taxonomies of Design Pattern Grime," 12th Seminar on Advanced Techniques &

Tools for Software Evolution. SATToSE 2019, Bolzano, Italy, July 8-10, 2019.

87. Pearson, E.S., 1929. Some notes on sampling tests with two variables. Biometrika,

pp.337-360.

http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/978-3-642-29044-2
http://doi.acm.org/10.1145/1985793.1985850
http://doi.acm.org/10.1145/1985793.1985850

186

APPENDIX A

RANKINGS OF QUALITY ENTITIES FOR QATCH MODEL CALIBRATION

187

Figure 6.16a Our rankings for the Properties for our implementation of the QATCH

[6] model. Quality Characteristics are shown on the left side of each line, and the

Property's ranked importance is shown on top of each line. Tick lines indicate when

multiple Measurements share the same importance.

188

Figure 6.16b Our rankings for the Properties for our implementation of the

QATCH [6] model. Quality Characteristics are shown on the left side of each

line, and the Property's ranked importance is shown on top of each line. Tick

lines indicate when multiple Measurements share the same importance.

189

Figure 6.17 Our rankings for the Characteristics for our implementation

of the QATCH [6] model. Quality is shown on the left side of each line,

and the Characteristic's ranked importance is shown on top of each line.

