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ABSTRACT

The research presented in this thesis analyzes the feasibility of using information
collected at the type level of object oriented software systems as a metric for software
complexity, using the number of recorded faults as the response variable. In other
words, we ask the question: Do popular industrial language type systems encode
enough of the model logic to provide useful information about software quality? A
longitudinal case study was performed on five open source Java projects of varying
sizes and domains to obtain empirical evidence supporting the proposed type level
metrics. It is shown that the type level metrics Unique Morphisms and Logic per
Line of Code are more strongly correlated to the number of reported faults than the
popular metrics Cyclomatic Complexity and Instability, and performed comparably to
Afferent Coupling, Control per Line of Code, and Depth of Inheritance Tree. However,
the type level metrics did not perform as well as Efferent Coupling. In addition to
looking at metrics at single points in time, successive changes in metrics between
software versions was analyzed. There was insufficient evidence to suggest that the
metrics reviewed in this case study provided predictive capabilities in regards to the
number of faults in the system. This work is an exploratory study; reducing the
threats to external validity requires further research on a wider variety of domains
and languages.
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NOMENCLATURE

LOC Lines of Code
CYC Cyclomatic Complexity
EFF Efferent Coupling
AFF Afferent Coupling
RMI Instability
DIT Depth Inheritance Tree
T Types
M Morphisms
T/M Types per Morphism
L/LOC Logic per Line of Code
C/LOC Control per Line of Code
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INTRODUCTION

Software systems are rapidly becoming integrated into everyday life in the

modern world. Infrastructure, medicine, and communication have all become

intertwined with cyber and cyber-physical systems. This inter-connectedness can

provide enormous benefits, but at a cost: as software systems become increasingly

prevalent in the management of real-world systems, their complexity also increases,

leaving room for faulty programs or security flaws that can be exploited by a malicious

agent. This complexity can come from a myriad of sources, including support for

legacy features, adding new features to a system that may be at odds with the original

design, or developer errors.

The realization that software complexity is harmful is not a new development.

In his 1980 paper [1], Lehman analyzes the life cycles of various software systems and

the effects of management when developing software. In this paper, Lehman observes

that 70% of software’s expenditure is due to maintenance, and that implementing

parts of a software system before the complete, or even local, model of the system is

verified can lead to an increase in the number of faults in the system. Furthermore,

the more complex the system becomes, and the more it deviates from the initial model

from superimposed modifications, the system becomes harder to change. From his

findings, Lehman proposed five laws of software engineering (Table 1.1). Lehman

repeated this work in his 1997 paper [2] and obtained similar results that support

these laws of software evolution.

In both of these papers, Lehman uses number of modules as the sole software

metric to indicate complexity. This is an obvious limitation when attempting to
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Table 1.1: Lehman’s Laws of Software Evolution (1980)

1 Continuing Change
A program that is used and that as an implementation of its
specification reflects some other reality, undergoes continual
change or becomes progressively less useful. The change or
decay process continues until it is judged more cost effective
to replace the system with a recreated version.

2 Increasing Complexity
As an evolving program is continually changed, its
complexity, reflecting deteriorating structure, increases unless
work is done to maintain or reduce it.

3 Fundamental Law of Software Evolution
Program evolution is subject to a dynamics which makes the
programming process, and hence measures of global project
and system attributes, self-regulating with statistically
determinable trends and invariances.

4 Invariant Work Rate
During the active life of a program the global activity rate in
a programming project is statistically invariant.

5 Perceived Complexity
During the active life of a program the release content
(changes, additions, deletions) of the successive releases of an
evolving program is statistically invariant.
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determine the complexity of software, or identify potential aspects for improvement.

Software complexity is not something that can be measured directly; however, there

are certain aspects of a program, language, or model, that do indicate complexity.

Developers are primarily concerned with producing software that is both correct to a

specification and abstract enough to easily modify and reason about the consequent

results of full or partial evaluation. When a piece of software becomes too complex

for a developer to correctly understand the underlying semantics, there is a much

higher likelihood that faults will be introduced. To this end, in this thesis we refer to

metrics as program properties that the developer has control over, and will use faults

as the response variable that determines the fitness of a given metric as a measure of

overall software complexity.
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BACKGROUND

Background

Software metrics have a long and varied history, ranging from the simple Lines

of Code (LOC) of software written in machine code, to complex sets of metrics [3]

for object oriented systems. The effectiveness, and in some cases validity, of metrics

often comes into debate. Metrics such as Halstead’s programming effort measure [4],

have terms that are difficult (or sometimes impossible) to compute or are entirely

implementation dependent. Others, like lines of code, have very little meaning when

they are compared across projects or programming languages. Weyuker [4] proposed

a set of properties to more formally address the validity of various metrics (Table 2.1).

The properties merited by Weyuker provide a good generalization of what should

be expected, but should be taken with a grain of salt; in the presence of certain

runtime environments, some of the warranted properties are non-existent. In a

stateless environment, properties 6, 7, and 9 will not hold as a result of referential

transparency, and in a total language property 4 will not hold as equivalent programs

can be reduced to the same normal form. Failure to meet these properties in the

specified environments should not be viewed as a detriment.

Metrics to measure software complexity roughly fall into three categories based

on the level of abstraction of the model that they operate on. The simplest level of

abstraction is isomorphic to a list, and treats a program as a 1-dimensional linear

sequence. This linear sequence could be comprised of lines of code, modules, or any

other atomic variable. Increasing the level of abstraction to 2-dimensions, the next

level of metrics operate on tree representations of a program. These trees could be an

abstract syntax tree (AST) of the program or, dependency trees. The final level of

abstraction lifts the program to 3-dimensions, representing the program as a graph.
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Table 2.1: Weyuker’s Metric Properties

1 There are unique values of complexity for different
programs : ∃P,Q . c(P ) 6= c(Q)

2 The set ∃k ≥ 0 . {x | c(P ) == k} is finite.

3 There are distinct programs that have the same complexity
∃P,Q . c(P ) = c(Q)

4 Equivalent programs can have different complexities:
∃P,Q . P = Q ∧ c(P ) 6= c(Q)

5 Metric addition is strictly increasing:
∀P,Q . c(P ) ≤ c(PQ) ∧ c(Q) ≤ c(PQ)

6 Catenation of programs may not yield uniform behavior of
complexity:
∃P,Q,R . c(P ) = c(Q) ∧ c(PR) 6= c(QR)
or
∃P,Q,R . c(P ) = c(Q) ∧ c(RP ) 6= c(RQ)

7 Permutation of statements does not preserve complexity:
∃P . c(P ) 6= c(permute(P ))

8 Complexity is preserved across alpha equivalence:
∃P,Q . P =α Q =⇒ c(P ) = c(Q)

9 Complexity can be introduced with catenation:
∃P,Q . c(P ) + c(Q) < c(PQ)

10 Complexity is monotonically increasing:
∀P,Q . c(P ) + c(Q) ≤ c(PQ)



6

The most common family of metrics at this level operate on control flow graphs

(CFG).

Linear Model Metrics

The simplest way to model a program is as a vector of characters or binary

digits. This view of software contains very little information about the structure

or functionality of the program, but due to this simplicity they are often easy to

compute. Metrics falling in this category are typically on the absolute scale, and

can be used to normalize other software metrics allowing metrics from differing sized

programs to be compared.

• Lines of Code: The lines of code metric, or LOC, counts the number of non-

empty lines in a program that are not comment lines. While extremely useful for

characterizing complexity in low-level languages like assembly, it’s effectiveness

decreases for higher level languages as the amount of information per line of

code increases.

• Entropy Measure: The amount of randomness, or entropy, of software can

also be an indicator for the complexity of individual pieces of a system. Entropy

measures can determine regions of code that are uncharacteristically complex,

and target them for further analysis. This technique has seen widespread use

in reverse engineering and malware analysis [5], [6], [7].

Tree Model Metrics

Programming languages are defined formally by grammars that describe how

to build valid programs. Character streams are parsed into an abstract syntax tree

(AST) based on this grammar [8]. Metrics operating on this model of a program

contain information about the structure and function of the program, but requires
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the program to be parsed into an AST before any metrics can be calculated. More

formally, metrics at this level capture the static properties of a program, and typically

fall on the ratio scale. These metrics provide insight into the statics of a program,

and can be used in static analysis and optimization.

• Attribute Counts: The simplest measurement that can be made on an

AST is the raw count of attributes, in this case annotated tree nodes, that

the language contains. Possible attributes of interest include statements,

expressions, keywords, or rules used to generate the AST. Calculations of this

type of metric are catamorphic procedures (meaning they are generalized folds),

and take O(n) time to compute after parsing has been completed, where n is

the number of nodes in the AST.

• Dominance: Another useful measurement on an AST is dominance, or number

of dependencies, of non-leaf nodes in the tree. Deeper ASTs will contain nodes

with a large number of dependencies, and changes to these nodes can result

in a “ripple effect” of changes on the nodes that it dominates. Ideally, AST

dependancies should be kept shallow to minimize the effect of this “ripple”

of changes. In their 1999 paper [9], Burd et al. discuss the viability of

using two software metrics based upon function call dominance trees on a case

study of GNUs C compiler, gcc. The paper provides a distinction between

dependencies within a submodule and between submodules, referring to them

as direct dominance and strong dominance, respectively. The first metric, m1,

is defined as the ratio between strong dominance nodes to direct dominance

nodes. The second metric, m2, is defined as the percentage of nodes that are

unique to a dominance tree. Using data collected from modification logs each

of the versions of gcc tested, it was found that decreases in m1 and m2 caused
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significantly more time to be spent on corrective maintenance; which can be

interpreted as meaning these versions of the software were less maintainable.

• Coupling: The concept of coupling is similar to that of dominance, but

abstracted to the level of modules. Coupling refers to the “interconnectedness”

of between modules, including relations that a module is dependent on (called

efferent coupling or EFF) and the relations that a module is a dependency

for (called afferent coupling or AFF). The overall coupling between objects

(called CBO) includes all non-inheritance related coupling. An additional

measurement, instability or RMI, is defined as RMI = EFF
EFF+AFF

and is useful

for describing how resilient to change a module is. Just as with dominance

relations, changes to a module can “ripple” to other modules that are directly

or indirectly dependent on that module. Software systems should be designed

accordingly; by increasing the stability of modules that are not likely to be

changed, and pushing instability to more dynamic modules. The usage of many

of these metrics for object oriented software was analyzed by Martin in his 1994

paper [10]. These coupling metrics are often used in object oriented metric

suites [11], [12], [13].

• Depth of Inheritance Tree: This OO specific metric, related to both

dominance and coupling, is defined as the maximal height of the inheritance

class hierarchy. This metric, along with CBO, is one of the metrics popularized

by the CK suite of metrics [12]. Like both Dominance and Coupling, the notion

behind this metric is to prevent excessive inter-dependencies that can cause

“ripples” of changes upon a single modification.
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Graph Model Metrics

When executed as machine code, programs act as finite state machines. Given

an initial state, an operating system will step though instructions as specified by the

program, adjusting the system state for each step. However, for any given instruction

step there can be many possible paths to take. A path could be chosen by the current

system state, user input, or future computation. Paths are not necessarily unique

either; multiple paths can lead back to a previous instruction location (in the case of

a loop), and multiple paths can lead to the same instruction location. We can express

all possible computation paths as a concrete instance of a directed graph, where nodes

are unique program instructions and directed edges are an execution step. Formally,

for a given program P , we call this representation the control flow graph (or CFG) of

program P . Metrics at this level capture the dynamics of a program, and typically

fall on a ratio scale.

• Variable Definitions and Usage: According to Moseley et al. [14], a majority

of complexity introduced into a software system comes from the presence

of state. Variables can be instantiated, mutated, and vary throughout the

programs execution. Coupled with the fact that variable behavior will often

vary based on paths through the CFG, it is easy to see why this claim was

made. In [15], numerous software testing techniques are described for covering

state in CFGs for use in testing. Taken in another context, this coverage is akin

to a measurement of the complexity of state in a system. This state is described

by the relations of unique variable definitions and usages, or better known as

def-use pairs.

• Unique Paths: An intuitive measure for program complexity is to count

the number of possible execution paths. If a developer was to fully test an
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application, they would have to write a text cases that covered every execution

path through the graph. Every combination of branches and loops through the

CFG would need to be address, which is exponential relative to the size of the

graph. Clearly, more paths through the CFG would mean more complexity for

the developer to worry about.

• Cyclomatic Complexity: A more abstract variant of the unique paths metric

is Cyclomatic Complexity (or CYC), analyzed by McCabe in 1976 [16], [17].

Cyclomatic complexity is defined as v(G) = e−n+ p, where n is the number of

nodes in the CFG, e is the number of edges, and p is the number of connected

components (typically 1). For those familiar with topology, this is equivalent of

measuring the first Betti number of a program [18], [19], and captures the shape

of the programs dynamic properties. In layman terms, it is the number of 1

dimensional “holes” in the graph. This metric is significantly easier to compute

than the unique paths metric, but still captures aspects of the complexity of

the paths by giving a count of all unique cycles within the graph.

Motivation

As an alternative to the classic style of metric that rely on concrete software

implementations, we would like to have metrics that indicate the complexity of

the software’s solution to the given problem space. Ideally, before a software

system is implemented, the problem is examined and a model of the requirements

is created. Whether the model is a detailed UML diagram or a simple list of

required features, the specifications defined describe a contract that the software

needs to follow. These specifications are encoded into a languages type system

when developers begin implementing the model, and the program itself becomes a

constructive proof in the problem space. This observation is better known as the
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Curry-Howard Correspondence [20], [21], or programs as proofs.

Table 2.2: Logic and Program Correspondence

Logic Programming

Universal Quantification Dependent Product (Π-Type)

Existential Quantification Dependent Sum (Σ-Type)

Implication Function Type

Conjunction Product Type

Disjunction Sum Type

True Unit Type

False Bottom Type

To this end, we propose a series of software metrics that capture the complexity

at this abstracted level. These metrics are shown in Table 2.3.

Unfortunately, not all programming languages have type systems powerful

enough to encode all specification logic. These shortcomings in the type system

mean that some properties of the specification cannot be checked, and the developer

must rely on their own diligence to adhere to the formal system design. These

properties that are left unchecked by the compiler can lead to program faults. This

leads us to the case study presented by this thesis: Do popular industrial language

type systems encode enough of the model logic to provide useful information about

software quality?
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Table 2.3: Type Level Metrics

Metric Description

Types T The number of unique types
that a model defines. This
includes all types: Simple, Sum,
Product, and Inductive.

Morphisms M The number of unique
morphisms, or function
mappings, that a model defines.

Types / Morphisms T/M The ratio between the number
of unique types and unique
morphisms defined by a model.

Logic / Control L/C The ratio of lines related to
model logic to the lines that
define program control. In other
words, this is the ratio of types
+ morphisms to the number of
lines that define control
operations such as assignment,
variable mutation, or branching.

Logic / LOC L/LOC The ratio of lines related to
model logic to the total number
of non-comment lines in the
software. In other words, the
percentage of the project that
encodes software specifications
checkable by the compiler.

Control / LOC C/LOC The ratio of lines related to
program control to the total
number of non-comment lines in
the software. In other words,
the percentage of the project
that possibly encodes
specifications that are
non-checkable by the compiler.
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RESEARCH QUESTIONS

This thesis aims to better understand and quantify complexity at the type-level

of a software system, and attempts to improve software quality in regards to the

total number of reported faults. As a baseline, popular classical software complexity

metrics will also be tested against; namely, LOC, CYC, AFF, EFF, RMI, and DIT.

The type-level metrics that will be analyzed are T, M, L/C, L/LOC, and C/LOC.

In addition to raw metrics, we also analyze the effect that changes in metric

values between successive versions of a software system have on faults. This analysis

will provide a basis to whether changes in the specified metrics can predict the number

of reported faults that will occur in a software system following the application of

changes to the code base.

Table 3.1: Research Question Summary

0 Do the software metrics in this case study behave similarly
over time, regardless of project?

1 Are there correlations between classic metrics and the
number of recorded faults found in a given software system?

2 Are there correlations between type-level metrics and the
number of recorded faults found in a given software system?

3 Are there correlations between the rates of change of classic
metrics and the number of recorded faults found in a given
software system?

4 Are there correlations between the rates of change of type
level metrics and the number of recorded faults found in a
given software system?

Specifically, we answer the following research questions:
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RQ0

Do the software metrics in this case study behave similarly over time,

regardless of project? Before running more interesting statistical tests, we must

first observe the metrics over time to determine if the metrics follow similar trends

across projects. If Lehmans Laws of Software Evolution hold, we should expect

monotonic regressions (whether linear or curved) to adequately model the metrics

over the software’s lifetime. Furthermore, we expect the same relationship for the

same metric across projects; i.e.- given that CYC is monotonically increasing for

project A, we expect CYC for project B to be monotonically increasing as well.

Table 3.2: Research Question 0 (Part A)

Intuition : Assuming that Lehmans Laws of Software
evolution hold for all software systems, we
expect there to be monotonic changes in type
level metrics over a systems lifetime.

H0A,0 = There are no monotonic relations in the metrics
over the course of the software’s lifetime. In
other words, running an F-Test of the r2 values
for both linear and quadratic models results in
p-values p > α = 0.05.

H0A,A1 = There are metrics that can be modeled using
monotonic regressions. More concretely, running
an F-Test of the r2 values for either linear or
quadratic models result in a p-value
p ≤ α = 0.05.
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Table 3.3: Research Question 0 (Part B)

Intuition : We expect the same software metric to exhibit
similar monotonic behavior over time, regardless
of the software project.

H0B,0 = There are no metrics that exhibit the same
monotonic behavior across projects.

H0B,A1 = There are metrics that exhibit the same
monotonic behavior across projects.

RQ1

Are there correlations between classic metrics and the number of

recorded faults found in a given software system? Answering this question will

provide a baseline to compare the type level metrics with, as well as provide insight

into the effectiveness of popular complexity metrics in regards to software quality and

probability of faults in the system.



16

Table 3.4: Research Question 1

Intuition : These metrics are historically popular among
software developers and in academic/commercial
metric suites. As such, we should expect them
to correlate highly with the number of faults.

H1,0 = None of the metrics are correlated with the
number of recorded faults. More concretely,
|ρLOC | < θ, |ρCY C | < θ, |ρAFF | < θ, |ρEFF | < θ,
|ρRMI | < θ, |ρDIT | < θ,where θ is the
statistically significant threshold of correlation
for the sample size [22].

H1,A1 = LOC is correlated with the number of recorded
faults; i.e., |ρLOC | ≥ θ.

H1,A2 = CYC is correlated with the number of recorded
faults; i.e., |ρCY C | ≥ θ.

H1,A3 = AFF is correlated with the number of recorded
faults; i.e., |ρAFF | ≥ θ.

H1,A4 = EFF is correlated with the number of recorded
faults; i.e., |ρEFF | ≥ θ.

H1,A5 = RMI is correlated with the number of recorded
faults; i.e., |ρRMI | ≥ θ.

H1,A6 = DIT is correlated with the number of recorded
faults; i.e., |ρDIT | ≥ θ.
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RQ2

Are there correlations between type-level metrics and the number of

recorded faults found in a given software system? Metrics at the type level

operate on the source program at a vastly more abstract level. If correlations are

found to exist, these type-level metrics can be used as a cheaper alternative to classic

metrics as the control portions of the program do not need to be parsed or go through

static analysis. In addition, this family of metric is better suited to compare software

across development teams or even across programing languages.
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Table 3.5: Research Question 2

Intuition : Since the type level of a language encodes all of
the compiler checkable model specifications, we
expect there to be a strong negative correlation
between these metrics and the number of faults.
With more of the model being encoded into the
type system, and therefore compiler checkable,
there should be fewer program faults than in a
system with less of the model encoded in the
type system [22].

H2,0 = None of the metrics are correlated with the
number of recorded faults. More concretely,
|ρT | < θ, |ρM | < θ, |ρT/M | < θ, |ρL/C | < θ,
|ρL/Loc| < θ, |ρC/LOC | < θ, where θ is the
statistically significant threshold of correlation
for the sample size.

H2,A1 = Type counts are correlated with the number of
recorded faults; i.e., |ρT | ≥ θ.

H2,A2 = Morphism counts are correlated with the
number of recorded faults; i.e., |ρM | ≥ θ.

H2,A3 = The ratio of Types to Morphisms is correlated
with the number of recorded faults; i.e.,
|ρT/M | ≥ θ.

H2,A4 = The ratio of Logic to Control is correlated with
the number of recorded faults; i.e., |ρL/C | ≥ θ.

H2,A5 = The ratio of Logic to LOC is correlated with the
number of recorded faults; i.e., |ρL/Loc| ≥ θ.

H2,A6 = The ratio of Control to LOC is correlated with
the number of recorded faults; i.e., |ρC/Loc| ≥ θ.
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RQ3

Are there correlations between the rates of change of classic metrics

and the number of recorded faults found in a given software system? This

question aims to determine if is is possible to predict whether or not an update to a

software system will produce an increase in the occurrence of reported faults.
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Table 3.6: Research Question 3

Intuition : When writing software, developers must
maintain a mental model of a program. Large
changes between software versions means that
developers must dramatically alter their mental
image in a short period of time, leaving
potential for more faults to be introduced. As
such, we expect the size of the change between
metrics to be directly proportional to the
number of faults [22].

H3,0 = None of the ∆ metrics are correlated with the
number of recorded faults. More concretely,
|ρ∆LOC | < θ, |ρ∆CY C | < θ, |ρ∆AFF | < θ,
|ρ∆EFF | < θ, |ρ∆RMI | < θ, |ρ∆DIT | < θ, where θ
is the statistically significant threshold of
correlation for the sample size.

H3,A1 = Delta LOC is correlated with the number of
recorded faults; i.e., |ρ∆LOC | ≥ θ.

H3,A2 = Delta CYC is correlated with the number of
recorded faults; i.e., |ρ∆CY C | ≥ θ.

H3,A3 = Delta AFF is correlated with the number of
recorded faults; i.e., |ρ∆AFF | ≥ θ.

H3,A4 = Delta EFF is correlated with the number of
recorded faults; i.e., |ρ∆EFF | ≥ θ.

H3,A5 = Delta RMI is correlated with the number of
recorded faults; i.e., |ρ∆RMI | ≥ θ.

H3,A6 = Delta DIT is correlated with the number of
recorded faults; i.e., |ρ∆DIT | ≥ θ.
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RQ4

Are there correlations between the rates of change of type level

metrics and the number of recorded faults found in a given software

system? Like RQ3, this question is aimed at predicting fault behavior based of

the rate of change of metrics. Similarly to RQ2, if there does exist a correlation we

can use the ∆ type-level metric to provide useful metrics that are cheaper to calculate

than the ∆ classic metrics.
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Table 3.7: Research Question 4

Intuition : By the same rationale as RQ3, we expect the
size of the change between metrics to be directly
proportional to the number of faults.

H4,0 = None of the ∆ metrics are correlated with the
number of recorded faults. More concretely,
|ρ∆T | < θ, |ρ∆M | < θ, |ρ∆T/M | < θ, |ρ∆L/C | < θ,
|ρ∆L/Loc| < θ, |ρ∆C/LOC | < θ, where θ is the
statistically significant threshold of correlation
for the sample size [22].

H4,A1 = Delta Type counts are correlated with the
number of recorded faults; i.e., |ρ∆T | ≥ θ.

H4,A2 = Delta Morphisim counts are correlated with the
number of recorded faults; i.e., |ρ∆M | ≥ θ.

H4,A3 = The Delta ratio of Types to Morphisims is
correlated with the number of recorded faults;
i.e., |ρ∆T/M | ≥ θ.

H4,A4 = The Delta ratio of Logic to Control is correlated
with the number of recorded faults; i.e.,
|ρ∆L/C | ≥ θ.

H4,A5 = The Delta ratio of Logic to LOC is correlated
with the number of recorded faults; i.e.,
|ρ∆L/Loc| ≥ θ.

H4,A6 = The Delta ratio of Control to LOC is correlated
with the number of recorded faults; i.e.,
|ρ∆C/Loc| ≥ θ.
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EXPERIMENTAL DESIGN

Domain

Before initializing the case study, there are a number of criterion that need to be

considered in the design phase. The two primary requirements for this study are the

provision of open source projects and that the development logs and/or bug reports for

these projects are publicly available. This will allow us to take measurements from

the project as well as associate the measurements with a relative view of software

quality.

Secondary considerations include the lifetime of a project, the properties of

a languages type system and operational calculi, and the number of programming

languages present in a project. We would like to check for Lehman’s Laws of software

evolution in the type level metrics studied, as well as determine if any trends exist to

predict software quality in regards to the number of reported faults, which requires

many previous versions of a software system to be available. To make the study easier

to conduct, as well as less error prone, the target language should be statically typed

and have concrete structures for declaring data types and the morphisms between

these types. To eliminate any unnecessary complexity, the projects chosen should

be written primarily in a single language. For reference, all criterion are shown in

Table 4.1.

To satisfy these critereon, Java was chosen as the target language of the study,

and a subset of projects available from the Apache Software Foundation was used as

the domain. The language Java was chosen primarily for two reasons:

1. Java is an extremely popular language, ranking near the top of many popular

benchmarks [23], [24], [25], along with C/C++. This popularity should make
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Table 4.1: Criterion

1 The software needs to be open-source. Without access to the
source code, it would be impossible to perform the required
static analysis.

2 The software should be written primarily in a single
language. Projects written in multiple languages add
unnecessary complexity to our analysis. Additionally, some
aspects of the softwares complexity could be hidden by biases
within the programming languages themselves (differing
levels of abstraction, maturity of libraries, etc).

3 Since our research questions focus on information at the
type-level, the software should be written in a strong,
statically typed language. Ideally this language would also
have a uniform way of describing morphisms between the
types.

4 The software needs to have many previous versions available.
Without this, we would not be able to observe how the
evolution of type-level metrics compares to classic metrics.

5 The project needs to have a log of reported faults available
for each of the versions over the softwares lifetime.

6 The language should be at least relatively popular, making it
easier to find software projects to test. Additionally, having
the study done in a popular language would improve the
relevancy of the study to a wider audience.
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it much easier to find long-term projects with open source code, and help to

satisfy the criterion 1, 4, and 6.

2. Java is statically typed and defines types and morphisms in a uniform way.

Types are constructed as Class Constructors, with no argument constructors

being the unit type, multi-argument constructors being product types, and multi-

constructor classes being sum types. All morphisms within Java are defined by

Class Methods, with an implicit first argument of the same type as that of

the Object defined by the class. A more formal explanation can be seen in

Appendix B. This satisfies criterion 3.

Criterion 1, 2 and 5, can be addressed by carefully choosing projects from the

Apache Software Foundation. Projects included in this case study were chosen based

on the number of previous versions with source code freely available, as well as on

the quality of logging provided on each version of the project. High quality logs will

track issues, notes, or faults for each version of the software, which we will use as the

response variable in this case study.

Methods

After project selection, we began data collection. For each project selected, the

following steps were executed:

1. Query the software logs for the project, and record the number of reported

faults within each version of the project.

2. Download the source code of each software version that has corresponding fault

data.
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3. Load each of the collected software versions into the Eclipse IDE, and compile

the project.

4. Once compiled, we can obtain software metric data from the Eclipse Metric

Plugin, available through the Eclipse Marketplace 1. The resulting data can be

exported as an XML.

5. Query each of the XML metric data files for the relevant fields, listed in

Table 4.2. This was automated through the use of a Python script, which

output the data into a format readable by the statistical language R (which

will be used in analysis).

6. Calculate the non-primitive type level metrics, T/M, L/C, L/LOC, and C/LOC.

7. Calculate the Delta (∆) metrics. These metrics are obtained by subtracting

every reading for a given metric at version i from version i+ 1. In other words,

the ∆-metric is the change in the metric at any given point in time. Repeat

this calculation for every metric in the study.

After data collection, we began preliminary analysis. Before conducting any

statistical tests, we first get a sense of the data by creating visual aids of the metrics

for each project over time. These descriptive views detail how metrics evolve, and

are helpful in addressing research question RQ0.

In addition to the per project views, we generate visuals for each metric combined

across projects, plotted against the number of reported faults for each metric reading.

Before combining, the metrics are normalized by LOC where applicable. For any

metrics that exhibit monotonic behavior, we will also check for normality using a QQ-

Plot. This provides crucial information on which statistical tests may be performed.

1Available from : https://marketplace.eclipse.org/content/eclipse-metrics
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Table 4.2: Metrics Collected for Java Projects

LOC The total number of lines of code in the software system.

CYC The average McCabe cyclomatic score of methods in the
project.

EFF The average efferent coupling of modules.

AFF The average afferent coupling of modules.

RMI The average instability of modules.

DIT The average depth of inheritance tree of modules.

T The number of types that the system defines. In Java,
this is equivalent to the number of classes.

M The number of morphisms that the system defines. In
Java, this is equivalent to the number of methods defined.

C The number of lines that refer to program control only.
In Java, this is equivalent to the number of lines of code
contained in method bodies.
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To answer research questions RQ1 and RQ2, we execute a correlation test on

each of the collected metrics and their respected reported fault counts. The test that

should be used is dependent on the results from the QQ-Plots that have already been

generated. If the data is normally distributed, we will use a parametric Pearson Test ;

otherwise, a non-parametric Spearman test will be used.

The final research questions, RQ3 and RQ4, are addressed using the same

techniques as the previous research questions, with the caveat that the differences

between sequential metric and fault data points, rather that the data points

themselves, serve as the datum.

Artifacts

This case study was performed on five separate software projects of varying sizes

and domains. Each of the projects is listed below, along with a short description of

the software provided by their respective development teams.

ANT

Apache Ant is a Java library and command-line tool whose mission is

to drive processes described in build files as targets and extension points

dependent upon each other. The main known usage of Ant is the build

of Java applications. Ant supplies a number of built-in tasks allowing

to compile, assemble, test and run Java applications. Ant can also be

used effectively to build non Java applications, for instance C or C++

applications. More generally, Ant can be used to pilot any type of process

which can be described in terms of targets and tasks. –http: // ant.

apache. org

Commons-Lang

http://ant.apache.org
http://ant.apache.org
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The standard Java libraries fail to provide enough methods for ma-

nipulation of its core classes. Apache Commons Lang provides these

extra methods. Lang provides a host of helper utilities for the java.lang

API, notably String manipulation methods, basic numerical methods,

object reflection, concurrency, creation and serialization and System

properties. Additionally it contains basic enhancements to java.util.Date

and a series of utilities dedicated to help with building methods, such

as hashCode, toString and equals. –https: // commons. apache. org/

proper/ commons-lang

Commons-CLI

The Apache Commons CLI library provides an API for parsing command

line options passed to programs. It’s also able to print help messages

detailing the options available for a command line tool. –https: //

commons. apache. org/ proper/ commons-cli

Wicket

Invented in 2004, Wicket is one of the few survivors of the Java serverside

web framework wars of the mid 2000’s. Wicket is an open source,

component oriented, serverside, Java web application framework. With a

history of over a decade, it is still going strong and has a solid future ahead.

Learn why you should consider Wicket for your next web application. –

https: // wicket. apache. org

Commons-Compression

The Apache Commons Compress library defines an API for working with

ar, cpio, Unix dump, tar, zip, gzip, XZ, Pack200, bzip2, 7z, arj, lzma,

https://commons.apache.org/proper/commons-lang
https://commons.apache.org/proper/commons-lang
https://commons.apache.org/proper/commons-cli
https://commons.apache.org/proper/commons-cli
https://wicket.apache.org
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snappy, DEFLATE, lz4, Brotli, Zstandard, DEFLATE64 and Z files. –

https: // commons. apache. org/ proper/ commons-compress

https://commons.apache.org/proper/commons-compress


31

RESULTS

The results for this case study were produced in three phases. The first phase,

preliminary analysis of metrics and their evolution, can be seen in Appendix A.

These charts show the evolution of each metric of interest by individual project.

Additionally, charts of the change between successive metric readings were created.

In Appendix A, these charts are referred to as Delta (∆) metrics. Statistics on the

raw metrics collected on linear and curved fits can be seen in Figure 5.1 and Figure 5.2

The second phase of results was obtained by combining the data from each

project, normalizing metrics by LOC where applicable. The delta-metric data from

each project produced in the first phase are also combined by metric type. The

resulting charts of this condensed data can be seen in Figures 5.3-5.7. This data

will be used in statistical tests, where metrics will be tested for correlation with the

number of faults in the system.

The third and final phase of case study results is to execute the correlation tests

on the metric and delta metric datum processed in the second phase of results. Before

choosing the appropriate correlation test, note the following:

1. Both the domain and the codomain of the datum are continuous, and reside on

the ratio scale.

2. All visualizations of the metric datum appear to be roughly monotonic.

3. The metric datum fails normality tests, producing highly skewed QQ-plots.

As such, we will choose to use the non-parametric Spearman correlation test for

our statistical analysis. The results of the correlation tests for each metric and delta

metric can be seen in Table 5.1 and Table 5.2.
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(a) Metric LOC Trends

Project Relation P-Values

Linear Quadratic

ANT + 0 8e-08

Wicket + 0 3e-08

Compress + 0 0

Lang + 3e-04 0.0007

CLI + 0.0485 0.0964

(b) Metric CYC Trends

Project Relation P-Values

Linear Quadratic

ANT - 0.0133 0.0155

Wicket - 0 0

Compress - 0 2.4e-07

Lang - 0.1466 0.1512

CLI - 0.1688 0.0977

(c) Metric EFF Trends

Project Relation P-Values

Linear Quadratic

ANT + 0.2116 0.2198

Wicket + 0 0.0015

Compress + 7e-04 0.0002

Lang + 0.0889 0.0497

CLI + 0.1817 0.1181

(d) Metric AFF Trends

Project Relation P-Values

Linear Quadratic

ANT + 0.0214 0.0252

Wicket + 0 0

Compress + 0 1e-06

Lang + 0.0196 0.0140

CLI NA NA NA

Figure 5.1: Metrics Trends (Part A)
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(a) Metric RMI Trends

Project Relation P-Values

Linear Quadratic

ANT + 0.2116 0.2198

Wicket + 0 0

Compress + 7e-04 0.0002

Lang + 0.0889 0.0497

CLI + 0.1817 0.1181

(b) Metric T Trends

Project Relation P-Values

Linear Quadratic

ANT + 0 1.87e-06

Wicket + 0 2e-08

Compress + 0 0

Lang + 4e-04 0.0008

CLI + 0.0222 0.0679

(c) Metric M Trends

Project Relation P-Values

Linear Quadratic

ANT + 0 2.1e-07

Wicket + 0 2e-08

Compress + 0 0

Lang + 0.0017 0.0030

CLI + 0.0336 0.0532

(d) Metric C Trends

Project Relation P-Values

Linear Quadratic

ANT + 0 3.2e-07

Wicket + 0 7e-08

Compress + 0 0

Lang + 0.0021 0.0017

CLI + 0.0559 0.1169

Figure 5.2: Metrics Trends (Part B)
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Figure 5.3: Classic Metric Results
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Figure 5.4: Coupling Metric Results
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Figure 5.5: Coupling Metric Results (cont)
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Figure 5.6: Type Level Metric Results
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Figure 5.7: Type Level Metric Results (cont)
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Table 5.1: Metric Correlation to Faults
Spearman Test Results n = 60

Metric Results

ρ p-value correlation

LOC -0.5886 7.5483e-07 moderate

Cyclomatic 0.2334 0.0727 —

Afferent -0.5722 1.7883e-06 moderate

Efferent -0.6571 1.1847e-08 strong

Instability -0.1575 0.2295 —

DIT -0.4053 0.0014 moderate

Types -0.3272 0.0107 weak

Morphisms -0.4464 0.0003 moderate

Types/Morphisms -0.0242 0.8545 —

Logic/Control -0.3941 0.0018 weak

Logic/LOC -0.4412 0.0004 moderate

Control/LOC 0.4222 0.0008 moderate

significant at p < α = 0.05
significant at Bonferroni corrected α = 0.05
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Table 5.2: Delta Metric Correlation to Faults
Spearman Test Results n = 55

Metric Results

ρ p-value correlation

LOC 0.0437 0.7515 —

Cyclomatic -0.0294 0.8312 —

Afferent 0.0998 0.4687 —

Efferent -0.0780 0.5715 —

Instability 0.0443 0.7480 —

DIT 0.0880 0.5228 —

Types -0.1422 0.2994 —

Morphisms -0.0374 0.7856 —

Types/Morphisms -0.1544 0.2602 —

Logic/Control -0.2251 0.0985 —

Logic/LOC -0.0923 0.5017 —

Control/LOC 0.0280 0.8389 —

significant at p < α = 0.05
significant at Bonferroni corrected α = 0.05
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DISCUSSION

In the following sections, we analyze the results of our case study and their

ramifications regarding the outlined research questions.

Research Question 0

In RQ0, we ask two preliminary questions: (a) whether the metrics used in

this case study exhibit monotonic patterns over a softwares lifetime, and (b) whether

metrics maintain the same monotonic relation across software projects. The results of

regression fitting for each metric and project can be seen in Figure 5.1 and Figure 5.2.

In addition to the p-values of the F-statistic, these tables also record the direction

of the potential monotonic relation; + for strictly increasing, and − for strictly

decreasing.

The raw metrics LOC, AFF, T, M, and C, showed strong evidence to reject the

null hypotheses H0A,0 and H0B,0. For all five projects, the linear model for metrics was

statistically significant and the monotonic relations for each metric remains constant

across projects. This provides strong evidence supporting that LOC, AFF, T, M, and

C, all follow Lehmans Laws of Software Evolution.

The remaining metrics, CYC, EFF, and RMI, still showed some evidence to

reject H0A,0 and H0B,0, but this evidence was much weaker. Although all metrics

maintained their monotonic relations across projects, not all of the projects could be

fit to a linear or quadratic model with statistical significance. For CYC and Eff, only

3 out of the five projects could be fit to a model, and for RMI, only 2 of the projects

could be fit. From the current evidence, we can neither accept or reject H0A,0 and

H0B,0 for the metrics CYC, EFF, and RMI.
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Research Question 1

In RQ1, we ask whether or not classically used metrics (LOC, CYC, EFF,

AFF, RMI, or DIT) are correlated with the number of faults found in the software.

Metrics that are correlated can be said to be a good indicator of software quality and

complexity. The results of the Spearman test on the classic metrics can be seen in

Table 5.1.

From this table, we can see that EFF is strongly correlated with the number

of faults, and the metrics LOC, AFF, and DIT have a moderate correlation.

Interestingly, CYC and RMI do not appear to be correlated to the fault count. More

formally, we reject the null hypothesis H1,0, and accept the alternative hypotheses

H1,A1, H1,A3, H1,A4, and H1,A6. In practice, these results indicate that using EFF,

AFF, and DIT metrics in Java projects provides a good method of evaluating software

quality trends. Alternatively, these results indicate that CYC and RMI do not provide

a good indication of software quality.

Contrary from what our results indicate, it is not likely a good idea to use LOC

as a measure of software quality. More lines of code obviously increases psychological

complexity for a developer. Intuitively, the positive correlation between LOC and

faults is likely the result of applying software patches to a system. In this case, more

lines of code are added to the software solely for the purpose of eliminating a fault(s).

Research Question 2

In RQ2, we ask whether or not type level metrics (T, M, T/M, L/C, L/LOC,

C/LOC) are correlated with the number of faults found in the software. Metrics that

are correlated can be said to be a good indicator of software quality and complexity.

The results of the Spearman test on the classic metrics can be seen in Table 5.1.

From this table, we can see that M, L/LOC, and C/LOC are moderately
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correlated with the number of faults in the system. Additionally, the metrics T

and L/C have a weak correlation, and T/M is not correlated. More concretely, we

reject the null hypothesis H2,0 and accept the alternative hypotheses H2,A2, H2,A5,

and H2,A6. The weakly correlated alternatives, H2,A2 and H2,A4, are neither rejected

or accepted. We can however reject the alternative H2,A3, as no significant correlation

was found.

From these results, we can say with confidence that there do exist type level

metrics that correlate with software quality in regards faults; namely, the number

of unique morphisms present in a software system (M), the percentage of the code

that describes logic (L/LOC), and the percentage of the code that explicitly handles

control (C/LOC).

Research Question 3

In RQ3, we ask whether or not the differences between successive readings of the

classically used metrics (∆-LOC, ∆-CYC, ∆-EFF, ∆-AFF, ∆-RMI, or ∆-DIT) are

correlated with the number of faults found in the software. Metrics that are correlated

can be said to be a good indicator of software quality and complexity. The results of

the Spearman test on these ∆-metrics can be seen in Table 5.2.

From the results of the Spearman test, we can see that there is no indication

that there exists a correlation between the classic ∆-metrics and the number of faults.

This implies that the difference in successive metric readings does not predict software

quality in regards to number of faults present.

Research Question 4

In RQ4, we ask whether or not the differences between successive readings of

the type level metrics (∆-T, ∆-M, ∆-T/M, ∆-L/C, ∆-L/LOC, or ∆-C/LOC) are

correlated with the number of faults found in the software. Metrics that are correlated
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can be said to be a good indicator of software quality and complexity. The results of

the Spearman test on these ∆-metrics can be seen in Table 5.2.

From the results of the Spearman test, we can see that there is no correlation

between the type level ∆-metrics and the number of faults. This implies that the

difference in successive metric readings does not predict software quality in regards

to number of faults present.
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THREATS TO VALIDITY

Any case study or experiment performed will always posses inherent biases.

Studies in the field of computer science or software engineering are no exception. In

their book [26], Wohlin et al. detail four classes of threats to validity. Following their

recommendations, we consider each of these threats and how to mitigate them in our

particular case study.

Internal Validity

This form of threat refers to confounding variables in statistical tests, and

considers potential factors that we have no control over or were omitted from the

study. In our case, the primary internal threat to validity is the assumption that the

software metrics that we chose to collect are orthogonal; meaning that the metrics

are entirely independent. Because of this design choice, there is the possibility that

some interactions between metrics was missed. In addition, we have assumed that

all faults are found in each version of software, and that there are no “missed” faults

that percolate through the study.

External Validity

This form of threat refers to the ability of an experiment to be generalized,

allowing for the conclusion to be applied to all instances of a domain rather than just

the subset that the experiment was performed over. In our case study, the threat to

external validity is the limited number of projects and software versions that were

operated over. To mitigate this threat, we chose projects from varying domains.

An additional external threat is the fact that a single programming language was
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used in the case study. Future research on other software projects and programming

languages can reduce the external threat to validity.

Construct Validity

This form of threat refers to experimental design choices that may have influence

the experiment or case study. In our case study there are two main construct threats:

the software that was used to obtain the metrics, and that some of the metrics used

were metrics averages across modules in the software. In [27], Lincke et al. found that

many software metric tools produce differing results. This is a significant construct

threat, as our results are directly dependent on the data collected by these tools. To

mitigate this threat, we chose to use a metric tool provided by a well known software

company and had many users.

Conclusion Validity

This form of threat refers to the confidence of the conclusion(s) drawn from

the experimental results. In the case of our case study, the primary concern is if

the correlations observed indicate causality. Again, this threat can be mitigated by

reproducing this case study on additional software projects.
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CONCLUSION

From our case study, we can make several recommendations to Java developers

to reduce the number of faults in software. When working on projects, we advise

developers to put priority on monitoring the following software properties: efferent

coupling (EFF), afferent coupling (AFF), morphisms (M), percentage of code that

contains logic (L/LOC), percentage of code that contains control (C/LOC), and the

depth of inheritance tree (DIT). The other metrics analyzed in this case study did

not produce adequate results to justify their usage in gauging software faults.

From the results presented for the ∆-metrics, we have found insufficient evidence

to suggest that there is any correlation between changes in successive metric readings

and the number of faults present in the software.

While never explicitly defined as a research question, one of the most consequen-

tial result of the this case study can be seen in the signs of the correlations of the

metrics used. The metrics that relate directly to encoded logic of the software model

all have a negative correlation coefficient. Conversely, the metric that captures the

control portion of the software (C/LOC and CYC) have a positive coefficient. In

other words, increasing the amount of the model represented in the type level of a

software project seems to result in fewer faults in the system. Intuitively, this is

a logical statement as any information present at the type level of software can be

compiler verified. With more of the specifications occurring at the type level, and

therefore being verifiable, more faults will be caught before they can occur in the

software.

Related are the coupling metrics in object oriented systems. Since the notion

of an “object” and a “type” are isomorphic, coupling metrics can be thought of as

measuring type level dependencies. Just like the other type level metrics in the study,
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coupling metrics are negatively correlated.

The case study presented in this thesis provides strong support for software

development techniques and languages that emphasize typing and minimizes program

control. In addition to making software development recommendations, this thesis

should serve as an indication that language research in the field of type theory can

be greatly beneficial to developers and improve software quality.

Future Research

The research presented in this thesis provides a foundation for promoting the

usage of type level metrics; however, the small sample size is concerning in regards

to external validity. Future research replicating this case study would be extremely

beneficial in mitigating this threat.

An additional area of future research is the consideration of other object oriented

languages. The methods used in this case study should be easily extensible to most

statically typed languages that have uniform ways of declaring types and mappings

between types.

Lastly, the ∆-metrics that were presented in this case study only considered

successive versions. By extending the window of time, looking at many previous

versions of the software, additional patterns regarding software quality in terms of

faults may be found.
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APPENDIX: ARTIFACT PROFILES
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Figure A.2: ANT Delta Profile
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Figure A.4: Commons-Lang Delta Profile
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Figure A.6: Commons-CLI Delta Profile
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Figure A.10: Commons-Compress Delta Profile
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APPENDIX: ALGEBRAIC TYPES

The algebra of data types is a rich and consequential field of study. This thesis

only requires a basic understanding of the subject; enough to understand the primitive

properties of typing and how they relate to concrete instances of Java code. For more

information on this subject, refer to [28] or [8]. Table B.1 shows the relevant type

related definitions and how they relate to Java.
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Table B.1: Java and Algebraic Types

Void Type This is a type space with no inhabitants. In
Java, this would be a void type.

Unit Type This is a type space with a single
inhabitant. This would be a Java
constructor that only serves as a label. For
example, True for a Boolean or Nil for a
Linked List.

Product Type This is a type space that inhabits the cross
product of types. In Java, these would be
constructors that take more than one
parameter. For example, consider a
constructor that creates a point on a
Cartesian plane, taking in an Int x and an
Int y. We can clearly see that the
constructor does indeed create a type in the
domain of x× y. The number of inhabitants
of this type space is x× y, and logically
these types can be thought of as a logical
and.

Sum Type This is a type space that inhabits the sum
of types. In Java, sum types are realized by
objects that have multiple constructors. For
example, consider the sum type Bool
comprised of the unit types True and False.
The total number of inhabitants is
1 + 1 = 2. Logically, this type can be
thought of as logical or.

Polymorphic Type These type spaces can be thought like
variables in traditional algebra.
Algebraically, we could write a linked list of
type a as La = 1 + a×La. Java realizes this
concept using generics.
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Table B.2: Java and Algebraic Types (cont)

Morphism A morphism describes a mapping between an
element in the domain into an element in the
codomain (sometimes referred to as an arrow).
For our purposes, we will also refer to more
complex relations, like f : A→ B → C simply as
a morphism. In Java, morphisms are created
using methods, whose signature S would consist
of: parent object → cross product of arguments
→ return type.

Logic Level In this thesis, we refer to anything that is
directly representable in Logic, meaning as type
signatures, as residing at the logic level. This
would include entities like class declarations,
constructor signatures, and method signatures.

Control Level In this thesis, we refer to anything that is
directly related to flow control as residing at the
control level. This would include constructor
bodies and method bodies.
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